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Estimation of energy efficiency of heat
pumps in residential buildings using real
operation data

Tobias Brudermueller 1 , Ugne Potthoff 1, Elgar Fleisch 1,2,
Felix Wortmann 2 & Thorsten Staake 1,3

As heat pumps become more prevalent in residential buildings, effective
performance monitoring is essential. Design flaws, incorrect settings, and
faults can escalate energy consumption and costs, leading to discrepancies in
user expectations and hindering the widespread adoption of this technology
crucial for the heating transition. However,field studies using largedata sets to
offer insights into real-world performance and methods for identifying low-
performing systems in practical, scalable applications are lacking. In the lar-
gest field study to date, we analyze sensor data from 1023 heat pumps across
Central Europe monitored over two years. Based on existing approaches for
controlled laboratory conditions, we derive methods to evaluate and classify
real-world performance using operational data. Applying these methods, we
find that 17% of air-source and 2% of ground-source heat pumps do not meet
existing efficiency standards. Additionally, around 10% of systems are over-
sized, while approximately 1% are undersized. This underscores the need for
standardized post-installation performance evaluation procedures and digital
tools to provide actionable feedback for users and installers to enhance
operational efficiency and guide future installations.

Buildings constitute 30% of global final energy consumption and
contribute to 26% of global energy-related carbon dioxide emissions,
with approximately half attributed to space and water heating1.
Electrically-powered heat pumps (HPs), extracting heat energy from
natural sources such as the ground, air, or water, offer a sustainable
alternative to oil or gas-based heating, especially in regions with a high
share of renewable electricity generation2. While already meeting 10%
of global space heating needs in 2021, HPs have the potential to reduce
global carbon dioxide emissions by at least 500 million tonnes by
2030, equivalent to the annual emissions from all cars currently in
operation in Europe3. Yet, meeting the International Energy Agency’s
global non-binding target of 600 million HPs by 2030 necessitates an
accelerated deployment of HPs, as current installation rates project a
58% shortfall4. The replacement of fossil fuel heating systems however

poses a significant financial challenge for homeowners due to the high
upfront costs, evenwith available subsidies and thepotential forbetter
cost amortization through achieved savings5,6. Subsidies are prevalent
in over 30 countries1 but also represent a substantial financial burden
for governments4,7,8. Moreover, regulations regarding heating systems
in private households are sometimes entangled with emotional
responses9. The German Building Energy Act serves as a notable
example, reflecting public discontent arising from being compelled to
invest in heating renovation5,10–12.

Additionally, HPs exhibit greater complexity compared to well-
established gas and oil heating systems, and unlike these traditional
systems, they have not undergone decades of optimization. The per-
formance of HPs is influenced significantly by factors beyond design,
such as occupant characteristics and HP system settings13–17, which is a
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challenge for manufacturers, installers and owners. Consequently, the
actual energy consumption of HPs in practice can deviate significantly
from expectations, resulting in substantial additional operating costs.
For example, Nolting et al.15 report up to 24% lower performance than
stated on the product certificate label. Additionally, in an analysis of
297 SwisshouseholdswithHPs,Weigert et al.18 demonstrated that after
on-site optimization by an energy consultant, half of them achieved
average savings of 1805 kWh (15.2%) per year. As the operating costs of
HPs are decisive in determining whether the technology is econom-
ically attractive compared to other heating solutions19–21, the dis-
crepancy in performance can fuel dissatisfaction and, ultimately, pose
a threat to the technology’s acceptance22. The success of the heating
transition is therefore closely tied to the performance of heatpumps in
the field.

Maximizing the energy efficiency of HPs is also relevant for elec-
tricity grids, as these systems significantly increase both total and peak
power demand. This heightened demand can necessitate the imple-
mentation of demand response programs and expensive upgrades to
grid infrastructure23,24. For example, transitioning 10% of British
households to HPs would increase peak demand by 2.5–3.75 GW
(4.6–7.0%)25,26, and a transition of all British households would double
it27. Similar studies are also available for other countries and
scenarios28–32. In Switzerland, even with substantial already existing
pump storage facilities that help control demand, a 34% increase in
electricity storage capacity would be necessary if all fossil-based
heating systems were replaced by HPs29.

Digitalization offers opportunities to tackle the current chal-
lenges of HP operations. As the majority of modern HP units are
equipped with multiple sensors providing real-time data, it
becomes possible to monitor their performance and control their
operation effectively24,33,34. However, manufacturers are still in the
early stages of offering services beyond displaying raw consump-
tion data and activating alarms in case of heating failures35. While
fault detection and diagnosis systems have been thoroughly
explored in the literature36, there is a notable gap in research
focusing on HPs operating without faults but potentially lacking
optimization. Moreover, many existing studies lack the analysis of
large sample size data sets of HPs in real-world settings, often
relying on data from test houses, simulations, or laboratory
experiments. For instance, Carroll et al.37 conducted a structured
literature review of field studies on air-source heat pumps and
identified only 34 articles, with38 being the largest field study with a
sample size of 77. Amore expansive and frequently cited field study
was conducted by the UCL Energy Institute between 2013 and 2015,
encompassing 292 air-source heat pumps and 92 ground-source
heat pumps in the UK as part of the Renewable Heat Premium
Payment (RHPP) program39. In addition to the limited number of
field studies, there is a scarcity of studies developing methods to
identify low-performing HPs in practical applications. Offering
users individualized feedback about the energy efficiency of their
HPs, however, has proven to significantly impact user satisfaction
and can substantially enhance the acceptance of the technology22.
Therefore, to improve the energy efficiency and reduce operational
costs of HPs in real-world scenarios, gaining a profound under-
standing of their current performance and identifying systemswith
optimization potential, is imperative.

Despite this research gap, relevant studies in related domains can
be classified into three categories: comparing real-world performance
to product certificates, identifying underperforming states in indivi-
dual systems, and developing optimal control strategies for individual
systems. The first group of work compares in-situ performance of
small sample sizes with corresponding benchmarks given in data
sheets and finds significant differences between laboratory and on-site
performance, e.g.,15,40,41. As explained by O’Hegarty et al.41, European
regulations define fixed operational points for the evaluation and

reporting of performance in standardized product certificates.
Therefore, the contribution of this type of related work lies mainly in
the development of complex interpolation and extrapolationmethods
to compare real-world performance to product certificates. Although
this type of study is able to identify HPs where performance largely
deviates from specifications, it requires contextual information (e.g.,
the exact model of the HP) and highly detailed measurements, which
makes it unsuitable for mass market applications. In contrast, the
second category examines performance of individual systems without
further reference, e.g.,42–45. This group of studies describes perfor-
mance under perfect knowledge of the buildings and without com-
parison of HPs in large populations. If methods for detecting
underperformance are proposed (e.g., in44), the focus is on detecting
periods of inefficient operation or performance degradation of single
systems. Lastly, the third group of work targets optimal control stra-
tegies for individual systems to improve their energy performance,
e.g.,46–49.

The studies outlined above are not applicable to practical sce-
narios, as they fail to address variations in data availability, obser-
vation periods, and building characteristics. Moreover, these studies
do not offer methods for identifying low-performing HPs within their
specific installation environments. In practical settings, relevant
contextual information such as building type, occupancy levels, and
more, is typically unavailable. Additionally, HPs may not be con-
trollable to operate precisely at the operational points defined in
regulations, thereby hindering comparisons to known performance
values derived from idealized laboratory conditions. This lack of
control may be due to technical constraints or concerns about reg-
ular adjustments impacting occupant comfort. As a result, evaluating
HP performance in real-world applications must rely solely on
observations of actual operational conditions, without access to
detailed contextual knowledge or the ability to directly interfere with
its operation. Such assessments are critical in practice and are highly
desired by HP users22, yet effective methods for conducting
them have not been established previously. Additionally, clear
benchmarks for good and poor performance in practical applications
are lacking.

In this study, we address the existing gap by developing methods
to evaluate HP performance in the field post-installation using real
operational data. Additionally, we provide insights from a compre-
hensive performance analysis of 1023 HPs installed in residential
buildings. Our findings reveal significant variability in performance
among individual HPs, with a 2-3 fold difference between the lowest
and highest efficiency systems. Moreover, 17% of air-source and 2% of
ground-sourceHPs fall short of existing Europeanefficiency standards.
Approximately 10% of systems are oversized, while about 1% are
undersized. These results highlight the critical need for standardized
post-installation performance evaluation procedures and the devel-
opment of digital tools to deliver actionable feedback for users and
installers, ultimately improving operational efficiency and informing
future installations.

Results
Real-world data set
The analyzed data encompasses a wide variety of HP models and
configurations installed in residential buildings across 10 countries in
Central Europe. Since the data originates from a single manufacturer,
we acknowledge that our results should be further validated with data
from HPs produced by other companies to ensure broader applic-
ability and generalizability. Nonetheless, this study represents the
largest field study conducted to date on the energy efficiency of HPs in
residential buildings. The data set studied covers 1,023 HPsmonitored
between 2021-03-14 and 2023-04-30 (i.e., for up to 777 days), with 890
(87%) being air-to-water HPs and 133 (13%) brine-to-water HPs. There
are no water-to-water HPs in the data set. While the descriptive
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analyses encompass all systems, other analyses are limited to HPs with
appropriate data to avoid distortions from poor model fits. Most
analyses include around 600 to 700 systems, with the exact number of
samples reported in each subsection. While other contextual infor-
mation is unavailable, it is known that all HPs are installed in residential
buildings in Germany: 434 (42.42%), the Netherlands: 211 (20.63%),
Austria: 204 (19.94%), Czech Republic: 78 (7.62%), Sweden: 46 (4.50%),
Denmark: 35 (3.42%), Poland: 3 (0.29%), Slovenia: 2 (0.20%), France: 1
(0.10%), Great-Britain: 1 (0.10%), and unknown: 8 (0.78%). In total, the
data set contains 185,139 daily observations at outdoor temperatures
of 15 ∘Cor below, with eachHP having an average of 182.22 days of data
within this temperature range.

Each HP is connected to the internet and measures multiple
parameters with a temporal resolution of a few seconds. To reduce
complexity, in this study, we analyze daily aggregates of this data,
usingdaily sums for electrical energy consumptionand thermal energy
production, and daily averages for all other parameters. Dayswith data
gaps have been systematically excluded to ensure the highest attain-
able data quality and are not counted in the number of observations
mentioned above. Days with more than three hours (12.5%) of missing
measurements in total are removed. Further, any day lacking mea-
surements of outdoor and supply temperatures, energy input, or
energy output is neglected. Furthermore, measurements are categor-
ized based on the operating modes for domestic hot water (DHW)
production and space heating (SH). Since all HPs are used for SH but
not all are used for DHW production, our analyses focus on SH to
ensure comparability. The performancemetrics reported in this study
encompass final energy usage of the compressor, the fan or brine
pump, and the electrical backup heater. This aligns with the European
standard EN 1482550 and adheres to theH3 systemboundary taxonomy
outlined in41,51. Further, it is worth noting that the energy values are not
directlymeasured by energy sensors; rather, they are computed by the
HPs themselves using operational sensors and the principles of phy-
sics. This computation relies on parameters such as pressure, volume
flow, and power measurements and is common practice in most
modern HPs15.

Due to potential errors in measurements, particularly during
minor compressor modulations, inaccuracies in the recorded HP
performance can occur. The specifics of the sensors used are una-
vailable to us, precluding detailed calculations of measurement
uncertainties. However, a draft proposing updates to regulations by
the European Union concerning HPs52 suggests that the maximum
permissible error for energy output should range from 7.5% to 15%,
depending on the temperature difference. For energy input, a max-
imum permissible error of 5% is proposed. According to the HP
manufacturer, the errors in the data under study already fall within
these tolerances.

Modeling and evaluating heat pump performance
This section provides essential fundamentals to support the descrip-
tions of the results and outlines the methods developed in this study,
which are designed for post-installation performance evaluation in
practical applications.

Explaining Carnot efficiency. Our analyses rely on the coefficient of
performance (COP) as a key metric for evaluating the efficiency of an
HP, which is the ratio of thermal energy generated to electrical energy
consumed in a fixed observation period. This metric is not constant
and affected by operational conditions, as comprehensibly reviewed
in53. The maximum efficiency theoretically achievable by an HP is
defined by the Carnot cycle and depends on the difference between
the heat source temperature Thsource and the heat supply temperature
Thsupply in Kelvin. In practice, however, HPs typically operate at around
half of their theoretical maximum efficiency or even lower, influenced
by irreversible and non-ideal effects extensively studied in the

literature42,54,55. These effects can be represented by a correction factor
ζ, defining the COP as:

COP= ζ � Thsupply

Thsupply � Thsource
ð1Þ

From Equation (1), it can be inferred that HPs are efficient when
the temperature difference is small, achieved by using low flow tem-
peratures for thewater distributedby theHP to a spaceor system40. An
in-depth analysis of the underlying reasons for the values of ζ in
practical applications is not the focus of this study. However, a com-
parison of observed COP values with Carnot efficiency and other
models found in the literature is provided in Supplementary Note 2.
Additionally, we note that several other factors are known to affect HP
performance, such as the frequency of on-off transients14, the quantity
of defrosting cycles53, the speed of the compressor56, and variations in
temperature profiles44 or part-load conditions57.

Explaining part-load ratio and capacity ratio. The performance of
HPs, as reported in product certificates, assumes a fixed part-load ratio
(PLR) at different operating points. The PLR is the ratio of the heating
load at a specific temperature (Tj) to the design heating load at the
design temperature (Tdesign), under the assumption of a linear rela-
tionship with outdoor temperature above the heating limit tempera-
ture (Tlim)58. According to EN 1482550, for an average climate, Tdesign is
assumed to be -10 ∘C, forwarmer climate it is 2 ∘Cand for colder climate
it is -22 ∘C. The heating limit temperature Tlim is assumed to be 16 ∘C. As
formulated by Sieres et al.58, the PLR is given by:

PLRðTjÞ=
ðTj � T limÞ=ðTdesign � T limÞ if Tj <T lim

0 if Tj ≥ T lim

(
ð2Þ

Another metric, closely related but not identical to the PLR, is the
HP’s capacity ratio (CR). While the PLR is independent of the HP
capacity, the CR represents the HP’s output capacity at Tj relative to its
full load capacity. Consequently, depending on the design choice of
the HP’s full load capacity, the CR line may lie above or below the PLR
line, but likely remains close to it.

General approach for modeling HP performance. Data availability
can vary significantly among HPs in terms of observation periods and
operation at different temperatures. Therefore, we assess and ensure
comparability of HP performance bymodeling each system’s behavior
and performance based on its in-situ measurements, facilitating
simulation and evaluation. We accomplish this by fitting linear mixed-
effects models, which include fixed effects for all HPs (including slope
and intercept) and individual random effects (also including intercept
and slope). These random effects capture the individual deviations of
each HP from the mean of all systems. In the following sections, we
denote a parameter associatedwith randomeffects using a superscript
i, where i indexes a specificHP. As we proceedwith themodels defined
below, several models based on existing literature were tested, with
detailed results presented in the Methods section. Further note that
the models are fitted and evaluated using observations from the SH
mode exclusively, which is the primary application of focus (i.e., DHW
is not included). The fitted model parameters for each individual HP
are provided as supplementary material, enabling future studies to
conduct simulations based on real-world data rather than product
certificates. Finally, it is important to clarify that all subsequentmodels
are fitted using the complete data available for each HP. However, to
ensure robustness, additional tests were conducted by splitting the
data for each system into training and test sets (see Supplementary
Note 1). The model performance was then evaluated solely on the test
data that was not seen during training. Since the differences in model
fits however were minimal, we chose to use the models fitted with the
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entire data set to enhance the interpretability of the subsequent
analysis.

Modeling the heating curve. The heating curve defines the supply
temperature Tsupp as a linear function of the outdoor temperature Tout,
which most heating controllers allow to be set manually and is known
to have a significant impact on performance17. Incorporating fixed and
random slope and intercept terms, our heating curve model is
expressed as:

Ti
suppðToutÞ= ðai

0 � 0:270Þ � Tout + ðai
1 + 38:244Þ ð3Þ

When comparing the fixed intercept and slope values to other
heating curve models in the literature (e.g.,59,60), it becomes evident
that these values can be interpreted in the context of a mixed dis-
tribution system involving radiators and floor heating. The individual
models of each HP either exceed or fall below these baseline values
adjusted by the random effects, as they are influenced by their
respective distribution system and building insulation level, details of
which are unknown in this study.

Modeling the coefficient of performance. Theoretically, a COP
model could be designed to directly capture deviations from Carnot
efficiency. However, this approach is impractical because when there
are small differences between the heat source and heat sink tem-
peratures, the denominator of Equation (1) becomes very small. This
results in unrealistically high Carnot efficiency values that do not
reflect real-world performance. Instead, several studiesmodel the COP
as aquadraticor linear function44,59,61,62. They either use theoutdoor-to-
supply temperature difference as a single independent variable or
consider outdoor and supply temperatures separately as two inde-
pendent variables. Note that we use outdoor temperature instead of
brine temperature, even for ground-source heat pumps, as they also
exhibit a dependence on outdoor temperature. We adopt this
approach due to higher data availability, and to eliminate the potential
influence of borehole depth on brine temperature measurements.
While Fischer et al.61 and Pospíšil et al.62 utilize values from multiple
HPs reported at operational points in product certificates, Sun et al.44

employ real measurements but only from a single HP. However, no
studyhasmodeledCOPusing large sample size data sets frommultiple
HPs in the field. The COPmodel that performs best on our data set is a
simple linear function, given by:

COPiðTout,T suppÞ= ðbi
0 +0:098Þ � Tout + ðbi

1 � 0:104Þ � T supp + ðbi
2 + 6:965Þ

ð4Þ
Modeling utilization as approximation for capacity ratio. We evalu-
ate the sizing of an HP based on its utilization. To this end, we use the
compressor speed of an HP relative to its full-speed capability,
expressed as a percentage, as an approximation of an HP’s capacity
ratio. Since the data set consists of daily aggregates, the average
compressor speed for each day is calculated, encompassing total
usage, i.e., it includes both space heating and domestic hot water
modes. During periods of inactivity, the compressor speed is recorded

as 0%. Similar to the heating curve model, we fit a linear mixed-effects
model to describe the utilization of each HP indexed i as a function of
the outdoor temperature Tout, given by:

UtilizationiðToutÞ= ðci0 � 2:739Þ � Tout + ðci1 + 50:865Þ ð5Þ

Evaluating model fits. To ensure that the interpretation of results is
not distorted by potentially poorly fittedmodels, we only evaluate HPs
where the models provide an appropriate fit and where the mixed-
effect slopes and intercepts accurately reflect physical properties.
Hence, we consider only thoseHPs where the SMAPE score falls within
the interquartile range and HPs with SMAPE ≥Q3 + 1.5 ⋅ (Q3 − Q1) are
excluded from the analysis. A root-cause analysis of the reasons for
poormodel fits of individual HPs is beyond the scope of this paper but
could be explored in future research. For example, as outdoor tem-
peratures increase, the supply temperature and utilization of an HP
must decrease, while the COPmust increase. Due to this condition, 125
HPs (12.21%) are excluded from the heating curve and COP model
analysis. Additionally, 190HPs (18.57%) are excludeddue to insufficient
data, having fewer than 10 observations of supply temperatures and
COP at outdoor temperatures below or equal to 15 ∘C. As a result, 708
HPs are used for energy efficiency evaluations and for calculating the
effects of minor heating curve adjustments. Similarly, for analyses
involving utilization models, 174 HPs (17.01%) lacked at least 10 mea-
surements of average compressor speed at outdoor temperatures
below or equal to 15 ∘C, and 212 HPs (20.72%) exhibited an insufficient
modelfit. Consequently, 637HPs are included in the sizing evaluations.
In contrast, the descriptive analyses in subsequent sections encompass
all 1,023 HPs.

Table 1 shows the fits of the corresponding regression models.
The values represent the mean and standard deviations of the indivi-
dual scores of each HP included in the subsequent analyses. Note that,
in addition to the individual models, we also provide the score for a
combined model, where predictions from a heating curve model
replace the original Tsupp measurements as inputs for a COP model.
This approach enables simulations that rely solely on outdoor tem-
perature data. For completeness, the R2 value is also provided, indi-
cating the variance in the data explained by the model. However, note
that a small variance in the data can result in a low R2 value without
necessarily indicating a poor fit.

Calculating the seasonal coefficient of performance. The European
standard EN 1482550 outlines a procedure for calculating the perfor-
mance of anHP using a singlemetric known as the seasonal coefficient
of performance (SCOP). This standard specifies a set of temperatures
and corresponding weights to represent typical temperature condi-
tions across three different climate zones: average, colder, and war-
mer. For the HPs in Sweden, the Czech Republic, Poland, and Slovenia,
we use values corresponding to colder climate conditions. For the
single HP in our data set located in France, we use values for warmer
climate conditions, and for all other HPs, we assume average climate.
The SCOP is determined by taking aweighted average of COP values at
these predefined temperatures and is the metric reported on product
labels. In addition to outdoor temperatures, the standard specifies

Table 1 | Mean and standard deviation scores (in brackets) of the fits for individual models

Model Type MdAE MAE MSE RMSE MAPE SMAPE R2

Heating Curve 1.02 (0.69) 1.20 (0.75) 2.99 (4.58) 1.48 (0.90) 3.32 (2.06) 3.30 (2.02) 0.43 (0.27)

COP 0.19 (0.11) 0.24 (0.13) 0.12 (0.14) 0.30 (0.18) 5.65 (2.48) 5.58 (2.38) 0.75 (0.17)

Heating Curve & COP 0.23 (0.13) 0.28 (0.15) 0.16 (0.18) 0.36 (0.19) 6.63 (2.79) 6.66 (2.83) 0.51 (0.31)

Utilization 4.66 (1.87) 5.59 (2.11) 57.48 (52.0) 7.11 (2.64) 21.18 (0.13) 17.49 (7.06) 0.65 (0.19)

These models are used in subsequent analyses and cover 708 heat pumps for the heating curve and coefficient of performance (COP) model, and 637 heat pumps for the utilization model.
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fixed supply temperatures andPLRs. These conditions are rarelymet in
practical applications without explicit intervention in HP operation,
making it impractical to calculate SCOP as strictly defined by the
standard41. Instead, to accurately assess the real-world performance of
HPs, we calculate SCOP under real PLRs and using real supply tem-
peratures obtained from in-situ measurements. We achieve this by
sampling from each HP’s heating curve and COP model (Equation (3)
and Equation (4)) using the fixed outdoor temperatures Tj

out and
correspondingweightswj as defined in EN 1482550 (see Supplementary
Table 1). The real SCOP of an HP, indexed by i, is thus calculated as
follows:

SCOPi
real =

P
j wj � COPiðTj

out,T
i
suppðTj

out ÞÞ
� �

P
jwj

ð6Þ

According to O’Hegarty et al.41, the value calculated here is com-
parable to the SPFH3 reported in other studies, but it pertains only to
space heating. For completeness, we also report results using the fixed
supply temperatures defined in the standard. Although these may not
accurately reflect real operating conditions, the calculated SCOP
values are closer to those reported on product certificates. In this
approach, no sampling from the heating curve is needed; instead,
values can be directly sampled from the COP model using the fixed
temperatures. Note that in this case, for ground-source heat pumps,
the outdoor temperature is fixed at 0 ∘C, with only the supply tem-
peratures varying, while we continue to use the actual part-load con-
ditions. The complete definition of test points is provided in
Supplementary Table 1.

Simulating minor adjustments to the heating curve. We simulate a
reduction of the heating curve by simply subtracting 1 ∘C from the
intercept. By combining the adjusted heating curve with the original
COPmodel and applying Equation (6), we calculate a new SCOP value.
This empowers users and installers to assess the impact on HP effi-
ciency when maintaining the same heat output with lower supply
temperatures, providing valuable guidance for optimizing settings.
Moreover, this adjustment can be quantified in terms of energy con-
sumption, enhancing its interpretability. Assuming the heat demand
Qheat is known, the difference in electricity consumption resulting
from a change in the heating curve can be approximated by a function
of the old and new SCOP, expressed as:

ΔE = Enew � Eold =
Qheat

SCOPnew
� Qheat

SCOPold
ð7Þ

In practice, however, Qheat may not be precisely known due to
potential gaps in the measured data. Therefore, we calculate a per-
centage change relative to the old energy consumption, eliminating
the dependency on the exact heat demand as follows:

ΔE
Eold

� 100%=
SCOPold � SCOPnew

SCOPnew
� 100% ð8Þ

Describing the observed performance of all heat pumps
Figure 1 illustrates the COP values and their temperature dependence
across all HPs in our data set, showing only outdoor temperatures at or
below 15 ∘C. This upper limit is consistent with other studies on HP
performance, such as60, and aligns with the European standard EN
1482550. We distinguish between air-source heat pumps (ASHPs) and
ground-source heat pumps (GSHPs), as well as observations related to
the operating modes of SH and DHW production. In the graph, the
quantity of observations among several HPs is presented at the top (N),
while the count ofHPs is provided at the bottom (NHP). Due todifferent
data availability between operating modes, these figures differ across
subsets of samples. The graph reflects two insights that align with

common knowledge in HP literature. The first observation is that
GSHPs are generally more efficient than ASHPs - in this case, by
approximately 22%, with a mean COP of 4.90 compared to 4.03. This
difference is statistically significant at a 99% confidence level, as indi-
cated by the Welch t-test (statistic = -96.28, p-value = 0.0). The reason
is that GSHPs do not need to perform defrosting cycles and benefit
from stable and higher ground temperatures on cold days, which,
although correlated with air temperatures, do not vary as
significantly63,64. This is also evident in the contour plots shown in
Fig. 1c) and d), where a linear interpolation on 500 levels of observed
COP over outdoor and supply temperatures is depicted. The efficiency
of GSHPs is influenced by outdoor temperature, though not to the
extent seen in ASHPs. For GSHPs, the correlation between outdoor
temperatures and COP in SH mode is 0.42, whereas for ASHPs, it is
0.49. The second observation is that the COP values are statistically
significantly higher for SH compared to DHW, primarily because DHW
requires higher flow temperatures13 (Welch t-test: statistic = 340.81,
p-value = 0.0). We address these differences by exclusively comparing
HPs of the same type andmodeling eachHP individually. Furthermore,
later assessments of energy efficiency specifically focus on applica-
tions related to SH.

Performance differences among individual heat pumps
Figure 2 visualizes the performanceofHPs, considering the differences
between individual systems (also see Supplementary Figs. 1 and 2 for
additional graphs). For each specific HP, themedian of COP values per
operating mode was computed based solely on observations within a
defined outdoor temperature range. The charts in Fig. 2 thus display
histograms, where each vertical bar represents the distribution of
individual HPs within a particular temperature range.

In this context, theN-values below the bars indicate the number of
HPs used to calculate the proportions. This approach offers a com-
prehensive overview of the diverse performance and behavior of
individual HPs in practice. For instance, while 18.3% of ASHPs still
achieve amedian COP of 3.0-3.5 at -6 to -3∘C, 11.2% fall below 2.0 in this
temperature range. Similarly, 11.5% of GSHPs reach a median COP
above 5.5 in the temperature range of -3 to 0∘C, while an equal per-
centage fall within the range of 3.0 to 3.5. Thus, HPs can exhibit sig-
nificant variations in performance, sometimes differing by a factor of 2
to 3 even within the same temperature range, which underscores the
importance of identifying low-performing systems.

Classifying heat pumps in terms of energy efficiency
Using SCOPi

real (Equation (6)), HPs can be benchmarked against
desired values or compared against each other by applying a
distribution-based approach. This allows for the identification of low-
performing systems. The Methods chapter provides a detailed expla-
nation and derivation of the thresholds used to classify HP perfor-
mance, with a brief summary of this procedure below. Existing
regulations lack mandatory performance thresholds for HPs in real-
world applications, as specified by official policies. However, the EN
14825 standard50 defines minimum thresholds for the seasonal space
heating energy efficiency that HPs should achieve under laboratory
conditions during certification. These thresholds can be converted
into SCOP limits specific to each HP type, indicating the minimum
SCOP below which optimization is required. For HPs exceeding this
limit, optimization remains optional but advisable. Additionally, Reg-
ulation 811/201365 offers a framework to classify HPs from A+++ to G,
enhancing interpretability for HP owners to compare categorized
performance labels. However, these classifications are again not
mandatory for practical applications. The standard distinguishes
between HPs designed for low (around 35 ∘C) and high (around 55 ∘C)
temperature applications, which we average to categorize each HP
because the intended application type is unknown in practice. Table 2
categorizes all HPs under assumptions of low, high, or average
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Fig. 1 | Performance and temperature dependence across heat pump types and
operating modes. a Distributions without accounting for temperatures. The
whiskers follow Tukey’s original boxplot definition, extending from
Q1 − 1.5*(Q3 − Q1) to Q3 + 1.5*(Q3 − Q1), where Q1 and Q3 are the first and third

quartiles. b Average performance considering outdoor temperature depen-
dence. Error bars represent the 95% confidence interval. c, d Contour plots
with linear interpolations of observed performance across outdoor and
supply temperatures. Source data are provided as a Source Data file.
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temperature applications, and we report evaluations with and without
fixed supply temperatures. Figure 3 illustrates both the thresholds and
results of the classification for average temperature applications,
detailed below.

As described in the previous section, 708 systems with sufficient
data and appropriate model fits are evaluated, including 612 ASHPs
and 96 GSHPs. The average SCOPreal of the ASHPs is 3.72, whereas for
the GSHPs, it stands at 4.80. The maximum efficiency achieved by an
ASHP is 5.55, whereas for GSHP, it is notably higher at 7.36. Among the
ASHPs, 17.20% require optimization as they fall below a threshold of
3.01, whereas for GSHPs, only two system (2.10%) fall below the cor-
responding threshold of 3.14. A significant proportion of HPs achieve
high efficiency ratings, with 29.6% (8.3%) of ASHPs (GSHPs) reaching A
+ level, 30.4% (17.7%) achieving A++ level, and 28.6% (72.9%) even
reaching the highest A+++ level. These results underscore that HPs
generally exhibit high energy efficiency even in real-world applica-
tions. However, the wide range between the lowest and highest per-
forming systems (with a factor of two to three difference in SCOPreal)
highlights a significant performance gap. This underscores the
importance of digital monitoring solutions, providing personalized
feedback on HP efficiency, and identifying underperforming systems
to optimize their operation. Furthermore, it is noteworthy that with
72.9% of GSHPs falling into the highest category A+++, there is a
potential need for more refined definitions of classes within the top-
performing segment, especially as devices on the market continue to
achieve better performance. A further comparison of the observed

performance values with existing field studies utilizing small sample
size data sets is provided in Supplementary Note 2.

Evaluating the effects of adjustments to the heating curve
Most heating controllers allow the heating curve to be set manu-
ally, and as it is known to have a significant impact on
performance17, reducing it is a simple measure to increase energy
efficiency with little effort and at low cost (refer to Carnot effi-
ciency in Equation (1)). For this reason, we investigate the effects
of lowering the heating curve by shifting it parallel by 1 ∘C,
achieved by a simple subtraction from the intercept (Equation (3)).
In Fig. 4, we present the distribution of both the absolute chan-
ge in SCOP and the relative change in energy consumption
(Equation (8)) observed across the 708 HPs.

On average, the SCOP increases by 0.11, and the household energy
consumption decreases by 2.61%. This result is consistent with a study
with a smaller sample size by Lämmle et al.66, which analyzed data from
49 HPs and reported that each reduction of one Kelvin increases the
seasonal performance factor by 0.10-0.13. With this improvement, 12
ASHPs (11.43% of this category) previously labeled as requiring opti-
mization would now move to the category where optimization is
optional, and the same applies to one GSHP (50% of this category).
Similarly, 88 ASHPs (14.38% of all ASHPs) and 6 GSHPs (6.25% of all
GSHPs) would achieve a better efficiency label. This highlights the
substantial impact of HP settings on the energy efficiency achieved in
practical applications.

Fig. 2 | Energy efficiency of individual heat pumps. A single vertical bar repre-
sents a histogramofmedian coefficient of performance (COP) values calculated for
individual heat pumps within specific temperature ranges and different operating
modes. Distributions for all: (a) air-source heat pumps in space heating mode (b)

air-source heat pumps in domestic hot water mode (c) ground-source heat pumps
in space heatingmode (d) ground-source heat pumps in domestic hot watermode.
Source data are provided as a Source Data file.
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Identifying inappropriately sized heat pumps
The size selection of an HP involves calculating the heating load
required for the space it serves and matching it with a system of
appropriate capacity67. Factors to consider are, for instance, building
size, insulation levels, local climate conditions, chosen bivalent tem-
perature, and manufacturer specifications. Properly sizing an HP is
critical for maximizing performance throughout its operational life68.
Despite its importance, installers often lack post-installation feedback
on their choices, hindering opportunities for learning and improve-
ment in future installations. Furthermore, detecting undersized sys-
tems is crucial toprevent damage.UndersizedGSHPs, for example, can
extract excessive energy from the ground, potentially leading to per-
mafrost formation around the ground probe and causing it to
break69,70. Early detection enables adjustments such as integrating
additional heat sources to reduce the strain on the system. Accurately
evaluating whether an HP is over- or undersized post-installation
requires detailed contextual knowledge about building characteristics

and design decisions, which is often unavailable in practice. Currently,
there is no standardized method to assess inappropriate sizing using
field data. However, utilization metrics are valuable indicators in this
context, offering insights into HP performance under different
conditions14,57. High utilization atmoderate outdoor temperaturesmay
indicate undersizing, while low utilization in cold conditions suggests
potential oversizing. Utilization, expressed as a percentage, allows for
standardized comparisons across HP sizes.

By sampling from the utilization model (Equation (5)), we assess
the utilization of each HP at critical outdoor temperatures, such as
-10 ∘C (the design temperature for average climate specified in EN
1482550) and 16 ∘C (the heating limit used in EN 1482550). These tem-
peratures serve as conservative operational boundaries typically con-
sidered for HP performance. For instance, EN 1482550 specifies -7 ∘C as
the operational limit below which HP manufacturers do not need to
guarantee their products’ operation, and in well-insulated buildings,
the heating limit is generally around 12 ∘C15. Figure 5a) presents a

Table 2 | Statistics and categorization of the actual seasonal coefficient of performance (SCOPreal) values

Without Fixed Supply Temperature With Fixed Supply Temperatures

Average
Temp. App.

Low Temp. App. Medium
Temp. App.

Average
Temp. App.

Low Temp. App. Medium
Temp. App.

ASHPs (N=612) Mean 3.72 3.72 3.72 3.97 4.48 3.47

Median 3.72 3.72 3.72 3.98 4.45 3.49

Q1 3.17 3.17 3.17 3.75 4.05 3.31

Q3 4.21 4.21 4.21 4.20 4.87 3.70

Stdv 0.71 0.71 0.71 0.38 0.58 0.41

Opt. Optional 507 (82.84%) 453 (74.02%) 543 (88.73%) 605 (98.86%) 606 (99.02%) 578 (94.44%)

Opt. Required 105 (17.16%) 159 (25.98%) 69 (11.27%) 7 (1.14%) 6 (0.98%) 34 (5.56%)

A+++ 175 (28.59%) 106 (17.32%) 268 (43.79%) 188 (30.72%) 305 (49.84%) 69 (11.27%)

A++ 186 (30.39%) 162 (26.47%) 185 (30.23%) 366 (59.8%) 238 (38.89%) 446 (72.88%)

A+ 181 (29.58%) 197 (32.19%) 132 (21.57%) 54 (8.82%) 64 (10.46%) 80 (13.07%)

A 30 (4.9%) 52 (8.5%) 18 (2.94%) 2 (0.33%) 2 (0.33%) 7 (1.14%)

B 23 (3.76%) 46 (7.52%) 4 (0.65%) 1 (0.16%) 2 (0.33%) 5 (0.82%)

C 9 (1.47%) 16 (2.61%) 4 (0.65%) 0 (0.0%) 1 (0.16%) 1 (0.16%)

D 8 (1.31%) 33 (5.39%) 1 (0.16%) 1 (0.16%) 0 (0.0%) 3 (0.49%)

E 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

F 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

G 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.16%)

GSHPs (N = 96) Mean 4.80 4.80 4.80 4.80 5.52 4.29

Median 4.84 4.84 4.84 4.92 5.44 4.38

Q1 4.23 4.23 4.23 4.58 5.13 3.96

Q3 5.30 5.30 5.30 5.15 5.84 4.65

Stdv 0.87 0.87 0.87 0.57 0.74 0.54

Opt. Optional 94 (97.92%) 93 (96.88%) 95 (98.96%) 96 (100.0%) 96 (100.0%) 96 (100.0%)

Opt. Required 2 (2.08%) 3 (3.12%) 1 (1.04%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

A+++ 70 (72.92%) 61 (63.54%) 77 (80.21%) 85 (88.54%) 87 (90.62%) 73 (76.04%)

A++ 17 (17.71%) 16 (16.67%) 17 (17.71%) 10 (10.42%) 8 (8.33%) 17 (17.71%)

A+ 8 (8.33%) 17 (17.71%) 2 (2.08%) 1 (1.04%) 1 (1.04%) 6 (6.25%)

A 1 (1.04%) 1 (1.04%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

B 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

C 0 (0.0%) 1 (1.04%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

D 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

E 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

F 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

G 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

The classification evaluates efficiency classes and determines whether optimization (opt.) is required or optional. It is distinguished between temperature applications (temp. app.), and between
evaluations using fixed supply temperatures defined in the standard and original supply temperatures sampled from heating curve models.
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scatter plot illustrating the utilization of each HP sampled at -10 ∘C and
16 ∘C, while Fig. 5b) depicts the linear models of each HP alongside the
PLR for average climate as defined in EN 1482450.

Rogeau et al.57 explored the effects of oversizing through simula-
tion, dimensioning an HP to cover twice the original heating demand at
the bivalent temperature. This suggests that an HP operating with 50%
utilization at the bivalent temperaturemay indicate potential oversizing.
Applying this criterion to the samples at -10 ∘C, we find that 43 HPs

(6.75%) show signs of potential oversizing. When assessed at -7 ∘C, this
number increases to 71 HPs (11.15%). Conversely, we identify 5 HPs
(0.78%) potentially undersized, as they would still operate with more
than 50% utilization at 16 ∘C. At 12 ∘C, the assessment identifies 6 HPs
(0.94%) potentially undersized. We summarize that inappropriate sizing
of HPs may pose a more substantial issue in the field than previously
reported in the literature. For example, a study by Weigert13, which
analyzed 228 on-site inspection protocols, reported that only 5% of HPs

Fig. 3 | Classificationof individual heat pumps by performance.The heat pumps
are categorized using seasonal coefficient of performance (SCOP) thresholds
derived from the European standard EN 1482550 and Regulation 811/201365, incor-
porating a distinction between different heat pump types. a Distributions of real

SCOP values (see Equation (6)). The whiskers follow Tukey’s original boxplot
definition, extending from Q1 − 1.5*(Q3 − Q1) to Q3 + 1.5*(Q3 − Q1), where Q1 and Q3

are the first and third quartiles. b Evaluation of air-source heat pumps. c Evaluation
of ground-source heat pumps. Source data are provided as a Source Data file.

Fig. 4 | Effect of reducing the heating curve by a 1 ∘ C parallel shift on performance. The graphs illustrate the distributions of the effects for each individual heat pump
(N= 708). a Absolute change in seasonal coefficient of performance. b Relative change in energy consumption. Source data are provided as a Source Data file.
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were either over- or undersized. In contrast, employing a conservative
evaluation approach with our field data reveals approximately 7-11% of
oversized HPs and around 1% that are undersized.

Discussion
With ananalysisof 1,023HPs across 10 countries inCentral Europe, this
work represents the largest field study onHP performance. Our results
and contributions can be summarized in four aspects: Firstly, we
deepen the understanding of HP performance in real-world conditions
through descriptive analyses and the development of models that
enable future studies to simulate HPs based on actual operational data
rather than relying solely on product certificates. Our findings reveal
significant performance variability among individual HPs, with a 2-3
fold difference between low and high-efficiency systems. Secondly, we
operationalize European regulatory thresholds into performance
values that can be applied to HP field data, enabling the categorization
of HPs into efficiency classes ranging from A+++ to G. Applying these
thresholds to the 708 HPs examined, we identified 105 ASHPs (17.2%)
and 2 GSHPs (2.1%) operating below the required energy efficiency
specifications, underscoring the need for optimization. Further, with
72.9% of GSHPs falling under the highest category (A+++), our work
also emphasizes the necessity for improved thresholds derived from
real-world operation rather than laboratory conditions, integrated into
standardized assessments defined by policymakers. Thirdly, to
enhance current operations, we develop a method to evaluate the
impact of reducing the heating curve by a 1 ∘C parallel shift, offering
feedback on potential efficiency improvements. Our analysis shows an
average improvement in SCOP by 0.11, corresponding to energy sav-
ings of 2.61%. With such a minor adjustment in the settings, 12 ASHPs
(11.43%) and one GSHP (50%) requiring optimization could meet effi-
ciency thresholds, while 88 ASHPs (14.38%) and 6 GSHP (6.25%) could
qualify for improved efficiency labels. This emphasizes the substantial
impact of configurations on HP efficiency and underscores the need
for digital tools to provide feedback to users and installers. Fourthly, to
guide installers in future installations, we propose a method that uses

operational utilization data to assess whether an installed HP is
appropriately sized. Even with a conservative evaluation, we find that
approximately 7-11% of systems may be oversized and around 1% may
be undersized, indicating significant issues in planning and design
practices. In the following sections, we discuss the implications of
these results for various stakeholders, including policymakers, instal-
lers, users, manufacturers, and utilities.

The initial findings on variations in HP performance and the
absence of suitable efficiency thresholds highlight the need for
enhanced policies to accurately report HP performance, as energy
efficiency labels and product certificates are key elements for user
guidance71. Current certifications, derived from ideal laboratory con-
ditions, often fail to reflect real-world HP operation15,41. This issue is
similar to the inconsistencies in automotive fuel consumption labeling
where lab tests do not capture real-world driving conditions72,73.
Addressing the misalignment between observed and expected per-
formance is crucial for building public confidence in HP technology
and supporting the heating transition, as faster adoption requires
positive word-of-mouth74,75. Comprehensive post-installation perfor-
mance standards are urgently needed to bridge the gap in under-
standing real-world HP performance, especially in diverse building
settings41,50. A proposed draft to update European regulations aims to
make HP monitoring post-installation mandatory but lacks clear cri-
teria for performance evaluation and responsibilities52. Closing these
gaps is essential to ensure HPs remain economically viable, meet real-
world performance expectations, and catalyze broader acceptance
among stakeholders, thereby helping to achieve global installation
targets4.

Additionally, the findings on the effects of reduced heating curve
configurations are closely linked to the role end-users play in achieving
HP efficiency in practice. To this end, more efforts are needed to
improve user literacy concerning HP technology, as users with a dee-
per comprehension of their HPs achieve higher efficiencies22. An ana-
lysis of the experiences of 83 HP consumers showed that their level of
satisfaction depends primarily on operating costs, including both

Fig. 5 | Utilization of individual heat pumps as an indicator for appropriate
sizing.The utilizationmetric represents the daily average of the compressor speed
relative to its full-speed capability, serving as an approximation for the heat
pump's (HP) capacity ratio. a Evaluation of HP sizing based on utilization, sampled

at outdoor temperatures of -10 and 16 ∘C. b Fitted utilization models of each HP
(N = 637) alongside the part-load ratio for average climate defined in EN 14825 for
comparison. Source data are provided as a Source Data file.
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electricity consumption and maintenance costs22. When users were
asked about possible improvements, 68% expressed a desire for a
control system that provides feedback on cost savings and system
efficiency, which underlines their expectation for guidance22. Further,
troubleshooting through guided user support has been shown to lead
to significantly lowermaintenance costs compared to engaging energy
consultants, technicians or hardware installers, who are also a limited
resource13,76. This necessity for guidance is also supported by another
study13, reporting that over 40%ofusers have limited knowledge of the
heating control system and require training. The same study identifies
that in 57% of the cases, the heating curve setting is set too high and
could be reduced13 and Narayanaswamy et al.77 report that 40% of
modern heating, ventilation and air conditioning systems are generally
misconfigured. Addressing this significant prevalence of mis-
configurations demands a fundamental shift in approach, necessitat-
ing users to possess basic knowledge of maintainability and a
willingness to strike a balance between energy efficiency and heating
comfort78. Instead of opting for excessively high settings to preempt
heating comfort issues, installations should incorporate a testing
phase. During this phase, settings should be gradually increased from
the lowest point until comfort is achieved, balancing it with energy
efficiency. Digital monitoring tools that offer feedback on configura-
tion outcomes and demonstrate potential operating cost savings can
greatly empower users through education78.

In addition to enhancing user literacy, it is also imperative to
address HP installers, as our results show that many HPs in practice
show signs of improper sizing. There is a critical need for enhanced
guidance, vocational training, and feedback systems for installers and
intermediaries67, as they constitute both significant drivers and bar-
riers to the transition to energy-efficient and carbon-neutral
housing79–81. Installers often serve as the primary points of contact
for potential HP buyers and as advisors on HP operation. Their influ-
ence largely determineswhether anHP is installed and, if so, whether it
is designed appropriately and which settings are selected. However,
installers’ perspectives are not neutral, and they tend to opt for what is
familiar to them to avoid situationswhere they lack the necessary skills
for installation or advice-giving82. Further, related research has shown
a poor correlation between installers’ estimated and actual energy use
of HPs83. This is largely due to the complex nature of heat demand
calculations incorporating occupant preferences and other factors83.
To avoid the risk of dissatisfying their customers, many installers tend
to overestimate heat demand and choose oversized HPs, which can
subsequently reduce operational performance68,84. Also, Decuypere
et al.79 report that many installers struggle to keep up with the rapid
technological evolution and find it challenging and time-consuming to
accurately assess energy efficiency. Digital guided support could offer
installers feedback on system design and configurations, helping to
optimize the operation of already installed equipment and improve
learning for future installations.

To this end, HP manufacturers play a key role in offering such
services that enable their appliances to bemonitored and controlled33.
These services shouldbe cost-effective andprivacy-preserving in order
to achieve broad acceptance. Therefore, the HPs must be designed in
suchaway that they allow internet-based access to the sensor data. For
older HPs where this option is not available in the field, data from the
increasingly widespread smart electricity meters offers an alternative
with great potential for standardized and manufacturer-independent
performance monitoring, as addressed in14,18,56,85. This highlights the
significant role utilities can play in monitoring HPs, particularly in
conjunction with demand response programs and dynamic electricity
tariffs. However, also the research community further needs to
intensify its efforts on both sensor data and smart meter data to
develop methods for HP performance evaluation and feedback. It is
crucial that thesemethods are specifically designed to tackle practical
challenges, including the absence of contextual information, handling

inaccurate measurements and data disruptions, and addressing priv-
acy concerns.

Limitations and future work
This study analyzes data from HPs installed in Central Europe and
performance may differ in other geographic regions. Furthermore,
we note that the installations are not evenly distributed across the
countries included in this study (see details about the real-world data
set). To ensure broader generalizability, future studies should vali-
date our results using a data set that includes HPs from various
countries and multiple manufacturers, as the current data is derived
from a single manufacturer. In addition, the data comes from HPs
with internet connectivity. This implies that our methods cannot be
used where HPs lack sensors or do not transmit their measurements.
In practice, some users may also withhold consent for data analysis
due to privacy concerns, particularly regarding the HP’s capability to
provide real-time occupancy information. As our analyses are
focused on SH, future research could extend this work to DHW and
cooling applications. Another limitation of this study is that it does
not analyze potential programs to exploit dynamic electricity tariffs,
which, if prevalent, may influence HP operation. Considering time-of-
use would enable field evaluations of the effects of HPs on electricity
grids. However, this is beyond the scope of our current study and
should be addressed by research focused on flexibility and demand
response programs. Furthermore, additional investigations are nee-
ded to validate the quantification of inappropriately sized systems in
the field, as our study is a starting point to report any figures on this
issue. Similarly, we apply efficiency thresholds from European reg-
ulations to performance values observed in the field. However, these
thresholds were originally intended for use under laboratory condi-
tions. More community efforts are needed to refine these limits to
better reflect real-world conditions. Future work could additionally
consider integrating contextual details regarding buildings and
heating systems, with an emphasis on exploring the utilization of
open data for such purposes. This would allow for the use of more
sophisticated models and would enable the comparison of HPs in
clusters of similar buildings, while maintaining practical relevance.
Additionally, real-world applications would benefit frommethods for
determining individual root causes of inefficient operation to
increase user acceptance and provide guidelines for solving the
underlying reasons of inefficiency in an automated manner. None-
theless, this study marks a significant step toward leveraging the
potential of digital monitoring solutions for improving energy effi-
ciency of HPs in residential buildings in a scalable manner.

Methods
Modeling heat pump performance
For completeness, this section provides an overview of all models
tested. Their definitions and parameters are detailed in Table 3. COP
Model 6 is inspired by Pospíšil et al.62 and Fischer et al.61,modelingCOP
as a quadratic function of the difference between supply and outdoor
temperatures. Similarly, COP Model 1, used by Sun et al.44, employs a
linear model with the same temperature difference. Heating Curve
Model 1 follows the definition by Ruhnau et al.59. The models selected
for further application in this study are Heating Curve Model 1 (see
Equation (3)), COP Model 3 (see Equation (4)), and Utilization Model 1
(see Equation (5)). Note that in some models, the dummy variables
di

ASHP and di
GSHP are used, where di

ASHP is 1 if the HP indexed i is an
ASHP and 0 otherwise, and di

GSHP is 1 if it is an GSHP and 0 otherwise.
These dummy variables allow for modeling even when the HP type is
unknown in practical applications. All models incorporate random
slopes and random intercepts for each HP, except for COP Model 5,
which uses only a random intercept per HP. However, COP Model 5,
alongwithCOPModel 2 andCOPModel 4, failed to converge, resulting
in empty parameter estimates.
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Deriving a classification scheme for heat pumpenergy efficiency
To evaluate HPs based on their energy efficiency, we calculate the
SCOPi

real (Equation (6)) of each HP according to the definition in the
European standard EN 1482550, which describes performance as a
single metric. Note that the definition of SCOP only considers SH,
which means that this value is not calculated for DHW. Below, we
provide a detailed explanation of how the categorization scheme is
derived from European regulations. This scheme distinguishes
between HPs where optimization is required or optional, and further
categorizes them into distinct efficiency classes. However, it is
important to clarify that these regulations formpart of the certification
and labeling process for HP products under laboratory conditions.
Hence, they should not be interpreted as mandatory performance
limits that HPsmust achieve in practical usage, as such limits currently
do not exist.

The standard EN 1482550 does not specify direct thresholds for
SCOP. However, it specifies minimum desired values for the seasonal
space heating energy efficiency (SSHEE) η, expressed as a percentage.
According to the definition, SSHEE can be calculated from SCOP as
follows:

η=0:4 � SCOP � 100%� Fð1Þ � Fð2Þ ð9Þ

The value of 0.4 represents the average European grid power
generation efficiency factor. Additionally, F(1) = 3% serves as a cor-
rection factor accounting for contributions from temperature con-
trols, while F(2) = 5% acts as a correction factor specific to water-to-air
or water-to-water systems41. As noted in60, for GSHPs, the combined
correction factors F(1) + F(2) = 8% apply, whereas for ASHPs, only
F(1) = 3% should be used. Consequently, the SCOP can be calculated

Table 3 | List of all tested and evaluated models

Variable Coefficient Std. Error z P > ∣z∣ [0.025, 0.975]

Heating Curve Model 1: Ti
suppðToutÞ= ðai0 + a0Þ � Tout + ðai1 + a1Þ

a0 −0.270 0.010 −26.239 0.000 [−0.290, −0.250]

a1 38.244 0.241 158.915 0.000 [37.772, 38.715]

Heating Curve Model 2: Ti
suppðToutÞ= ðai0 + a0Þ � Tout + ðai1 + a1Þ � T2

out + ðai2 + a2Þ
a0 −0.316 0.011 -28.040 0.000 [−0.338, −0.294]

a1 0.003 0.001 5.262 0.000 [0.002, 0.005]

a2 38.361 0.235 163.357 0.000 [37.901, 38.821]

COP Model 1: COPiðTout, TsuppÞ= ðbi
0 +b0Þ � ðTsupp � ToutÞ+ ðbi

1 +b1Þ
b0 −0.099 0.002 −57.015 0.000 [−0.103, −0.096]

b1 6.831 0.052 131.476 0.000 [6.729, 6.933]

COP Model 2: COPiðTout, TsuppÞ= ðbi
0 +b0Þ � ðTsupp � ToutÞ+ ðbi

1 +b1Þ+b2 � di
ASHP +b3 � di

GSHP

b0 −0.099 0.002 −43.534 0.000 [−0.104, −0.095]

b1 −19.097

b2 25.734

b3 27.056

COP Model 3: COPiðTout, TsuppÞ= ðbi
0 +b0Þ � Tout + ðbi

1 +b1Þ � Tsupp + ðbi
2 +b2Þ

b0 0.098 0.002 47.833 0.000 [0.094, 0.102]

b1 −0.104 0.003 −37.432 0.000 [−0.109, -0.098]

b2 6.965 0.099 70.354 0.000 [6.771, 7.159]

COP Model 4: COPiðTout, TsuppÞ= ðbi
0 +b0Þ � ðToutÞ+ ðbi

1 +b1Þ � Tsupp + ðbi
2 +b2Þ+b3 � di

ASHP +b4 � di
GSHP

b0 0.098 0.002 48.771 0.000 [0.094, 0.102]

b1 −0.102 0.003 −40.543 0.000 [−0.107, −0.098]

b2 −426.029

b3 432.762

b4 434.137

COP Model 5: COPiðTout, TsuppÞ=b0 � Tout +b1 � Tsupp + ðbi
2 +b2Þ+b3 � di

ASHP +b4 � di
GSHP

b0 0.099 0.000 266.505 0.000

b1 −0.088 0.001 -156.536 0.000

b2 −684.681

b3 691.141

b4 692.234

COP Model 6: COPiðTout, TsuppÞ= ðbi
0 +b0Þ � ðTsupp � ToutÞ+ ðbi

1 +b1Þ � ðTsupp � ToutÞ2 + ðbi
2 +b2Þ

b0 −0.123 0.016 −7.523 0.000 [−0.155, −0.091]

b1 0.000 0.017 0.017 0.986 [−0.032, 0.033]

b2 7.281 0.070 103.637 0.000 [7.143, 7.419]

Utilization Model 1: UtilizationiðToutÞ= ðci0 + c0Þ � Tout + ðci1 + c1Þ
c0 −2.739 0.041 −66.214 0.000 [−2.820, −2.658]

c1 50.865 0.620 82.025 0.000 [49.650, 52.081]

Themodels selected for further use in this study are Heating CurveModel 1 (see Equation (3)), coefficient of performance (COP) Model 3 (see Equation (4)), and Utilization Model 1 (see Equation (5)).
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based on a given SSHEE η as follows:

SCOP =
η+8%

0:4�100% forGSHPs
η+ 3%

0:4�100% forASHPs

(
ð10Þ

According to EN 1482550, η shall not be lower than 110% for typical HP
space heaters and HP combination heaters, unless they are low-
temperature HPs, for which η should not be below 125%. A low-
temperature HP is defined as “a heat pump space heater that is
specifically designed for low-temperature application, and that cannot
deliver heating water with an outlet temperature of 52 ∘C at an inlet dry
(wet) bulb temperature of -7 ∘C (-8 ∘C) in the reference design
conditions for average climate"50. Thus, the standard distinguishes
between HPs designed for low-temperature applications (supply
temperatures around 35∘C) and medium-temperature applications
(supply temperatures around 55∘C)50. Using these thresholds as inputs
into Equation (10), SCOP values can be derived, below which an HP
requires optimization. As a result, GSHPs operating below an SCOP
value of 2.95 (medium-temperature) or 3.325 (low-temperature)
require optimization. Correspondingly, ASHPs should be optimized
if their SCOP falls below 2.825 (medium-temperature) or 3.2 (low-
temperature). In a real-world scenario, however, it is often unknown
whether an HP was specifically designed for low-temperature applica-
tions. Therefore, the choice of the threshold also depends on how
rigorous the benchmarking scheme should be. As a compromise, we
utilize the average of these SCOP thresholds for each HP type to
categorize whether optimization of HPs is necessary or optional. Thus,
to evaluate whether an HP requires optimization, we apply a threshold
of 3.14 for GSHPs and 3.01 for ASHPs.

Furthermore, the standard EN 1482550 is complemented by Reg-
ulation811/201365, whichestablishes additional thresholds for SSHEE in
the energy labeling of HP space heaters, categorized as A+++, A++, A+,
andA toG. Following the sameprocedureasbefore, wecalculate lower
and upper boundaries for each category and HP type. For evaluation,
we again utilize the corresponding averages of values from low and
medium temperature applications. An overview of all thresholds is
presented in Supplementary Table 2, where closed brackets denote
that the value is included in the interval, while open brackets indicate
that the value is excluded.

Data availability
The raw data are protected and are not available due to data privacy
laws. The processed data and the data generated in this study are
provided in the Source Data file. Source data are provided with
this paper.
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