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TripletCough: Cougher Identification and
Verification From Contact-Free

Smartphone-Based Audio Recordings Using
Metric Learning

Stefan Jokić , David Cleres , Frank Rassouli , Claudia Steurer-Stey , Milo A. Puhan ,
Martin Brutsche , Elgar Fleisch , and Filipe Barata

Abstract—Cough, a symptom associated with many
prevalent respiratory diseases, can serve as a potential
biomarker for diagnosis and disease progression. Con-
sequently, the development of cough monitoring systems
and, in particular, automatic cough detection algorithms
have been studied since the early 2000s. Recently, there
has been an increased focus on the efficiency of such al-
gorithms, as implementation on consumer-centric devices
such as smartphones would provide a scalable and af-
fordable solution for monitoring cough with contact-free
sensors. Current algorithms, however, are incapable of dis-
cerning between coughs of different individuals and, thus,
cannot function reliably in situations where potentially mul-
tiple individuals have to be monitored in shared environ-
ments. Therefore, we propose a weakly supervised metric
learning approach for cougher recognition based on smart-
phone audio recordings of coughs. Our approach involves
a triplet network architecture, which employs convolutional
neural networks (CNNs). The CNNs of the triplet network
learn an embedding function, which maps Mel spectro-
grams of cough recordings to an embedding space where
they are more easily distinguishable. Using audio record-
ings of nocturnal coughs from asthmatic patients captured
with a smartphone, our approach achieved a mean accu-
racy of 88% (± 10% SD) on two-way identification tests
with 12 enrollment samples and accuracy of 80% and an
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equal error rate (EER) of 20% on verification tests. Further-
more, our approach outperformed human raters with regard
to verification tests on average by 8% in accuracy, 4% in
false acceptance rate (FAR), and 12% in false rejection rate
(FRR). Our code and models are publicly available.

Index Terms—Cough monitoring, metric learning, mobile
sensing, remote patient monitoring, speaker identification,
speaker verification, triplet network.

I. INTRODUCTION

COUGHING is associated with many prevalent respiratory
diseases, ranging from minor ailments like the common

cold to more serious chronic illnesses such as chronic bron-
chitis, chronic obstructive pulmonary disease (COPD), asthma,
tuberculosis, gastroesophageal reflux, and cystic fibrosis [1]. It is
among the most common complaints for which individuals seek
medical advice [2]. According to surveys in the United King-
dom and Japan, the prevalence of chronic cough in the general
population is estimated to be 10.2% and 12% respectively [3],
[4]. Further, the use of over-the-counter cough remedies has a
significant financial impact, which is estimated at $156 million
and $6.8 billion sales from 2012 to 2013 in the United Kingdom
and the United States, respectively [5].

Cough counts over a prolonged period (e.g., weeks, days,
or hours) are clinically meaningful and can serve as potential
biomarkers for diagnosis, disease progression, and the analysis
of the effect of treatment in patients with respiratory condi-
tions [6]. Cough counts by a dedicated listener are, however,
found unreliable if self-reported [7] or too laborious and time-
consuming [8]. Consequently, researchers have been devising
methods for assessing cough counts since the 1950s [9]. In
particular, cough monitoring systems, which count the number
of coughs from audio recordings by employing an automatic
cough detection algorithm, have been proposed. Such algorithms
enable distinguishing coughs from other sounds such as speech
or background noise, thereby serving as a preliminary step
in a cough monitoring system to ensure that coughs can be
counted reliably. Thus, they allow for an objective measure of
cough frequency and are generally preferred over traditional
methods involving patient self-reports. Prior works on cough
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detection have achieved sensitivity and specificity values of
over 90% [10]. More recent approaches have also employed
mobile technologies such as smartphones and wearables for
cough detection [11], [12]. This is motivated by the widespread
use of mobile technologies, which have the potential to meet the
health monitoring needs of the ever-growing number of chronic
respiratory patients [13].

Although the large amount of research conducted in this
field shows that proof of concept for cough detection is well
established [12], [14], one problem, in particular, remains largely
unresolved for contact-free cough detection. That is, to deter-
mine to whom a given cough belongs. This can be problematic
in situations where a monitored patient is sharing a room with
other individuals who cough. In such a scenario, the presence
of coughs from others, so-called ambient coughs, will cause
an exceedingly high and thus, incorrect number of coughs to
be attributed to that patient. Therefore, algorithms capable of
assigning coughs to the individuals that produced them are nec-
essary. From a technical perspective, this brings the additional
challenge of personalization, i.e., in addition to cough detection,
the monitoring system must have the ability to recognize the
patient.

In literature, speaker recognition refers to the task of identi-
fying individuals from the characteristics of their voices. More
precisely, one distinguishes between speaker verification and
identification, which we define as follows.

� Verification refers to the process of comparing a speaker’s
utterance to those of a reference individual to determine
whether the speaker is the same person as the reference.

� Identification refers to the process of comparing a
speaker’s utterance to those of multiple reference individ-
uals to determine which one of the references the speaker
corresponds to or is the most resembling.

Furthermore, the reference utterance samples are also known
as enrollment samples.

On this basis, our objective is to investigate to what extent
a machine-learning-based approach can enable patient identifi-
cation and verification from contact-free smartphone-recorded
cough sounds. Whereas first evidence demonstrates the feasibil-
ity of patient verification from cough sounds [15], our proposed
approach differs from previous research. It presents a novel
triplet-learning-based approach for patient verification and iden-
tification from voluntary and reflex cough sounds. The novelty
of our approach is manifold. First, to the best of the authors’
knowledge, this is the first work to investigate the feasibility of
patient verification from contact-free cough recordings. Second,
we propose a novel convolutional neural network architecture
that we employ within a triplet network and evaluate our results
on two data sets containing smartphone-recorded voluntary and
asthmatic reflex coughs. Third, we propose a simple and fast
heuristic for mining triplets, which are used as training data
for the triplet network. Fourth, we conduct a series of analyses
such as the impact of the recording device used to capture
cough sounds, the distance between the microphone and the
cougher, and the number of coughers and enrollment samples
on the performance of our approach. We also compare the
performance of our approach with that of 19 human raters on

TABLE I
CODE AND MODEL ACCESS

cougher verification tests. The applicability of our approach in
offline devices, which are limited in resources such as storage
and computational power, is further facilitated by not having
to retrain on new enrollment samples. Our research benefits
patients with respiratory diseases associated with coughing by
enabling contact-free cough monitoring of multiple patients in
shared environments applicable to scalable and cost-efficient
technologies such as smartphones. In addition, we make our
code and models publicly available (cf. Table I), so that other
researchers can use and apply them. Finally, in this paper, we
focus on identifying and verifying patients from cough sounds
and assume that cough detection has been reliably achieved. We
acknowledge that complex practical challenges were left out by
bypassing the detection step and refer the reader to our previous
works on this topic [12], [16].

The rest of the paper is organized as follows. Section II sum-
marises related work in the domain of speaker recognition using
utterances and coughs. Section III describes the methodology
applied for pre-processing cough audio data, the design of our
neural network architecture for cougher recognition, and the
training and evaluation of our network. Section IV is devoted
to the experimental results, which are subsequently discussed
in Section V. Finally, Section VI outlines the work presented in
this paper.

II. RELATED WORK

Conventional approaches presented in prior work on speaker
recognition involve first extracting features from utterances,
typically by using Mel-frequency cepstral coefficients (MFCC)
or linear predictive coding (LPC)-based features, and then mod-
eling the distribution of the feature vectors using a Gaussian mix-
ture model (GMM) [17]. The parameters of the GMM are then
concatenated to form a supervector, which can subsequently be
used for classification. Dehak et al. [18] have instead proposed
the use of i-vectors, which are obtained by employing factor
analysis (FA) as a dimensionality reduction technique for the
GMM supervectors. These i-vectors enable to combine speaker
and channel factors into a single, low-dimensional space. For a
long time, approaches involving the classification of i-vectors us-
ing support vector machines (SVM), cosine similarity measure-
based scoring [18] or probabilistic linear discriminant analysis
(PLDA) [19] have been the state-of-the-art in speaker recog-
nition algorithms. However, these approaches come with the
disadvantage of relying on handcrafted feature engineering.

On the other hand, deep learning, a specific class of machine
learning algorithms based on artificial neural networks (ANN)



JOKIĆ et al.: TRIPLETCOUGH: COUGHER IDENTIFICATION AND VERIFICATION 3

with representation learning, ultimately replaces the need for
handcrafted feature engineering by shifting the task of fea-
ture extraction towards model optimization. Additionally, deep
learning architectures have achieved promising results in the
domain of speech recognition [20], where they are usually em-
ployed as encoders that produce embeddings out of utterances,
which are then compared. For instance, Nagrani et al. [21]
trained a Siamese network with a contrastive loss consisting
of a CNN based on a ResNet-inspired architecture. Then, they
used cosine similarity to classify the embeddings. Similarly, Li
et al. [22] used a neural network architecture based on ResNet
but also experimented with an architecture consisting of gated
recurrent units (GRU). They, too, employed cosine similarity
to compare embeddings but trained their networks using the
triplet loss. Snyder et al. [23] exploited a time-delay neural
network architecture with a statistical pooling layer to produce
embeddings called x-vectors, which they finally compared using
PLDA scores.

While there is a considerable amount of research conducted on
speaker recognition, “cougher” recognition, in contrast, remains
mostly unexplored. Zhang et al. [24] have designed a neural
network architecture involving convolutional and time-delayed
layers for extracting speaker features. Although their proposed
approach was not specifically tailored for cougher recognition,
it still performed well on the cougher verification task, achieving
an equal error rate of 10.99% when using PLDA scores. They,
however, evaluated their model solely on voluntary coughs as
opposed to natural reflex coughs. Voluntary coughs produced
by one person usually sound very similar, while reflex coughs
produced by the same person are subject to greater variation.
Whitehill et al. [15] introduced a novel approach for cougher
recognition using natural, in-the-wild reflex cough data. Their
method is based on multitask learning and, in particular, consists
of training a neural network with a ResNet architecture on both
cough and speech data. Training for two distinct yet related
tasks helps their model generalize better. Their model yielded
an accuracy of 82% on 4-way identification tests using ten
enrollment samples per cougher and a 23% EER on verification
tests. Their data collection, however, cannot be generalized to
the case studied in this work. The coughs were recorded by
having participants carry a smartphone in their shirt pocket or
strapped around their neck [15]. Hence, not only is the smart-
phone always located at a small and approximately the same
distance to the participant, but it is also directly in contact with
the person’s chest. In consequence, the microphone membrane
of the smartphone may also capture the chest vibrations waves
caused by coughing, which may notably reduce the difficulty of
distinguishing ambient cough from patient cough compared to
using contact-free recordings.

In this paper, we aim to design a neural network for cougher
recognition using voluntary cough data as well as natural reflex
cough data from patients with asthma. These reflex coughs were
recorded with a smartphone placed anywhere in the patient’s
room, at different distances from the patient, and without con-
tact. More information on the cough data sets and how they were
collected, is presented in the following section.

III. METHODOLOGY

A. Data Sets

This work used two different cough data sets. The first data
set is a labeled set of audio recordings composed of voluntary
cough sounds collected in a lab study [12]. The corresponding
study protocol was approved by the ethics commission of ETH
Zurich in April 2016 (EK 2016-N-15). A studio microphone and
four different devices with built-in microphones simultaneously
recorded each participant which was instructed to voluntarily
cough at two distinct recording distances: close and distant. In
the close setup, the microphones were placed on a table directly
in front of the cougher, at a distance of 0.15 m. In the distant
setup, the microphones were initially placed at the same location
as for the close recordings but shifted towards one side of the
table by 1 m. Due to missing data from two devices (HTC M8
and Apple iPhone 4) as a result of human error during data
collection (e.g., errors in the use of the recording technology),
we only retained the following devices: the Samsung Galaxy
S6 smartphone, Google Nexus 7 tablet, and the Røde NT1000
studio microphone. Furthermore, we left a participant out of the
data set if the number of recorded coughs for that participant was
not equal across the recording devices. This resulted in a data set
of 637 and 629 close and distant cough recordings, respectively,
from 38 participants (28 female, 10 male). We then partitioned it
into a roughly 50/25/25 split for training, validation, and testing,
respectively. Hence, we used recordings of 18 participants for
training, 10 for validation, and 10 for testing.

The second data set is a labeled set of audio recordings
consisting of nocturnal reflex coughs from asthmatic patients
collected in a multicenter, longitudinal, observational study [25].
The corresponding study protocol was approved by the ethics
commission responsible for research involving humans in east-
ern Switzerland in November, 2017 (BASEC ID: 2017–01872).
Data collection involved equipping patients with a study smart-
phone, the Samsung Galaxy A3 (2017), and instructing them to
keep it in their bedroom at night, with no specific restrictions
on where to place it. The smartphone’s built-in microphone
recorded the nocturnal coughs for 28 nights. The original data
set included 79 adult asthmatic patients, but we discarded
recordings of patients who shared the bedroom with another
person. Furthermore, after removing participants whose number
of recordings was too scarce, the resulting data set contained a
total of 9221 cough recordings from 46 subjects (29 female,
17 male) approximately divided into a 60/20/20 split for train-
ing, validation, and testing, respectively. Hence, the training,
validation, and testing sets contained 26, 10, and 10 patients,
respectively.

Both data sets are summarized in Table II. The voluntary
cough data set serves to demonstrate the feasibility of cougher
recognition since the voluntary coughs were recorded in the
same controlled acoustic environment, thereby reducing the
variability across cough samples. In addition, the voluntary
cough data allows us to investigate the influence of the quality of
the microphone of the recording device and the distance between
cougher and microphone on the performance of our approach.
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TABLE II
SUMMARY OF THE VOLUNTARY COUGH (VC) AND THE REFLEX COUGH (RC) DATA SETS

“#” stands for number, “M” for male, “F” for female, “CS” for cough signals, “AVG” for average and “SD” for standard deviation.

The reflex cough data set, on the other hand, resembles a more
realistic scenario for performing cougher recognition.

B. Data Pre-Processing

The data pre-processing pipeline mostly follows the approach
described in previous works on cough detection at our lab [12],
[16]. The purpose of the pipeline is to frame the cough signals to
have the same length, to extract their most essential information,
i.e., the characteristic explosive sounds, and to transform the
raw signals into an adequate representation before passing them
as input to our network. The pipeline can be summarized as
follows: first, we apply an anti-aliasing filter to the cough signal
and downsample it to 22.05 kHz. In doing so, we reduce the
size of the data and training time without loss of essential
information as the characteristic sounds of a cough are asso-
ciated with frequencies below 10 kHz [26]. The anti-aliasing
filter is a pre-computed low-pass filter provided by librosa [27],
a python package for music and audio analysis. The filter is
designed using a Kaiser window with β = 8.56 and a roll-off
frequency of 0.85 ∗ fnyquist, where fnyquist = 11.025 kHz is
the Nyquist frequency, i.e. half of the target sampling rate. Next,
we extract a window of 1.2 s around the maximum amplitude of
the cough recording. We deliberately chose the window size to
be longer than the average duration of a cough to avoid excluding
characteristic features of the cough signal that might be useful
for training our network. Subsequently, we apply min-max
normalization to the extracted signal. Finally, we compute a
mel-scaled spectrogram of the signal with 80 bands, a hop-
length of 112 samples, and a 2048 point Fast Fourier Transform
(FFT). Mel-scaled spectrograms, i.e., two-dimensional visual
representations of the frequency spectrum of a signal as it varies
over time, have been shown to outperform other time-frequency
representations in conjunction with CNNs [28].

C. Triplet Network Architecture

As described in Section II, speaker verification and identi-
fication systems based on deep learning architectures usually
train an encoder that takes an utterance as input and outputs
an embedding, i.e., a low-dimensional continuous vector rep-
resentation. Based on a computed similarity score or distance
between embedded utterances, the model determines whether

Fig. 1. The triplet network architecture.

different utterance samples originate from the same person or
two different individuals. Thus, with respect to a distance metric,
the encoder’s goal is to learn an embedding function that maps
samples (utterances) of the same class (speaker) closer to each
other while mapping samples belonging to different classes
further away from each other. This goal can be reformulated to
be equivalent to a metric learning problem, where the objective
lies in adapting a pairwise real-valued distance metric d to
obtain a new distance metric d̃ such that with respect to d̃,
distances between samples of the same class are minimized and
distances between samples of different classes are maximized.
More precisely, the objective is to learn a new distance met-
ric d̃(x, y) = d(f(x), f(y)) given an original distance metric
d(x, y), where f is an embedding function.

Triplet networks have shown promising results when applied
to metric learning tasks, especially in image similarity rank-
ing [30], [31]. They have also shown to outperform the Siamese
network, a popular alternative approach, with regard to image
similarity learning tasks [32]. As illustrated in Fig. 1, a triplet
network is composed of three deep neural networks (DNN) with
identical architecture and shared weights. It follows a weakly
supervised learning paradigm as the training data takes on the
form of unlabeled triplets of samples (pa, p+, p−), where pa
is the anchor sample, p+ is the positive sample that should be
similar to the anchor, and p− is the negative sample that should
be dissimilar to the anchor. Therefore, these triplets define the
relative similarity relationship between three given samples.
Each of the samples in a triplet is separately passed as input
to each of the three DNNs of the triplet network, which in
the following compute the embeddings f(.) of the respective
samples. During training, the triplet network seeks to minimize
the hinge loss for a triplet, or triplet loss function, which is
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Fig. 2. CNN architectures. “R” stands for the rectifying linear unit, “S” for the sigmoid activation function and “Dep. Sep. Conv.” for depthwise
separable convolution. (a) CNN architecture by Koch et al. [29]. (b) CNN architecture by Barata et al. [12] (c) Proposed CNN architecture.

defined as follows,

�(pa, p+, p−)

= max
{
0, d

(
f(pa), f(p+)

)
− d

(
f(pa), f(p−)

)
+ g

}
,

(1)

where d is the chosen distance metric, f is the embedding
function that the DNNs learn and g is a chosen gap parameter
that regularizes the gap between the two pairs, (pa, p+) and (pa,
p−), respectively [30]. The triplet loss incurs a larger penalty
for not respecting the similarity relationship between pairs of
similar samples (pa, p+), i.e., by assigning larger distances be-
tween them, and analogously for not respecting the dissimilarity
relationship between pairs of dissimilar samples (pa, p−). In this
work, we leverage the triplet network architecture in conjunction
with CNNs to design a novel approach for cougher recognition.

D. CNN Architecture

In the literature, CNNs are commonly employed as the com-
ponents of a triplet network [30]–[32]. They are a class of
DNNs whose use has come to bolster the state-of-the-art in
the domain of computer vision, in particular for image clas-
sification, segmentation, and object detection [33]. CNNs have
also proven effective for audio event detection [34], especially
when spectrograms are used as representations for audio data. A
typical CNN comprises several convolutional and pooling layers
in an alternating fashion, followed by some form of nonlinearity
applied before or after pooling and finally a small number of
fully connected layers.

Inspired by the architecture proposed by Koch et al. [29]
(cf. Fig. 2(a)), which was employed in a Siamese network, we
designed the CNN architecture for our triplet-network-based
cougher recognition system in the following. Siamese networks

follow a similar architecture to triplet networks; the main differ-
ence is that they consist of only two identical neural networks
that share the same weights and usually employ a pairwise
ranking loss. They have achieved state-of-the-art performance
on one-shot classification tasks using handwritten character
data [29]. In our application, however, spectrograms serve as
input rather than natural images. Spectrograms differ from nat-
ural images in that they contain a temporal dimension and can,
therefore, be regarded as sequential data [35]. For this reason, we
designed a new CNN architecture by first adjusting the architec-
ture proposed by Koch et al. [29] to employ one-dimensional
kernels in the convolutional layers for capturing the tempo-
ral information of spectrograms. Next, we removed the last
convolutional layer, which reduced the number of parameters.
Then, similar to the CNN architecture employed in the cough
detection model developed by Barata et al. [12] (cf. Fig. 2(b)),
we exploited a characteristic design choice of the VGG archi-
tecture [36], i.e., we added several successive convolutional
layers comprising 3x3 kernels and an equal number of channels
per layer as the final convolutional layers of our architecture.
We optimized the number of these VGG-inspired convolutional
layers and determined three layers to be the best choice for
our network. We also optimized the number of channels per
layer, which we subsequently set to 64. Details regarding the
optimization of the architecture can be found in Section III-F.
Furthermore, we inserted a max-pooling layer after each convo-
lutional layer. We flattened the output of the last max-pooling
layer into a vector which is passed on to a fully connected layer
composed of 4096 units to produce an embedding. Additionally,
we applied an L2 regularizer to the weights of the last layer
to prevent overfitting. We employed the rectifying linear unit
(ReLU) function and the sigmoid function as the activation func-
tions for all convolutional layers and the final fully connected
layer, respectively. Our proposed CNN architecture is depicted
in Fig. 2(c).
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E. Triplet Mining

In accordance with the triplet network architecture, the train-
ing data must take on the form of triplets (pa, p+, p−) as
described in Section III-C. Each triplet fits into one of the
following three categories,

� Hard triplet: d̃(pa, p−) < d̃(pa, p+),
� Semi-hard triplet: d̃(pa, p+)< d̃(pa, p−)< d̃(pa, p+)+g,
� Easy triplet: d̃(pa, p−) > d̃(pa, p+) + g,

where d̃ and g refer to the learned distance metric and the gap
parameter, respectively. For all but easy triplets, the loss in (1)
is nonzero.

Triplet mining refers to the process of selecting triplets for
training and plays a crucial role as it has a great impact on
the performance of a triplet network. Training only on hard
triplets makes training unstable by producing noisy gradients
and converging to local optima, resulting in a collapsed model,
i.e., f(x) = 0 [31]. While Schroff et al. [31] suggest mining only
semi-hard triplets, Wu et al. [37] show that mining only semi-
hard triplets makes little progress as the number of available
semi-hard triplets for mining decreases. Instead, they propose
an approach based on distance-weighted sampling, which mines
a mixture of easy, semi-hard, and hard triplets, resulting in a
better performance [37], [38]. Inspired by their approach, we
employed a simple and fast online heuristic for mining a mixture
of triplets. Online mining refers to selecting triplets within a
randomly sampled batch, called mini-batch [31].

The proposed heuristic can be described as follows: Let n be
the training batch size and the number of triplets that we want
to select. We first create a mini-batch of size 2n by randomly
and uniformly selecting triplets from the training data. Next,
using the current weights of the triplet network at the given
training iteration, we evaluate the loss for each triplet in the
mini-batch. Subsequently, we sort the triplets of the mini-batch
in descending order with respect to their associated loss and
select the first n

2 triplets from the sorted mini-batch. Finally, we
select the remaining n

2 triplets by sampling uniformly at random
from the remaining 2n− n

2 triplets in the mini-batch. Thus, one
half of the resulting batch contains the hardest triplets from the
mini-batch, and the other half contains triplets associated with
a broader range of losses. We execute the proposed heuristic
within each training iteration during batch construction.

F. Training & Optimization

We chose the squared Euclidean distance function d(x, y) =
||x− y||22 as the distance metric for our triplet network. We
trained the network using the stochastic optimization algorithm
Adam [39] and the back-propagation scheme for computing
gradients. Furthermore, we initialized the weights of the net-
work using the Glorot initialization [40] scheme. We found the
best network hyperparameters and made our CNN architecture
design choices by using a held-out validation set. More precisely,
for each combination of hyperparameters (including architecture
design choices), we trained our network for 5000 iterations
on the training set of the voluntary cough data set from the
Røde NT1000 microphone and validated every 100 iterations
on a batch of 50 randomly sampled triplets from the Røde

TABLE III
EVALUATION SCENARIOS USED IN THE IDENTIFICATION AND VERIFICATION

TESTS

I and V refer to identification and verification, respectively. Note that all the samples
used for the tests in each evaluation scenario originate from the test set of the corre-
sponding data set indicated in this table and the network trained on the corresponding
training set of the same data set is used for inference on these test samples. Hence, a
different model is used for each evaluation scenario. The models were built by training
our network using the same optimized hyperparameters described in section III-F.

microphone’s validation set. Subsequently, we saved the model
weights at the training iteration yielding the lowest validation
loss as defined in (1). We then evaluated the saved models on
the validation set via two-way one-shot identification tests (cf.
Section III-G1) and selected the optimal hyperparameters based
on the highest achieved mean accuracy on the tests. In such a
manner, we found the learning rate and batch size to be optimal
for the values 10−3 and 64, respectively. We optimized the gap
parameter g separately and set it to 1. Ultimately, we trained our
network on a given data set with the optimized hyperparameters
described above for 5000 iterations to build a final model.

We implemented our neural network using Keras, an open-
source Python software library for deep learning that is built on
top of TensorFlow [41]. We trained the network on the cluster
infrastructure of ETH Zurich. The code and models are publicly
available (cf. Table I).

G. Evaluation

We investigated the performance of our approach in identifi-
cation and verification tests in different evaluation scenarios on
test sets that present yet unseen cough samples to the model. We
designed the evaluation scenarios I.1–I.3 (cf. Table III) to allow
the study of the influence of a varying parameter (e.g., number
of coughers, number of enrollment samples, recording distance,
and recording device) on the performance of the network. The
evaluation scenarios I.4 and V.1 (cf. Table III) represent a more
realistic application scenario with data from asthmatic patients.
Additionally, we generated the evaluation scenarios I.1–I.4 for
the identification tests by using data from the voluntary and reflex
cough data sets. For the verification evaluation scenario V.1, we
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only used the reflex cough data set. We omitted verification
testing with the voluntary cough data because better results
with a data set of recorded coughs in a laboratory setting can
be expected and argue that the reflex cough data set allows
us to emulate a more realistic scenario of performing cougher
verification “in-the-wild”. Table III gives an overview of the
different evaluation scenarios.

1) Identification Tests: We emulated cougher identification
tests via N-way K-shot classification tasks, where N refers to
the number of different classes (coughers) and K refers to the
number of samples (coughs) per class. In our case, an N-way
K-shot classification task involves comparing a given sample
xeval with a set consisting of K enrollment samples of each of
N different coughers and deciding, based on the comparisons,
which cougher xeval belongs to. Thus, this set of enrollment
samples with which xeval is compared, contains a total of N ∗ K
different samples. In the context of N-way K-shot classification,
this set of enrollment samples is referred to as the support set.
Note that both xeval and all the samples in the support set are
randomly sampled from the test set of the data set indicated in
Table III. We randomly sampled xeval from the test set while
constraining it to belong to one of the N coughers present in the
support set and ensuring that it differs from the specific samples
in the support set.

Using our model, we compared a given samplexeval of a given
cougher to K samples x1, . . ., xK of another cougher by first
computing the distance between xeval and each of the K samples
using the learned distance metric d̃(x, y) = ||f(x)− f(y)||22
and subsequently calculating the mean of all the computed
distances. We repeated this procedure for each of the coughers
in the support set. Finally, we selected the cougher associated
with the lowest mean distance to xeval as the predicted cougher
to whom xeval belongs. More precisely, we employed the fol-
lowing decision rule:

i∗ = argmin
i∈{1,...,N}

1

K

∑
x∈Si

d̃(xeval, x) (2)

where Si is the support set consisting of K cough samples of
cougher ci ∈ {c1, . . ., cN}. Consequently, ci∗ is the predicted
cougher.

a) Evaluation Scenario I.1: To evaluate our approach, we
generated N-way K-shot tasks with different values for N and K
and then evaluated them using the above decision rule. Finally,
we reported the classification accuracy on these tasks.

To generate the classification tasks, we randomly sampled
N coughers from the test set for each classification task. We
then randomly selected the samples for the support set from the
sampled coughers. We randomly chose one sample from any of
the sampled coughers as xeval. In this fashion, we generated a
total of 10000 classification tasks.

b) Evaluation Scenario I.2: In this evaluation scenario, we
investigated the impact that the distance between microphone
and cougher and the quality of the recording device may have
on the performance of our approach. To do so, we trained our
network on data containing voluntary coughs (cf. Section III-
A) recorded with the Røde NT1000 microphone in “close” and

“distant” proximity, respectively, thereby producing two models,
one for each recording distance. We also trained our network on
data containing both voluntary coughs recorded in “close” and
“distant” proximity. Subsequently, we evaluated each trained
model separately on the data recorded in “close” and “distant”
proximity, respectively. We carried out all evaluations via two-
way one-shot classification tasks, i.e., identification tests with
two enrolled coughers and only one sample per cougher.

c) Evaluation Scenario I.3: For this evaluation scenario
we trained our network on voluntary cough data from each of
three different recording devices (Samsung Galaxy S6, Google
Nexus 7, Røde NT1000) separately and on data that combines
the recordings of all devices. We then evaluated each trained
model on data from each of the devices separately. Additionally,
to investigate the generalizability of our approach to cough data
from a yet unseen device, we trained our network on the data
of all but one device and thereafter evaluated it on the test data
of the held-out device. All evaluations were carried out using
two-way one-shot tasks. We repeated this procedure for each of
the devices.

d) Evaluation Scenario I.4: Finally, we investigated the
performance of our approach when applied to reflex coughs.
Consequently, we trained our network on the nocturnal reflex
cough data set from asthmatic patients and evaluated the result-
ing model using two-way K-shot tasks with different choices
for K.

Since the evaluation scenarios I.2–I.4 only include tests with
just two enrolled coughers, i.e.,N = 2, we adopted a more rigor-
ous evaluation approach for these evaluation scenarios than the
one presented in evaluation scenario I.1, which would have been
too computationally demanding for N > 2: first, we generated
a set of all permutations of two coughers from the test set. Then,
for each pair of coughers (ci, cj) from the set of permutations,
we generated 125 two-way K-shot tasks by randomly selecting
K samples from ci and cj , respectively, as the samples of the
support set and one sample from ci as the test sample. Given
that the number of coughers in our test set for the voluntary
and reflex cough data set was 10, this resulted in a total of
10P2 ∗ 125 = 11250 classification tasks for each type of data set.
Finally, we computed the mean accuracy and standard deviation
of all the classification accuracies associated with each pair of
coughers.

2) Verification Tests: First, we randomly selected 10 samples
from the reference cougher as enrollment samples from the test
set. Next, we randomly selected 10 additional test samples, half
of which were randomly sampled from the reference cougher
and the other half from coughers different from the reference.
Subsequently, we iterated over the newly selected samples (i.e.,
half reference cougher, half other coughers) and determined
for each of them whether they belonged to the reference. In
each iteration, we denoted the sample to be evaluated as xeval.
We computed the mean distance between the xeval and each
of the enrollment samples using the learned distance metric d̃.
If the resulting mean distance for a test sample xeval is below
a specified threshold, our model predicts that xeval belongs to
the reference cougher. Otherwise, it predicts that xeval belongs
to a cougher different from the reference. Formally, our model
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applies the following threshold-based decision rule:

1

K

∑
x∈S

d̃(xeval, x) =

{
< t ⇒ same cougher

≥ t ⇒ different cougher
(3)

where S is the set of K enrollment samples of the reference
cougher to be verified. As noted above, we chose K = 10.
Additionally, we chose the threshold t = 2.2 as this resulted
in the highest achieved classification accuracy on verification
tests performed on the validation set of our reflex cough data
set.

a) Evaluation Scenario V.1: Using our reflex cough data
set, we generated verification tests according to the procedure
described above, by iterating over the 10 coughers in the test set
and using a different cougher as the reference in each iteration.
However, for two of the coughers in the test set only 9 rather
than 10 samples were used for enrollment, due to insufficient
samples for these coughers. Since 10 test samples were used in
each of the 10 iterations, we generated a total of 100 verification
tests to be evaluated by our model. Finally, we report the clas-
sification accuracy of our model on the verification tests, along
with the false acceptance rate (FAR), the false rejection rate
(FRR), and the equal error rate (EER), which were computed
as follows,

ACC =
TP + TN

TP + TN + FP + FN
, (4)

FAR =
FP

FP + TN
, (5)

FRR =
FN

FN + TP
, (6)

where TP , FP , TN , and FN denote the number of true and
false positives and true and false negatives, respectively. The
EER corresponds to the FAR and FRR when they are equal,
which we determined by varying the threshold.

Furthermore, we established a human baseline with which we
compared our model’s performance. We instructed each of our
19 human raters (13 male, 6 female, age 22-31) to perform the
same verification tests as our model. More precisely, for each
of the ten coughers in the test set, the rater was first allowed to
listen to the same enrollment samples presented to our model as
often as desired. The rater then had to listen to the same 10 test
samples that our model performed its predictions on and decide
for each of them, whether it belongs to the reference cougher.
Hence, every rater had to classify 100 test samples in total.
Afterward, we reported the mean, median, standard deviation,
best and worst FAR, FRR, and classification accuracy of all
the raters.

IV. RESULTS

In this section, we present the results of applying our evalu-
ation methodology to our models. This includes the results of

the identification tests in the various evaluation scenarios I.1–I.4
and the results of the verification tests for the evaluation scenario
V.1.

A. Identification Tests

1) Evaluation Scenario I.1: Fig. 3 shows the results of the
N-way K-shot classification tasks for different choices and
combinations of N and K. Consider first the case where N = 2,
i.e. identification tests with only two enrolled coughers and K
samples per enrolled cougher. The results show that an accuracy
of 90.87% can already be achieved with only a single sample
per cougher, i.e., K = 1, and that accuracies of more than 95%
can be achieved if K is large enough, i.e., K ≥ 4. Furthermore,
it can be observed that the accuracy saturates at roughly K = 5,
after which there are diminishing returns. The most significant
increase in mean accuracy between successive values of K is
2.7% which occurs between K = 1 and K = 2. In general, the
results show that for a given choice of N, increasing the number
of samples per enrolled cougher K increases accuracy, but the
amount of improvement gradually declines as K is increased.
Overall, accuracies of over 90% can be achieved forN ≤ 5when
K is sufficiently large. ForN = 6, the highest accuracy achieved
is over 87%, when K ≥ 6. Additionally, for all the choices of N,
diminishing returns can be observed starting at roughly K = 6.
As expected, the accuracy decreases when N is increased for a
fixed K. In particular, it decreases by roughly 2% to 4% each
time N is incremented by one, for a fixed K. Furthermore, the
largest increase in accuracy between successive values of K for
any choice of N occurs between K = 1 and K = 2, but the
improvement is more substantial the larger N is.

2) Evaluation Scenario I.2: Table V shows the results of
training on close and on distant voluntary cough data, as well
as on the combination thereof, and subsequent evaluation of our
model on the close and distant test data via two-way one-shot
classification tasks. Overall, the results suggest that the record-
ing distance has a negligible effect on the mean accuracy of the
classification tasks, which ranges from as low as 89.64% to as
high as 92.87%.

3) Evaluation Scenario I.3: Table IV shows the results of
training on voluntary cough data from each of three different
devices separately and a data set combining the data of all
devices and then evaluating our model on the test data of each
of the devices.

The results demonstrate that mean accuracies over 90% can be
achieved not only with a studio microphone as shown before, but
also with a smartphone. In fact, our approach achieves a mean
accuracy of 94.15% when training and testing on cough data
recorded with the Samsung S6. This is the best mean accuracy
achieved among all combinations of data used for training and
testing. Against expectation, our approach performs better on
the Samsung S6 data than on the data from the Røde NT1000
studio microphone. Also note that for the model trained on the
Samsung S6 data, the average of all mean accuracies obtained
when testing on the data from each of the three devices separately
is almost 90%.
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Fig. 3. Evaluation scenario I.1. Plot and table of the accuracies [%] obtained on N-way K-shot classification tasks with different values for
N and K. Quadratic interpolation is applied to obtain the curves. Each curve is associated with each choice of N.

TABLE IV
EVALUATION SCENARIO I.3

Mean and standard deviation [%] of the accuracies obtained on two-way one-shot classification tasks when training and testing on
all combinations of data from different devices. “All devices” is the data set combining the data from all devices.

TABLE V
EVALUATION SCENARIO I.2

Mean and standard deviation [%] of the accuracies obtained on two-way one-shot
classification tasks when training and testing on all combinations of close/distant cough
data. “Both” is the data combining close and distant cough data.

Whereas the quality of the recording device employed to
capture the cough samples used for training our model is cer-
tainly important, the quality of the device used to capture cough
samples for testing is equally crucial. This is highlighted by
the Google Nexus 7 tablet, the device with the poorest quality
built-in microphone of the three [12]. When training on the data
of any given device, the lowest mean accuracy is obtained when
testing on data from the Google Nexus 7. Furthermore, when
training on data from the Google Nexus 7, the mean accuracies
are consistently below 88%, irrespective of what device’s data is
used for testing. The lowest mean accuracy of 79% is obtained
when training on data from the Røde NT1000 and testing on
data from the Google Nexus 7.

In contrast, when testing on data from the Røde microphone
or the Samsung S6, mean accuracies of at least 84.44% are
achieved, no matter which device’s data were used for training.

TABLE VI
EVALUATION SCENARIO I.3

Mean and standard deviation [%] of the accuracies obtained on two-way one-shot
classification tasks when training on all but one device and testing on the held-out
device.

The influence of the quality of the recording device on the perfor-
mance of our model is further illustrated by the observation that
when training with data from all devices combined and testing
on data from the Røde microphone or the Samsung S6, mean
accuracies of about 90% are obtained for both devices. On the
other hand, when training on the data of all devices combined
and testing on the data of the Nexus 7 tablet, the mean accuracy
drops by almost 10% in comparison. Furthermore, whereas the
best mean accuracies for the Røde microphone and the Samsung
S6 are obtained when training and testing on their own data,
this does not hold for the Nexus 7 tablet. When training on the
Nexus 7 tablet data, the best possible mean accuracy of 87.75%
is achieved when testing on data from the Samsung S6.

Table VI shows the result of training on data from all but
one device and subsequently evaluating our model on test data
from the held-out device. The results suggest that our model
generalizes well with respect to cough data from yet unseen
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TABLE VII
EVALUATION SCENARIO I.4

Mean and standard deviation [%] of the accuracies obtained on two-way K-shot
classification tasks using reflex cough data with different values for K.

TABLE VIII
EVALUATION SCENARIO V.1

Mean and standard deviation, median, best and worst accuracy, FAR and
FRR [%] obtained on the verification tests performed by the human raters.

devices, with the lowest mean accuracy of 80.48% achieved on
the data of the Nexus 7 tablet and the highest mean accuracy
of 90.54% achieved on the data of the Samsung S6. Moreover,
note that the obtained mean accuracies for each held-out device
(87.97%, 90.54%, and 80.48% for the Røde NT1000, Samsung
S6, and Google Nexus 7, respectively) do not differ substantially
from those obtained when training and testing our model on the
data of the respective devices, i.e., the mean accuracies on the
diagonal of Table IV (91.05%, 94.15% and 82.58% for the Røde
NT1000, Samsung S6 and Google Nexus 7, respectively).

4) Evaluation Scenario I.4: Table VII shows the results of
two-way K-shot classification tasks with different choices for
K when using nocturnal reflex coughs from asthmatic patients.
Whereas overall, the achieved mean accuracies are, as expected,
worse than those obtained with the voluntary cough data set,
they can still reach over 88% with a sufficiently large K, i.e.,
K ≥ 12. ForK ≥ 4, mean accuracies over 80% can be achieved.
With only one cough sample available per enrolled cougher, i.e.,
K = 1, a mean accuracy of 73% is obtained. As in the previous
scenario, the mean accuracy increases as K is increased, and
the improvement is greatest when K is increased starting from a
small value. Diminishing returns can be observed at K = 12.

B. Verification Tests

1) Evaluation Scenario V.1: The results of the verification
tests performed by the human raters are listed in Table VIII.
They show that human raters could determine whether a cough
belonged to a particular individual with better than random
accuracy on average. Even the worst-performing rater achieved
an accuracy of 56%. Indeed, in general, humans are good at
identifying idiosyncrasies of a person’s voice, even by means
of coughs [17]. The average FAR and FRR of 28%, however,
highlight that this is certainly not a trivial task.

The results of our model on the verification tests are depicted
in Table IX, along with the average results of the human raters,
for comparison. They show that the average human rater is

TABLE IX
EVALUATION SCENARIO V.1

Comparison between performance of our model and human raters on the
verification tests. We report the accuracy, FAR and FRR [%]. For the human
raters, the mean of each metric is depicted. For our model, the EER [%] is
also given.

outperformed by our model with respect to every metric. Our
model outperforms the human raters on average by 8% in
accuracy, 4% in FAR, and 12% in FRR. The best-performing
human rater, however, was able to beat our model’s performance
with regard to accuracy by 3% and with regard to the FAR by
12% (cf. Table VIII) but achieved a comparable FRR to the
model. Thus, the human raters still constitute a very competitive
baseline compared to our model.

V. DISCUSSION

A. Principal Findings

We have demonstrated the feasibility of cougher identification
using our approach. Our approach can achieve mean accura-
cies of over 90% on identification tests involving two enrolled
coughers and only one enrollment sample per cougher when ap-
plied to voluntary coughs. Remarkably, these high-performance
values have not only been achieved using cough data from a
studio microphone but also using cough data from a smartphone.
By increasing the number of enrollment samples per cougher,
the mean accuracy on the two-way identification tests can be
improved further to values over 95% when using cough data
from the Røde NT1000. However, the extent of improvement
decreases as the number of enrollment samples is increased. For
identification tests with more than two enrolled coughers, there
is inevitably a decrease in achieved accuracy. Nevertheless, this
can again be mitigated to some extent by increasing the number
of enrollment samples. In doing so, the accuracy obtained on
identification tests with five or fewer coughers can reach over
90%, as long as K is sufficiently large.

We have determined that our approach retains its performance
regardless of the distance between the microphone and cougher
used to capture coughs. The quality of the recording device,
however, plays an important role, as shown by the lower mean
accuracies obtained on identification tests using cough data from
the Google Nexus 7 as opposed to the higher mean accura-
cies obtained using cough data from the Røde NT1000 or the
Samsung S6. Additionally, our approach generalizes well to
cough data from new devices, as testing on cough data from
an unseen device results in only a slight decrease in mean
accuracy compared to training and testing on the device that
was previously held out.

When applying our approach to a data set of reflex coughs
instead, a decline in the mean accuracy achieved on the two-way
identification tests can be observed. Although our reflex cough
data set contains a larger number of cough samples compared
to our voluntary cough data set (cf. Section III-A), this result
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can be explained by the fact that the reflex cough data set
includes several sources of variability that are not present in the
voluntary cough data set. This is because the reflex cough sam-
ples were recorded with a smartphone in acoustic environments
that differed among study participants in terms of premises,
distance to the smartphone, and background noise. With only
one enrollment sample per cougher, the mean accuracy on
the two-way identification tests is 73.08%, which means that
it has dropped by almost 18% compared to using voluntary
cough data (cf. Table VII and Fig. 3). Increasing the number
of enrollment samples per cougher, however, not only improves
the accuracy on identification tests but also reduces the loss
of accuracy compared to using voluntary cough data. Indeed,
with eight enrollment samples per cougher, the achieved mean
accuracy on the two-way identification tests using reflex cough
data is 86.75%, which corresponds to an increase of 13.67%
compared to using only one sample per enrolled cougher and
a decrease of 9.26% compared to using voluntary cough data.
Mean accuracies over 88% can be obtained if K ≥ 12.

In addition, we have demonstrated that our approach is capa-
ble of performing cougher verification using reflex cough data.
It has achieved respectable results on the verification tests, with
an accuracy of 80% and an EER of 20%, while outperforming
the human raters on average.

B. Practical Implications

As noted in Section I, the main issue with conventional
contact-free cough monitoring systems is their inability to dis-
tinguish between coughs of different individuals, potentially
resulting in incorrect cough counts. Hence, a more reliable cough
monitoring system capable of distinguishing coughs could be
designed by incorporating our cougher recognition algorithm
alongside an automated cough detection algorithm. First, the
cough detection algorithm determines whether the input audio
recording contains a cough. If it does not, no cough is counted.
Otherwise, the cough’s audio recording is passed as input to
our cougher recognition algorithm to assign it to a monitored
individual. The number of counted coughs is then incremented.
For the automated cough detection algorithm, the efficient CNN-
based cough detection model developed by Barata et al. [12] is
especially suitable, as it achieves state-of-the-art results and is
efficient enough to run on smartphones.

We attempted to keep the number of layers in our CNN
architecture relatively small while trying to avoid significant
decreases in performance. Our network comprises 19.54 million
parameters, of which 99% are those of the final dense layer of our
network. At inference, 498.34 million floating-point operations
(MFLOPs) and 32.3 MB of memory are required to produce a
cough embedding. Granted that these numbers are significantly
higher than those of the cough detection algorithm developed at
our lab [12], which only requires 1.74 MFLOPs and 1.232 MB
of memory for its execution, we argue that the deployment of our
pre-trained cougher recognition models on modern smartphones
should still be feasible. Recent advancements in smartphone
hardware have facilitated the deployment of deep learning mod-
els on smartphones, especially neural processing units (NPUs)
designed to accelerate machine learning applications. For

example, the Samsung Galaxy S21 smartphone has 8 GB of
RAM and a graphics processing unit that boasts 1.53 trillion
floating operations per second and a tri-core NPU, which boasts
26 trillion operations per second. Such hardware specifications
should be more than sufficient for running our model. Even on
the software level, efforts have been made to accelerate deep
learning inference on mobile devices [42]. In addition, it must
be emphasized that non-cough sounds are much more common
than cough sounds, and only when a cough occurs would our
cougher recognition algorithm need to be triggered. However,
it is unclear how much energy our pre-trained models would
consume on a smartphone. Hence, for practical applications, it
may be preferable to have the smartphone constantly plugged
into an electrical outlet. The deployment of a cough monitor-
ing algorithm consisting of our proposed cougher recognition
algorithm on mobile devices would provide a cost-efficient and
scalable solution to contact-free continuous cough monitoring
that can function reliably even in the presence of ambient coughs.

Finally, we would like to note that our approach also allows si-
multaneous monitoring of multiple people in a room shared with
other, non-monitored people. In this case, cougher identification
and verification must be combined. Identification must first be
carried out to determine the individual whose enrollment coughs
most resemble the input cough. Then, the identified individual
must be confirmed via verification to determine whether the
input cough truly belongs to that individual, since it may have
originated from a non-monitored person, whose coughs are very
resembling. Additionally, the number of cough samples required
for enrollment is adjustable and may be leveraged to boost the
performance of our approach in practical applications.

C. Limitations & Future Work

One limitation of our approach is that the hyperparameters
were tuned exclusively using voluntary cough data, which has
likely caused a decrease in performance of our models when
applied to reflex coughs rather than voluntary coughs. We believe
that better results in terms of identification and verification
tests with reflex coughs could be obtained if we optimized
the hyperparameters on the reflex cough data set instead. We
only optimized the threshold of the decision rule employed for
verification using reflex cough data.

Additionally, there is a possibility that when the network was
trained with the cough reflex data, it learned the characteristics
of the acoustic channel in the recordings rather than the char-
acteristics of the cough signals themselves. To avoid this issue
and ensure equal acoustic channels across recordings, we would
have to obtain recordings with multiple coughers (preferably
more than just two) present in a same room at the same time.

Finally, the feasibility of using our pre-trained models on
mobile devices needs to be experimentally verified and more
thoroughly investigated. For instance, it would be beneficial to
know the exact inference time of our model and the energy
consumption it induces on different smartphones to assess its
applicability. In future work, we plan to integrate our proposed
method along with cough detection into a mobile application to
evaluate its capabilities in a real-world scenario with patients.
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VI. CONCLUSION

In this work, we present a novel triplet-network-based ap-
proach for cougher identification and verification using vol-
untary and reflex coughs which were recorded using several
devices, including a smartphone and tablet. Thus, our work
contributes to automated mobile cough monitoring by develop-
ing an algorithm which, in conjunction with a cough detection
algorithm, would enable contact-free monitoring of multiple
patients, even in the presence of ambient coughs. We have
found that although the quality of the recording device remains
a limiting factor, our approach can achieve high-performance
values in both identification and verification tests. In addition,
increasing the number of enrollment samples ensures good
performance even in identification tests with a large number
of coughers or when reflex coughs are used. In light of these
results, our work constitutes an additional step towards scalable,
cost-efficient, and contact-free cough monitoring for patients in
shared environments.
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