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ABSTRACT
Researchers are interested in understanding the dyadic interactions
of couples as they relate to relationship quality and chronic disease
management. Currently, ambulatory assessment of couples’ inter-
actions entail collecting data at random times in the day. There is
no ubiquitous system that leverages the dyadic nature of couples’
interactions (eg. collecting data when partners are interacting) and
also performs real-time inference relevant for relationship quality
and chronic disease management. In this work, we seek to develop
a smartwatch system that can collect data about couples’ dyadic
interactions, and infer and track indicators of relationship quality
and chronic disease management. We plan to collect data from
couples in the field and use the data to develop methods to detect
the indicators. Then, we plan to implement these methods as a
smartwatch system and evaluate its performance in real-time and
everyday life through another field study. Such a system can be used
by social psychology researchers to understand the social dynamics
of couples in everyday life and their impact on relationship qual-
ity, and also by health psychology researchers for developing and
delivering behavioral interventions for couples who are managing
chronic diseases.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
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1 INTRODUCTION
Romantic relationships have powerful effects on people’s mental
and physical health (see e.g. [28] for an overview). For instance,
conflicts and negative qualities of one’s intimate relationship are
associated prospectively with morbidity and mortality [19]. Rela-
tionships play a role in illness management as spouses share the
responsibility [25, 30] and it involves social support and common
dyadic coping (CDC). Social support entails providing resources
to help a receiver cope in a time of need and can be emotional or
instrumental [15]. CDC is the "we approach" to dealing with stres-
sors in a couple’s relationship [13] which is assessed objectively by
counting first-person plural pronouns [29]. Spousal support and
CDC in chronic disease management have been shown to have pos-
itive or negative effects on emotional well-being [14, 17], and result
in healthier eating habits among diabetes patients [22]. Researchers
are interested in understanding dyadic interactions in-situ, for ex-
ample, in couples’ management of diabetes in daily life [20] as it
could inform behavioral interventions.

Smartwatches could be leveraged to collect data on couples’
dyadic interactions and automatically infer various indicators of
relationship quality and chronic disease management. Several fea-
tures of smartwatches make them uniquely positioned for this task.
Firstly, they are mostly with the wearer since they are worn in com-
parison with a smartphone which could be in various places like
the pocket, bag, and just not in proximity to the user, or devices like
Amazon Echo or Google Home which can only be in one place and
not always around couples. Additionally, commercial smartwatches
could be used to collect a wide variety of sensor data such as audio
and heart rate (for emotion recognition), Bluetooth (for proximity
detection), accelerometer, and gyroscope (for gestures and physical
activity) and ambient light (to detect the context). These sensors
together can be used to infer the mental health of individuals [3].
Our past work leveraged smartwatches for behavior recognition:
eg. tracking stress [8] and physical activity [6, 7] and proposed to
use them to collect voice activity information which could be used
to monitor people’s mental health [11]. Finally and importantly,
smartwatches could be leveraged in novel ways to capture dyadic
interactions of partners as we have done in our previous work (eg.
triggering data collection when partners are close and speaking)
[10].

This research work seeks to develop a smartwatch-based system
that can collect data about couples’ dyadic interactions, and infer
and track indicators of relationship quality and chronic disease man-
agement. This system can be used by social psychology researchers
to understand the social dynamics of couples in everyday life and
their impact on relationship quality, and also by health psychology
researchers for developing and delivering behavioral interventions
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for couples who are managing chronic diseases. Towards this end,
we seek to answer the following research questions (RQs).

RQ1: How effectively can a wearable system collect self-report and
sensor data about couples’ dyadic interactions in everyday life? Some
challenges to address entail designing a robust system that can
collect significant amounts of self-report data and also high-quality
multimodal sensor data from couples in their everyday life without
increasing the burden of usage while addressing privacy concerns.

RQ2: How effectively can a wearable system infer and track indi-
cators of relationship quality and chronic disease management based
on interactions? Some indicators include emotional social support,
CDC, conversation frequency and duration, physical closeness fre-
quency and duration, conversations’ emotional valence — positive
or negative — (which we address separately in a different work
[5, 12]). Some issues to address are which sensor data to use, fea-
tures to extract, methods and machine learning algorithms to use,
how to implement the methods to work in real-time, among others.

In the rest of this paper, we discuss related work in Section 2,
methodology in Section 3, evaluation approach in Section 4, and
results and expected contribution in Section 5.

2 RELATEDWORK
Various smartphone-based apps have been developed for ambu-
latory data collection by psychologists. One popular one is the
Electronic Activated Recorder (EAR) which has been used for sev-
eral studies [21, 26] and has been used for collection audio data
in various couples’ interactions such as couples managing breast
cancer[18, 27]. The EAR triggers data collection at random times
in the day and collects snippets of ambient sound (e.g. 30 seconds)
which are later transcribed and coded. The EAR does not collect
self-report data. On the other hand, a mobile and wearable system
was used to collect data for conflict detection among couples [31].
Similar to the EAR, sensor data, and additionally, self-report data
were collected at random times in the day. Another work [24] used
a digital recorder for a whole-day recording of couples managing
cancer.

Despite these advances in the ambulatory assessment of couples’
interactions, there are still gaps. Firstly, the random triggering of
data collection does not take advantage of the dyadic nature of
couples interactions (eg. collection of data when partners are inter-
acting) and could miss key conversations. The EAR collects only
audio and does not leverage other sensor data or self-reports. The
all-day recording of [24] has significant privacy concerns. Also, [31]
focuses on conflict detection which is only one component relevant
for relationship quality. Finally, these works also do not implement
a ubiquitous system for real-time inference and consequently do
not address the turn-taking actions of couples’ interactions. Hence,
there is currently no ubiquitous system that leverages the dyadic
nature of couples’ interaction for data collection and also performs
real-time inference relevant for relationship quality and chronic
disease management.

3 METHODOLOGY
To answer our research questions, our plan is to implement the
following approach:

Figure 1: Overview of the DyMand system

(1) Develop mobile and wearable apps and then collect mul-
timodal sensor and self-report data about couples’ dyadic
interaction in everyday life

(2) Develop methods for detection of indicators of relationship
quality and chronic disease management using the collected
data

(3) Develop a smartwatch system that automatically infers and
tracks indicators of couples’ relationship quality and chronic
disease management

3.1 Overview of System
We propose to develop a smartwatch system consisting of two
components: data collection and inference. The data collection
component would trigger the collection of sensor data and self-
report data (which is filled on a smartphone). This data would be
stored for later analysis by, for example, psychologists or used by
the inference component. The inference component would use the
data to perform real-time detection and tracking of the indicators
of relationship quality and chronic disease management.

3.2 Data Collection
Our first study evaluates the data collection component of the sys-
tem in the context of couples managing a chronic disease. We are
currently running a Dyadic Management of Diabetes (DyMand)
study in Switzerland with German-speaking couples in which one
partner has type 2 diabetes. We plan to collect data from 180 couples
(N=180; n=360) but we have collected data from ten (10) couples
so far [20]. We collect data from the field for 7 days. Each part-
ner is given a smartwatch and smartphone running the DyMand
system, a novel open-source mobile and wearable system that we
developed for ambulatory assessment of couples’ chronic disease
management Figure 1 [10]. The DyMand system corresponds to the
data collection component of our proposed system and triggers the
collection of sensor and self-report data for 5 minutes each hour
during the hours that subjects pick. We collect the following sensor
data from the smartwatch: audio, heart rate, accelerometer, gyro-
scope, Bluetooth low energy (BLE) signal strength betweenwatches,
and ambient light. After the sensor data collection, a self-report is
triggered on the smartphone that asks about social support, CDC,
and emotions (using the Affective Slider, a digital affect measuring
tool that measures the valence and arousal dimensions of their
emotions [4]) over the last 5 minutes. We also record a 3-second
video of their facial expression while they complete the self-report
on the smartphone. Additionally, at the end of the day, we trigger
the Affective Slider, and also a short form of the PANAS self-report
[32] for the couples to report their emotions over the whole day as
well as another self-report that asks about health behavior.
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Figure 2: Closeness and Speaking Detection

Our hypothesis is that we are likely to collect relevant and high-
quality sensor and self-report data during times that the partners
are interacting. Hence, rather than trigger data collection at some
random times in the hour which is the standard approach [21,
27], we use a novel method entailing triggering data collection
after we detect that the partners are close and speaking (Figure 2).
We do this in two steps. First, we determine closeness using the
BLE signal strength between the smartwatches. We check if the
signal strength is within a certain threshold, which corresponds
to a distance estimate [11]. Then, we determine if the partners are
speaking by using a voice activity detection (VAD)machine learning
model that classifies speech versus non-speech, whichwe developed
and implemented to run in real-time on the smartwatch [10]. In the
case in which this condition is not met in the hour, we do a backup
recording in the last 15 minutes of the hour. The detection of the
frequency and duration of conversations and physical closeness is
an extension of this novel triggering method.

There are significant ethical and privacy concerns of such a
system and study since we collect audio which is sensitive data,
and more so in the context of couples’ interactions in which there
is likely to be speech which could be about private topics. We
address these concerns in detail in our previous works [9, 11] but
in summary, we take several measures as follows (1) our study has
ethical approval by the ethics committee of the canton of Zurich
(2) we collect a maximum of 5-minute of audio per hour (3) we
ask subjects to wear a tag that we give them to indicate to others
that recording may be happening and (4) after subjects return their
devices, we give them the option to listen to and request the deletion
of any audio samples without any explanation. We believe these
measures are adequate to safeguard the privacy of study subjects
and others not taking part in the study.

3.3 Data Processing and Analysis
Wewill preprocess the sensor data into a form for easy data analysis.
For the audio data, we will remove nonvocal segments (e.g. silence
and noise portions), filter, downsample, and reduce the background
noise. Wewill perform speaker diarization to annotate the segments
of the audio corresponding to the speech of each partner. We will
also annotate any segments of the audio corresponding to various
nonverbal vocalizations such as laughs, sighs, and also background
context e.g. TV, audio, indoors, outdoors, etc. This speech process-
ing pipeline is important for the detection of conversation sessions.
We will also transcribe the audio in order to use the content of
the speech for example, for inferring emotional social support (e.g.
checking if encouraging words are used) and CDC (eg. checking
the use “we” pronoun). The speaker diarization, annotation, and

transcriptions will be done manually to ensure high data quality
and then we will develop automated tools to do same for the real-
time recognition. Audio samples that are found to be too noisy to
be useful will not be used for data analysis. Other sensor data such
as accelerometer and gyroscope data will be filtered and downsam-
pled. Heart rate data will be processed to remove samples that were
collected when there was no or poor contact with the skin since
the smartwatch provides that data.

Next, to perform the detection, we will extract various features
from the sensor data modalities, explore transfer learning, for exam-
ple, use pretrained models like YAMNet [2] which is a pretrained
acoustic convolutional neural network model (CNN), German BERT
[1] which is a pretrained language model based on Bidirectional
Encoder Representations from Transformers (BERT) [16] and use
traditional machine learning algorithms (eg. random forest, support
vector machines) and deep learning algorithms (eg. convolutional
neural networks, recurrent neural networks). We will explore mul-
timodal fusion using different combinations of modalities at the
feature level, the decision level, model level, or some hybrid ap-
proach [23].

4 EVALUATION APPROACH
We plan to train models to detect the presence or absence of emo-
tional social support, CDC, and conversation for all 5-minute ses-
sions collected from the field study. We will use as ground truth,
the responses from the couples. Hence, the machine learning prob-
lem will be framed as a binary classification task for each of the
3 indicators. We will perform an evaluation using accuracy, con-
fusion matrices, and leave-one-couple-out cross-validation which
has been used as a robust evaluation approach in couples’ conflict
detection [31] and emotion recognition [12]. We will compare the
performance between using manually and automatically annotated
data.

We will then pick the best performing models, optimize them
to run in real-time, and implement them as part of the inference
component for real-time inference and tracking of the indicators.
We will then run another user study similar to the current study to
evaluate the performance of the system in daily life among couples.
The system will trigger data collection when an interaction is de-
tected like the previous study. We will additionally for evaluation
purposes trigger at some random times also. After 5 minutes of data
collection, subjects will be asked to respond to self-reports about
the presence or absence of the indicators. These will be compared
with the system’s predictions to evaluate its accuracy.

5 RESULTS AND EXPECTED
CONTRIBUTIONS

We have developed the data collection component of our pro-
posed system: the DyMand system along with a smartwatch-based,
light-weight VAD system for sensor and self-report data collection
[10, 11]. The DyMand system uses a novel method of data collec-
tion: triggering data collection when partners’ are interacting (i.e.,
detects closeness and speaking) which is a key part of the whole
system. The remaining work is to use the data from the ongoing
study to develop machine learning models for recognition of emo-
tional social support, CDC, and conversation. Then we will develop
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and evaluate the inference component of the smartwatch system
consisting of those models and the tracking of the frequency and
duration of conversations and physical closeness.

The potential contribution of this work is a smartwatch sys-
tem that can be used for (1) collection of sensor and self-report
data about couples’ dyadic interactions in daily life, and (2) infer-
ring and tracking indicators of couples’ relationship quality and
chronic disease management: emotional social support, CDC, con-
versations, and physical closeness. The system could be extended
to infer other behavioral dynamics relevant for relationship qual-
ity and chronic disease management which are not included in
this work. This smartwatch system can be used by social psychol-
ogy researchers to understand the social dynamics of couples (and
potentially other dyadic relationships) in everyday life and their
impact on relationship quality, and also by health psychology re-
searchers for developing and delivering behavioral interventions
for couples who are managing chronic diseases.
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