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Abstract

Aim: To develop and evaluate the concept of a non-invasive machine learning

(ML) approach for detecting hypoglycaemia based exclusively on combined driving

(CAN) and eye tracking (ET) data.

Materials and Methods: We first developed and tested our ML approach in pro-

nounced hypoglycaemia, and then we applied it to mild hypoglycaemia to evaluate its

early warning potential. For this, we conducted two consecutive, interventional stud-

ies in individuals with type 1 diabetes. In study 1 (n = 18), we collected CAN and

ET data in a driving simulator during euglycaemia and pronounced hypoglycaemia

(blood glucose [BG] 2.0-2.5 mmol L�1). In study 2 (n = 9), we collected CAN and

ET data in the same simulator but in euglycaemia and mild hypoglycaemia

(BG 3.0-3.5 mmol L�1).

Results: Here, we show that our ML approach detects pronounced and mild hypogly-

caemia with high accuracy (area under the receiver operating characteristics curve

0.88 ± 0.10 and 0.83 ± 0.11, respectively).

Conclusions: Our findings suggest that an ML approach based on CAN and ET data,

exclusively, enables detection of hypoglycaemia while driving. This provides a prom-

ising concept for alternative and non-invasive detection of hypoglycaemia.
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1 | INTRODUCTION

Hypoglycaemia is a dangerous acute complication of diabetes1,2 asso-

ciated with impairments of cognitive, executive and psychomotor

functions,3–5 thereby interfering with the performance of many every-

day activities, including driving. Despite ongoing and important devel-

opments in diabetes treatment, hypoglycaemia is responsible for a

substantial and increasing number of driving accidents.6–9 While inter-

mittent self-monitoring of capillary blood glucose (SMBG) is still the

standard in many countries, continuous glucose monitoring (CGM)

offers the advantage of permanent glucose control. However, CGM is

limited by invasiveness, availability and costs, and is subject to an

inherent time lag in hypoglycaemia.10 Of note, in a recent prospective

study, individuals with type 1 diabetes spent a considerable amount

of time in hypoglycaemia while driving,11 corroborating the need for

alternative and complementary methods to detect hypoglycaemia

while driving. Here, we develop a machine learning (ML) approach to

detect hypoglycaemia exclusively from driving and gaze behaviour.

There is a growing body of evidence examining hypoglycaemia predic-

tion algorithms based on physiological, nutritional, insulin and/or

CGM data.12,13 However, to the best of our knowledge, no study has

so far aimed to detect hypoglycaemia using ML methodology based

on driving and gaze behaviour data.

Cars permanently generate a broad spectrum of granular real-

time information on various driving features, transmitted via the Con-

troller Area Network (CAN) bus. Additionally, cameras are increasingly

installed in modern vehicles14 to monitor driver behaviour and vigi-

lance, also in (semi-)autonomous driving situations. A hypoglycaemia

warning system based on CAN and eye tracking (ET) data could pro-

vide a non-invasive, complementary and scalable approach to reduce

accidents in people with diabetes. In this article, we present the con-

cept of a ML approach using CAN and ET data to detect hypoglycae-

mia during driving.

2 | MATERIALS AND METHODS

2.1 | Study design and population

We conducted two non-randomized, interventional studies in individ-

uals with type 1 diabetes from October 2019 to July 2020 (study 1),

and from November 2021 to March 2022 (study 2). We included

active drivers aged 21-50 years (up to 60 years for study 2). Key

exclusion criteria included motion sickness, pregnancy or breastfeed-

ing, severe organ dysfunction, alcohol or drug abuse, and medication

known to interfere with driving performance (e.g. sedatives, opioids).

The eligibility criteria are listed in the supporting information

(Appendix S1, Supplementary Methods). The studies were conducted

at the University Hospital of Bern in collaboration with the ETH

Zurich, and the University of St. Gallen, following the Declaration of

Helsinki, the guidelines of good clinical practice, Swiss health laws,

and the ordinance on clinical research. Each participant gave informed

written consent. Both studies were approved by the local ethics

committee Bern, Switzerland (2019-00579, 2021-002018) and were

registered on ClinicalTrials.gov (NCT04035993 and NCT05183191).

2.2 | Study procedure

Figure S1A depicts the visit schedule. After screening, participants

familiarized themselves with the driving simulator during a test drive.

Participants not capable of driving with the simulator (e.g. because of

motion sickness) were excluded. Participants were fitted with the

Dexcom G6 CGM system. Participants were instructed to refrain from

alcohol, caffeine and strenuous physical activity for 24 hours before

the main visit. The main visit was postponed if sensor glucose was less

than 3.0 mmol L�1 for longer than 30 minutes in the preceding

24 hours.

For the main visit, participants were admitted to our clinical

research unit after an overnight fast. During a controlled hypoglycaemia

procedure, participants drove in euglycaemia and hypoglycaemia

(Figure 1A) on a designated circuit using the driving simulator

(Figure 1B), while CAN and ET data were recorded. We used a well-

established driving simulator (Carnetsoft BV, Groningen, the

Netherlands) as in previous studies on driving behaviour.15–17 Eye gaze

was recorded with a consumer eye tracker (Tobii Eye Tracker 4C, Tobii

AB, Danderyd, Sweden). The intended BG range in hypoglycaemia was

2.0-2.5 mmol L�1 (in study 1) and 3.0-3.5 mmol L�1 (in study 2)

(Figure 1C,D). In both studies, each driving session in euglycaemia and

hypoglycaemia consisted of three environments (highway, rural and

urban) completed in random order. The driving lasted 5 minutes in each

environment and was separated by 1-2–minute breaks for intermittent

BG measurement using the Biosen C-Line glucose analyser (EKF Diag-

nostics Holdings PLC, Penarth, Cardiff, UK). Participants were informed

that a hypoglycaemic state aiming at a BG level of 2.0-2.5 mmol L�1

(study 1) or 3.0-3.5 mmol L�1 (study 2) was to be induced, but they

were blinded to the BG values throughout the experiment. In euglycae-

mia and hypoglycaemia, participants rated eight hypoglycaemic symp-

toms, ‘need-to-treat right now’ and ‘difficulty driving’ on a seven-point

scale (0 = none, 6 = extreme).18 In addition, participants guessed their

BG level (in mmol L�1, one decimal place). Participants could abandon

study procedures at any time point if they felt that the situation was

unacceptable to them. After data collection and restoration of euglycae-

mia, the procedure was terminated if deemed safe by the investigator.

A detailed description of the controlled hypoglycaemic state, the driving

simulator, the eye tracker and the driving environments is provided in in

the supporting information (Appendix S1, Supplementary Methods).

One to 3 days after the main visit, participants were scheduled

for the close-out visit, including a safety assessment.

2.3 | Outcome and sample size calculation

The main outcome was the diagnostic accuracy of our ML approach

to detect hypoglycaemia, quantified as the area under the receiver

operating characteristic curve (AUROC). Traditional null hypothesis

2 LEHMANN ET AL.
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testing that lends itself to power calculation was not applicable to our

study (i.e. there is no null hypothesis for the development of ML

models). Therefore, we implemented an established methodology from

a previous study19 to extrapolate the discriminatory power of ML with

increasing sample size. Because of the lack of pre-existing literature in

the field, this method was applied to preliminary data that we retrieved

in a pilot study (n = 3) to calculate the sample size for study 1. Based

on this approach, an AUROC of 0.85 to detect pronounced hypoglycae-

mia was projected for a sample size of n = 18. After completion of

study 1, we implemented a bootstrap procedure20 to suggest a sample

size for study 2. Specifically, after training our ML models, we computed

10 000 random samples with replacement for the out-of-sample

AUROC of n patients and then inspected the bootstrapped distribution.

For a sample size of n = 9, we registered a mean AUROC of 0.88 with

a standard deviation of 0.03. We thus aimed for n = 9 completing study

2, which was expected to give precise estimates of the diagnostic accu-

racy with good confidence.

2.4 | ML approach

We developed and tested our ML approach in a two-step manner

(Figure 2): first, based on data from study 1 (n = 18), we built three

ML models (named CAN+ET, CAN and ET) to detect pronounced

hypoglycaemia (vs. euglycaemia) and evaluated the performance using

crossvalidation. Second, the three ML models trained on data from

pronounced hypoglycaemia (study 1) were applied to previously

unseen data from study 2 and their performance in detecting mild

hypoglycaemia (vs. euglycaemia) was evaluated. We chose this

approach because training the models on data from pronounced

hypoglycaemia (study 1) allows them to associate clear behavioural

changes with hypoglycaemia. Also, using data from mild hypoglycae-

mia to evaluate the models allows us to see how well the models per-

form when the behavioural effects of hypoglycaemia are weaker and

to provide early warnings. In addition, this also allows validating the

models on a separate population (study 2).

F IGURE 1 Overview. A, Hypoglycaemia induction procedures for study 1 and study 2 using variable insulin aspart and glucose administration
with corresponding driving sessions in euglycaemia and hypoglycaemia. The intended range for blood glucose (BG) in hypoglycaemia was
2.0-2.5 mmol L�1 in study 1, and 3.0-3.5 mmol L�1 in study 2. Driving sessions consisted of three 5-min drives in three different environments
(highway, rural and urban), while in-vehicle driving (CAN) and eye tracking (ET) data were collected. B, Driving simulator, ET and glucose
management set-up in both studies. C, Key characteristics of study 1 and study 2. D, Venous BG in hypoglycaemia for study 1 and study 2 shown
as boxplots. Overall, BG in hypoglycaemia was stable across both studies. The line within the box of the boxplot shows the median, the inner
bounds of the box correspond to the interquartile range (IQR = 25th to 75th percentiles) and the outer bounds (i.e. whiskers) correspond to the
most extreme data points no more than 1.5 � IQR from the edge of the box. Values outsides the whisker range are illustrated by dots. CGM,
continuous glucose monitoring

LEHMANN ET AL. 3
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To reflect different generations of vehicles, we evaluated the per-

formance to detect hypoglycaemia separately with three ML models:

(a) the CAN + ET model incorporating driving and gaze data, repre-

senting the latest state of available technology in modern cars; (b) the

CAN model solely based on driving data, because contemporary cars

are not yet generally equipped with ET; and (c) the ET model using

only gaze data, anticipating that the availability of (semi-)autonomous

driving21 will limit the role of CAN data in the future.

We followed best practice in ML and used the following proce-

dure for training and evaluation to ensure that the ML approach

generalizes well to unseen individuals and to unseen road seg-

ments (see the supporting information, Supplementary Methods).

To this end, all evaluations were performed using out-of-sample

data to assess the ML models on previously unseen road segments

and unseen individuals. For study 1, we used leave-one-subject-

out crossvalidation (n = 18). Hyperparameters were tuned against

the AUROC. For study 2, there was no training and no hyperpara-

meter tuning; instead, we used the trained hypoglycaemia detec-

tion ML models from study 1 and applied them to each participant

from study 2 (n = 9). That is, there was no additional training with

data from study 2; instead, data from study 2 were only used for

assessing the prediction performance. Thereby, we assumed mild

hypoglycaemia to have the same but weaker effects on driving

behaviour than pronounced hypoglycaemia. We also experimented

with other training and evaluation procedures (Table S7), where we

arrived at consistent conclusions. Eventually, results are reported

as the out-of-sample prediction performance averaged across

study participants (i.e. macro-average). To quantify the variation in

the prediction performance across participants, we further report

the standard deviation of the performance at participant level in

both studies.

The input to the ML models consisted of eight features for CAN

data, derived from four in-vehicle data signals reflecting the driver

behaviour and vehicle velocity (‘brake pedal position’, ‘steering wheel

angle’ and ‘vehicle velocity’). For ET, four features were derived from

two eye tracker signals (‘gaze fixations’ and ‘gaze velocity’). All fea-
tures were standardized by subtracting the mean and scaling to unit

variance. Each feature was computed within a sliding window of

60 seconds. We did not use driver characteristics (e.g. age) as inputs

to our models because (a) we included a comparably homogeneous

population of well-controlled, young individuals with type 1 diabetes,

and (b) currently implemented advanced driver assistance systems in

production cars work without additional information about the

driver.22,23 This is attributed to various reasons, including privacy con-

cerns and usability. Details of the feature engineering are outlined in

in the supporting information (Supplementary Methods). The output

of the three ML models was the probability of the participant driving

in hypoglycaemia versus euglycaemia. Additional ML modelling speci-

fications and robustness checks can be found in the in the supporting

information (Supplementary Methods).

2.5 | Reporting and the software used

Unless otherwise specified, results are reported as mean

± standard deviation (SD). Paired BG and CGM values were

checked for normal distribution using the Shapiro–Wilk test and

compared using paired t-tests or Wilcoxon signed rank tests. Self-

rated symptoms were analysed as follows: according to previous

research,24 neurogenic and neuroglycopenic scores were calcu-

lated by averaging scores of the four neurogenic and neuroglyco-

penic symptoms, respectively. The overall symptom score was

calculated by averaging scores of all eight symptoms. Symptom

scores, single symptoms and self-estimated BG levels were

checked for normal distribution, and compared between euglycae-

mia and hypoglycaemia using paired t-tests or paired Wilcoxon

signed rank tests, respectively. A P value of less than .05 was con-

sidered statistically significant.

Descriptive statistical analyses were performed using STATA ver-

sion 16.0 (StataCorp LLC, College Station, TX). All ML models were

implemented using Python 3.8 with the Python packages scikit-learn

(version 0.24.2). The package XGBoost (version 1.3.3) was used addi-

tionally for the robustness checks. Input features to the ML models

were computed using numpy (version 1.20.1) and scipy (version

1.6.2). Evaluation metrics were computed using scikit-learn (version

0.24.2). The software used for data collection and management are

described in the in the supporting information (Supplementary

Methods).

F IGURE 2 Procedure for building and evaluating our machine learning models. CAN, controller area network; ET, eye tracking; SD, standard
deviation

4 LEHMANN ET AL.
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2.6 | Data and code availability statement

The code for independent replication is available on GitHub (https://

github.com/im-ethz/ML-For-Hypoglycemia-Detection-While-Driving-

In-Simulator). The datasets from the current study are available from

the corresponding author upon reasonable request. All data shared

will be deidentified.

3 | RESULTS

The final analysis included 18 individuals with type 1 diabetes from

study 1 (age 32.2 ± 7.1 years, 12 males, HbA1c 7.1% ± 0.6% [54

± 7 mmol mol�1]) and nine individuals from study 2 (age 47.6

± 10.5 years, seven males, HbA1c 7.3% ± 0.8% [56 ± 9 mmol mol�1];

Table 1). There was no overlap in these participants across the stud-

ies. The study flows are displayed in the Figure S1.

Mean venous BG during hypoglycaemia was 2.37

± 0.18 mmol L�1 in study 1 and 3.31 ± 0.15 mmol L�1 in study

2 (Figure 1D). Corresponding mean CGM values were 3.30 ± 0.44 and

3.81 ± 0.64 mmol L�1, respectively. CGM readings were significantly

higher compared with BG values in both studies during hypoglycaemia

(P < .001 for all comparisons). Individual BG values are shown in the

Figure S2; the self-rated symptoms by the participants are summa-

rized in the Table S1.

TABLE 1 Baseline characteristics of the participants

Variable
Study

1 (n = 18)

Study

2 (n = 9)

Age (y) 32.2 ± 7.1 47.6 ± 10.5

Sex 6 female,

12 male

2 female,

7 male

Insulin treatment 12 CSII, 6 MDI 4 CSII, 5 MDI

Weight (kg) 85.0 ± 22.5 84.6 ± 21.5

Height (m) 1.76 ± 0.10 1.76 ± 0.08

BMI (kg m�2) 27.1 ± 5.0 27.2 ± 5.5

TDD (IU day�1 kg�1) 0.69 ± 0.16 0.59 ± 0.13

HbA1c (%) 7.1 ± 0.6 7.3 ± 0.8

HbA1c (mmol mol�1) 54 ± 7 56 ± 9

Clarke score > 3 0 / 18 2 / 9a

Diabetes duration (y) 19.5 ± 11.0 20.8 ± 10.9

Driving experience (y) 14.1 ± 7.6 25.8 ± 13.3

Kilometres driven per year

(km year�1)

9356 ± 7837 12 944

± 9625

Note: Shown are the mean values ± standard deviation for continuous

variables. A Clarke score of higher than 3 points indicates impaired

awareness of hypoglycaemia.

Abbreviations: BMI, body mass index; CSII, continuous subcutaneous

insulin infusion; IU, insulin units; MDI, multiple daily injections; TDD, total

daily insulin dose.
aTwo participants reported a Clarke score of 4 points.

F IGURE 3 Machine learning detects pronounced and mild hypoglycaemia based on driving and gaze data. Reported is the area under the
curve for the receiver operating characteristic (AUROC) to detect hypoglycaemia. Here, we report the performance in detecting A, Pronounced
hypoglycaemia (study 1), and B, Mild hypoglycaemia (study 2) using combined in-vehicle driving and eye tracking data (CAN+ET). The AUROC
illustrates the mean true positive rate (= sensitivity) against the false positive rate (= 1 � specificity). The shaded areas illustrate the standard
deviation (SD) at various thresholds across the participants. The grey dashed line shows the performance of a model that has no discriminatory
power and decides at random (AUROC = 0.50). ROC, receiver operating characteristic
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Overall, the feature engineering approach described in the sup-

porting information (Appendix S1, Supplementary Methods) led to

18 844 (9881) observations for study 1 (study 2), of which 9101

(4804) came from driving in euglycaemia and 9743 (5077) from driv-

ing in hypoglycaemia. The distribution of observations across the dif-

ferent BG levels is shown in Figure S3. For detection of pronounced

hypoglycaemia (study 1), the CAN+ET model showed an overall area

under the receiver operating characteristics curve (AUROC) of 0.88

± 0.10 (Figure 3A). The corresponding area under the precision-recall

curve (AUPRC) was 0.90 ± 0.10. The CAN model achieved an AUROC

of 0.81 ± 0.13 and the ET model showed an AUROC of 0.81 ± 0.15

(Table 2).

When transferring the three ML models to mild hypoglycaemia

(study 2), the CAN+ET model showed an overall AUROC of 0.83

± 0.11 (Figure 3B), and AUPRC of 0.92 ± 0.06. The CAN model

achieved an AUROC of 0.75 ± 0.05 and the ET model showed an

AUROC of 0.75 ± 0.19 (Table 2).

Additional performance metrics are displayed in Table 2. The

AUPRC plots and the performance across different environments

(highway, rural and urban) are shown in the Figures S4 and S5, and

Table S3.

To explain the decision-making of the ML models, we interpret

the coefficients of the input features for CAN+ET, CAN and ET in

the, Figure S6. Robustness checks include the evaluation of other

(non-)linear ML models, a sensitivity analysis of the detection perfor-

mance across different window lengths, and with different training

and evaluation procedures (Tables S5–S7).

4 | DISCUSSION

The main findings of our prospective, interventional studies in people

with type 1 diabetes evaluating hypoglycaemia detection while driving

in a simulator are 3-fold: first, a non-invasive ML approach, solely

based on driving and gaze behaviour data and without measurement

of glucose (i.e. the CAN+ET model), detected pronounced hypogly-

caemia with high accuracy. Second, our ML approach was also appli-

cable to mild hypoglycaemia, thereby allowing for early warnings.

Third, limiting the model to driving data (the CAN model) or gaze data

(the ET model), exclusively, still resulted in acceptable detection of

both hypoglycaemic levels. This corroborates the potential of our ML

approach to be applied in widely available cars without eye-tracking

cameras (CAN only), as well as expanding its use to future cars with

(semi-)automated driving (ET only).

Driving a vehicle involves the complex management of speed,

braking and steering. High levels of cognitive, executive and psycho-

motor functions are required, all of which are affected negatively by

hypoglycaemia.3–5 Although SMBG is a standard approach, it is not

suitable for detecting hypoglycaemia while driving. CGM offers con-

tinuous glucose readings but is limited by invasiveness, availability and

compromised accuracy, particularly in hypoglycaemia.25 The cost of a

CGM system is estimated to be approximately one thousand to sev-

eral thousand dollars a year, depending on the country and the manu-

facturer. In addition, coverage of CGM by health insurance is limited

and most people living with diabetes still do not use or have access to

this technology.26,27 By contrast, our approach leverages data that are

already being recorded by vehicles, making it a scalable and cost-

effective solution not requiring additional sensors installed in the car

or attached to the body. Moreover, there is a growing economic inter-

est in in-vehicle warning systems, as car manufacturers are increas-

ingly integrating health-related features into their vehicles.22,23 Of

note, the accompanying CGM system significantly underestimated the

degree of hypoglycaemia in both of our studies, corroborating the

potential of the ML approach to improve the accuracy of hypoglycae-

mia detection. While manual calibration could mitigate this limitation

of factory-calibrated CGM systems,28 it would not eliminate the delay

of CGM as described previously.10 Conversely, setting CGM alarm

thresholds to a higher level may translate into earlier warnings, but

will probably worsen glycaemic control,29 while repetitive adaptation

before and after each journey may not be realistic in clinical practice.

The interpretation of the mean coefficients of the input features

(Figure S6) allowed for an analysis of the behavioural changes while

driving in hypoglycaemia. Driving behaviour based on CAN data was

characterized by a decrease in the standard deviation (SD) of vehicle

controls (steering, brake and gas pedal) in hypoglycaemia, indicating a

less proactive driving style with reduced fine motor control. Drivers

intervened more abruptly, which was reflected in higher energy

(i.e. sum of squares) in vehicle control signals. When analysing the ET

TABLE 2 Machine learning detects pronounced and mild hypoglycaemia based on driving and gaze data

AUROC AUPRC BACC F1 MCC Sensitivity Specificity

Study 1 CAN+ET 0.88 ± 0.10 0.90 ± 0.10 0.85 ± 0.10 0.87 ± 0.10 0.70 ± 0.19 0.86 ± 0.14 0.83 ± 0.14

CAN 0.81 ± 0.13 0.86 ± 0.11 0.80 ± 0.09 0.81 ± 0.13 0.61 ± 0.16 0.79 ± 0.19 0.81 ± 0.15

ET 0.81 ± 0.15 0.87 ± 0.12 0.81 ± 0.10 0.82 ± 0.13 0.63 ± 0.20 0.79 ± 0.20 0.83 ± 0.19

Study 2 CAN+ET 0.83 ± 0.11 0.92 ± 0.06 0.80 ± 0.08 0.80 ± 0.13 0.57 ± 0.16 0.71 ± 0.19 0.88 ± 0.13

CAN 0.75 ± 0.05 0.88 ± 0.04 0.74 ± 0.05 0.85 ± 0.09 0.53 ± 0.10 0.88 ± 0.16 0.59 ± 0.18

ET 0.75 ± 0.19 0.86 ± 0.12 0.76 ± 0.12 0.86 ± 0.07 0.52 ± 0.23 0.86 ± 0.11 0.65 ± 0.25

Note: Reported is the performance in detecting pronounced (study 1) and mild hypoglycaemia (study 2) as mean ± standard deviation. Across both studies,

we report the performance metrics using combined in-vehicle driving and eye tracking data (CAN+ET), and driving (CAN) or gaze (ET) data exclusively.

Abbreviations: AUROC, area under the curve for the receiver operating characteristic; AUPRC, area under the precision-recall curve; BACC, balanced

accuracy; F1, F1-score; MCC, Matthew's correlation coefficient.
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data, the model feature coefficients revealed less situational and wan-

dering gaze behaviour, which was reflected in a lower number of gaze

fixations, as well as a higher mean and a lower SD in gaze velocity.

Observations in CAN and ET were consistent in that they both

depicted behaviour in hypoglycaemia as more monotonous, less situa-

tional and less fine control driven.

Earlier simulator studies in individuals with type 1 diabetes have

reported more time off-road and across the midline in hypoglycae-

mia.18,30 These changes indicate (near) mishaps and are thus unsuita-

ble variables for a preventive system. By contrast, the proposed ML

approach relies upon driving features that describe more subtle

changes in driving behaviour, allowing for the detection of changes at

an earlier stage. This is corroborated by the fact that our ML approach

still achieved an adequate performance when tested in mild hypogly-

caemia. In line with the literature,31–33 participants reported few

symptoms and overestimated their BG levels during mild hypoglycae-

mia (Table S1), and a majority reported that they would continue driv-

ing in this state. Such findings, established in well-controlled

individuals with preserved hypoglycaemia awareness according to

established criteria,34 further emphasizes the need for alternative

hypoglycaemia detection methods.

All three ML models showed good performance in the highway

environment, where the traffic context is more monotonous than in

other settings. By contrast, the urban and rural environments

appeared more challenging. In urban and rural settings, drivers have to

operate the steering wheel and pedals more frequently and signifi-

cantly, as well as shift their gaze more often (traffic lights, pedestrians,

junctions, etc.).

The strength of our study is its prospective and interventional

design using a standardized protocol, providing data from different

hypoglycaemic ranges and driving environments. BG, the gold stan-

dard, was measured with high frequency, confirming that the glycae-

mic target ranges during the experiments were reliably met and

maintained within narrow ranges. In a two-step manner, we devel-

oped and tested our ML models in independent populations and

across different ranges of hypoglycaemia, irrespectively of individual

thresholds for cognitive decline. Our dataset was collected in a well-

established driving simulator, using CAN and ET data of contemporary

car systems, thus providing a base for widespread applicability in the

automotive sector. Compared with other proposed hypoglycaemia

detection methods,13 our approach allows for implementation without

the need for additional sensors installed in the vehicle or attached to

the body. All ML models were evaluated on unseen road segments

and unseen individuals, which eliminates learning bias. While the cur-

rent study focuses on people with diabetes, the concept may be appli-

cable to other critical driver states caused by drowsiness and/or other

medical conditions. However, this hypothesis needs validation in

future studies.

Limitations include a restricted sample size, owing to the complex

and laborious study procedures. Conversely, the high resolution of

driving and gaze variables (30 and 90 Hz, respectively) and BG values

(5-10 minutes) provided a solid basis for the ML modelling process.

The model was built on data of well-controlled and generally healthy

individuals with type 1 diabetes, as hypoglycaemia induction was ethi-

cally justifiable in this population. This limits generalization to multi-

morbid individuals and other populations affected by hypoglycaemia

(e.g. type 2 diabetes), where the approach needs separate validation.

Currently, the detection capacity of the ML approach is limited to the

specific glucose ranges of these studies and the performance in addi-

tional glucose ranges requires future research. As the study was

performed in a simulator and not in real cars, we acknowledge the

proof-of-concept character of our experiments. Given the potential

risks of inducing hypoglycaemia while driving, this may however be an

acceptable first step. In this study, we used CAN data analogous to

the data collected in real cars. This does not include environmental

data, which precludes conclusions on the performance of our model

on predicting mishaps (e.g. crossing the midline). We acknowledge

that the sequence of driving (euglycaemia followed by hypoglycaemia)

may have introduced bias. This was chosen to avoid a carry-over

effect because driving after hypoglycaemia may be affected for up to

75 minutes after restoration of euglycaemia.35 Lastly, the frequency

of euglycaemia and hypoglycaemic values was balanced in the current

study, not reflecting clinical reality. While this may increase the proba-

bility of false positive alarms, this may again be acceptable at the cur-

rent conceptual stage.

In conclusion, we provide proof-of-concept that a machine learn-

ing approach based on driving and gaze behaviour data can detect

hypoglycaemia while driving. The approach may empower self-

management and care of people with diabetes, and may be applicable

to contemporary cars, while anticipating future developments in auto-

motive technology.
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