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ABSTRACT
Recognizing the emotions of the elderly is important as it could
give an insight into their mental health. Emotion recognition sys-
tems that work well on the elderly could be used to assess their
emotions in places such as nursing homes and could inform the de-
velopment of various activities and interventions to improve their
mental health. However, several emotion recognition systems are
developed using data from younger adults. In this work, we train
machine learning models to recognize the emotions of elderly indi-
viduals via performing a 3-class classification of valence and arousal
as part of the INTERSPEECH 2020 Computational Paralinguistics
Challenge (COMPARE). We used speech data from 87 participants
who gave spontaneous personal narratives. We leveraged a transfer
learning approach in which we used pretrained CNN and BERT
models to extract acoustic and linguistic features respectively and
fed them into separate machine learning models. Also, we fused
these two modalities in a multimodal approach. Our best models
outperformed the official competition of unweighted average re-
call (UAR) baseline for valence by 8.8% and the mean of valence
and arousal by 3.2%. We also showed that feature engineering is
not necessary as transfer learning performs as well or better and
could be leveraged for task of recognition the emotions of elderly
individuals.
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1 INTRODUCTION
Digital technologies are needed to aid in managing the physical
and emotional well-being of elderly individuals [24]. Awareness of
the emotions of the elderly could give an insight into their mental
health. Emotion recognition systems that work well on the elderly
could be used to assess their emotions in places such as nursing
homes and could inform the development of various activities and
interventions to improve their mental health. However, several emo-
tion recognition works use data collected from actors and younger
adults for their development and evaluation (e.g. IEMOCAP dataset
[3]). In this work, we develop and evaluate emotion recognition
models using the first public speech data collected from elderly
individuals in the real world for emotion recognition as part of
the INTERSPEECH 2020 Computational Paralinguistics Challenge
(COMPARE) [26]. The task was to perform a 3-class classification
of the arousal and valence dimensions of emotions based on speech
data from elderly individuals.

Deep learning has been used for speech emotion recognition in-
volving various approaches such as convolutional neural networks
(CNN), Recurrent Neural Networks (RNN) such as Long Short-Term
Memory (LSTM) — with and without attention — bidirectional
LSTM (BLSTM), mostly together with handcrafted features ([17]).
Other approaches have used the raw signal in an end-to-end ap-
proach leveraging 1D CNNs and LSTMs [29]. Transfer learning is
another approach used in deep learning to circumvent the need to
develop hand-crafted features and also deals with the challenge off
small labeled datasets. Transfer learning entails using a pretrained
model on a different but related task ([7]). This process involves
using the model for feature extraction or fine-tuning in which the
whole model or later layers are retrained. Transfer learning has
shown success in various fields such as computer vision ([13, 16]),
speech processing ([15]), and natural language processing ([12, 23]).
Transfer learning has also been used in emotion recognition tasks
([7, 14, 25]).

Our contribution is the evaluation of transfer learning approaches
to recognize the emotions of elderly individuals using a novel
dataset — speech data collected from German-speaking elderly in-
dividuals. Specifically, we used a pretrained CNN model to extract
acoustic features and a pretrained Transformer language model —
Bidirectional Encoder Representations from Transformers (BERT)
[6] — to extract linguistic features. We trained and evaluated sepa-
rate models for acoustic and linguistic modalities. Also, we used a
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Figure 1: Overview of Acoustic, Linguistic and Multimodal
Approaches

multimodal approach in which we fused the features (early fusion)
and trained models using the combined features [20].

The rest of our paper is organized as follows. In Section 2, we de-
scribe our methodology. In Section 3, we describe our experiments.
In Section 4, we show the results, discuss them and present future
work. We conclude in Section 5.

2 METHODS
In this section, we describe the dataset, the competition baseline
approaches, and our acoustic, linguistic, andmultimodal approaches
as shown in Figure 1.

2.1 Dataset
We used the Ulm State of mind elderly (USOMS-e) database col-
lected from German-speaking elderly individuals [26]. The dataset
contains speech data of 87 participants (55 f, 32 m, age 60–95 years,
mean 71.01 years, std. dev. 9.14 years), each of whom told two neg-
ative and one positive personal narrative. Participants’ emotions
were assessed post every narrative by the subject and later by 4
experts on a scale of 0 (very sleepy and very bad) to 10 (very ex-
cited and very good) for the "arousal" and "valence" dimensions
respectively. The audio data was converted to 16 KHz mono and
was segmented into 5-sec chunks. The audio was also transcribed
manually and automatically. The mean values of each dimension
were used to create 3 classes: low (0-6), medium (7-8), and high
(9-10).

2.2 Competition Baseline Approach
The organizers of the competition used various approaches to gen-
erate the baseline results for the competition such as feature en-
gineering, transfer learning, unsupervised learning and end-to-
end learning [26]. For feature engineering, they used the openS-
MILE toolkit to extract 6373 static features (functionals), and the
OPENXBOW toolkit to extract Bag of Audio Words (BoAW) fea-
tures. For transfer learning, they used the DEEP SPECTRUM toolkit
which used a pretrained CNN (ResNet50) to extract embeddings

from the spectrograms of the audio. They also used LinguistIc Fea-
ture Extractor (LIFE) toolkit which used a BERTmodel pretrained on
German text and Global Maximum pooling or bidirectional LSTM
with attention to extract linguistic embeddings. For the unsuper-
vised learning, they used the AUDEEP toolkit which used recurrent
sequence-to-sequence autoencoders to learn representations of
mel-spectrograms of the audio in an unsupervised manner. These
different feature sets were then fed into separate linear support
vector machines with different hyperparameters.

2.3 Acoustic Approach
We used the acoustic characteristics of the audio to perform clas-
sification. We extracted spectrograms, used a pretrained CNN to
extract embeddings as acoustic features, and then performed classi-
fication with various machine learning models (Figure 1). We used
the YAMNet model which is a CNN that was pretrained on the
AudioSet dataset to predict 521 audio event classes [8, 9]. YAMNet
is based on the MobileNet architecture [11]. We used the YAMNet
model as a feature extractor and hence replaced the original final lo-
gistic layer which outputs 521 class with various machine learning
algorithms.

We extracted a spectrogram as an input into the YAMNet model
in the same way as was done for the trained model. The audio is
downsampled from 44.1Kz to 16 kHz mono. A spectrogram is com-
puted using magnitudes of the Short-Time Fourier Transform with
a window size of 25 ms, a window hop of 10 ms, and a periodic Hann
window. A mel spectrogram is computed by mapping the spectro-
gram to 64 mel bins covering the range 125-7500 Hz. A stabilized log
mel spectrogram is computed by applying log(mel-spectrum + 0.01)
where the offset is used to avoid taking a logarithm of zero. These
features are then framed into non-overlapping examples of 0.96
seconds, where each example covers 64 mel bands and 96 frames
of 10 ms each. This resulted in a 2D data of size 96 x 64 for each
second, which we used as a data point input to the YAMNet model.
The output of the model is a 1024-dimensional feature vector per
data point input of size 96 x 64. We then normalized the feature
vectors to be zero mean and unit variance and then used them as
inputs to various machine learning models.

2.4 Linguistic Approach
We used the content of the speech — the manual transcript — to
perform classification. Specifically, we used pretrained Transformer
language models to extract linguistic features and then performed
classification with various models (Figure 1). We used a pretrained
BERT model to extract a 768-dimensional embedding vector for
each narrative [6]. BERT is a deep learning model that has achieved
state-of-the-art results for several natural language tasks. The BERT
model we used is a case sensitive German BERT that was trained
using a German Wikipedia dump, the OpenLegalData dump, and
news articles [2]. We preprocessed each story’s transcript by first
tokenizing each word and ensuring that the total number of tokens
was less than or equal to the 512 maximum that the BERT model
takes. Hence, we ignored subsequent words in each story which was
over 512 length. We added special tokens for sentence classification
(such as [CLS] at the first position). After passing each story into the
model, we took the 768-dimensional embedding vector of the first



Table 1: Results for Competition Baseline Approaches and
our Acoustic, Linguistic, and Multimodal Approaches

Model Dev (UAR %) Test (UAR %)
Val Arous Val Arous

Competition Baseline Approach
Functionals + SVM 33.3 39.1 33.3 47.9
BoAW + SVM 33.3 40.5 31.5 49.1
Autoencoder + SVM 36.7 34.9 33.8 44.3
ResNet50 + SVM 31.6 35.0 40.3 50.4
BERT + LSTM + SVM 49.2 40.6 49.0 44.0

Acoustic Approach
YAMNet + SVM 44.3 43.9 34.7 43.9
YAMNet + LSTM 37 40.2 — 47.9

Linguistic Approach
BERT + SVM 51.1 45.7 56.3 48
SBERT + SVM 57.42 30.33 57.8 —

Multimodal Approach
Fusion + SVM 49 43.8 52.3 47.4

token [CLS] of the last hidden layer and used that as the embedding
for the whole story. We then normalized the vectors to be zero mean
and unit variance and then used the features vectors as inputs to
various machine learning models.

We also used Sentence BERT (SBERT), a modification of the
BERT architecture with siamese and triplet network structures for
generating sentence embeddings such that semantically similar
sentences are close in vector space [21]. The SBERT network was
shown to outperform state-of-the-art sentence embedding methods
such as BERT and Universal Sentence Encoder for semantic simi-
larity and sentence classification tasks such as sentiment detection.
We used the multilingual version of the SBERT model [22]. The net-
work, like the original BERT outputs a 768-dimensional embedding
for each story. We normalized the vectors to be zero mean and unit
variance and then used the features vectors as inputs to various
machine learning models.

2.5 Multimodal Approach
We also explored using a multimodal approach in which we fused
aspects of the acoustic and linguistic modalities because multimodal
approaches have been shown to outperform unimodal approaches
in emotion recognition tasks [20]. Specifically, we fused the feature
vectors from the acoustic and linguistic approaches producing a
1792-dimensional feature vector for each story (Figure 1). Since
there were several acoustic feature vectors for each story, we per-
formed a weighted sum of the acoustic feature vectors for each
story. We then normalized the vectors to be zero mean and unit
variance and then used these fused vectors as inputs to various
machine learning models.

3 EXPERIMENTS
We performed various experiments using the following libraries
scikit-learn [19], keras [5], and PyTorch [18].We trainedmodels sep-
arately for valence and arousal and used a hyperparameter search to
get models that produced the best results. We used a linear support

Figure 2: Confusion matrix for development set evaluation
for the best model for valence — SBERT + SVM: 57.4%

vector machine (SVM), and a 2-layer LSTM [10] with 16 and 8 units,
and 50% dropout [27] after each layer. We used the LSTM model for
the acoustic approach to take advantage of the sequential nature of
the acoustic embeddings. Also, for the acoustic approach, we used
majority voting of the classification of the 5-sec audio chunks to
decide the class for each story. For evaluation, we used the metrics
confusion matrices and unweighted average recall (UAR) which is
used for unbalanced data.

Given that the data is imbalanced, we upsampled the minority
classes so the data was balanced using the SMOTE algorithm [28]
and imblearn library [1]. We used the train and development data
sets provided by the competition organizers for developing the
model. The organizers had a held-out test whose labels were not
made available to researchers. We had to submit our predictions
on the held-out test which was evaluated by the organizers, and
the prediction result sent to us. Also, we had a constraint of five
submissions on the held-on test set and hence we used only our
best models for those submissions. The official competition baseline
was based on the performance on the held-out test.

4 RESULTS, DISCUSSION AND FUTURE
WORK

Wepresent the results for the competition baseline, and our acoustic,
linguistic, and multimodal approaches in Table 1 where a "—" means
that the model was not used for the held-out test. The best for
valence and arousal columns for the competition baseline and our
approaches are highlighted in bold. Also, we show the confusion
matrices of the best models in Figure 2 (valence) and 3 (arousal).

The competition organizers’ best methods which produced the
results that were used as the official competition baseline results
were the DEEP SPECTRUM (ResNet50 + SVM) for acoustic (50.4%)



Figure 3: Confusion matrix for development set evaluation
for the best model for arousal: BERT + SVM: 45.7%

and LIFE (BERT + LSTM + SVM) for valence (49.0%) and an average
of valence and arousal of 49.7%.

Among our approaches, the linguistic models performed the best
for both valence and arousal, with the multimodal model being the
second best for valence and the acoustic model being the second
best for arousal. Our best model for valence was SBERT + SVM
with a UAR of 57.8% and the best model for arousal is BERT + SVM
with UAR of 48% and an overall mean UAR of valence and arousal
being 52.9%. Our best models outperformed the official baseline
(using the held-out test set) for valence by 8.8% and the mean of
valence and arousal by 3.2%. Our best arousal model is however
below the official arousal baseline by 2.4%. Our acoustic models
not performing better than the baseline suggests that using the
pretrained YAMNet model as feature extractor is not adequate.
Hence, fine-tuning the model on a related emotion recognition task
first might be necessary for good performance.

The linguistic model performing better than the acoustic model
is consistent with the results of other works such as an emotion
recognition task among real-world couples whose best recognition
result for a 3-class classification of valence was 57.42% (UAR) [4]. A
possible explanation is that we used the manual transcript which is
a perfect representation of the narratives which the linguistic model
used as compared to the acoustic models which worked on raw,
noisy, audio data. The model might have performed poorly with the
automatic transcript but we did not evaluate that as we used only
the best model for evaluation. Also, the SBERT model performed
better than the regular BERT model. This result is consistent with
[21] which showed that SBERT extracts better sentence embeddings
than BERT for sentiment detection tasks.

The multimodal model surprising did not perform the best con-
sidering multimodal approaches have been shown to perform better
than unimodal approaches. This performance is however consistent

with the result of [4]. It is possible that the limitations of the acoustic
features affected the multimodal results since we performed feature-
level fusion. Exploring other forms of fusion like decision-level and
hybrid may improve the results of the multimodal approach.

Our transfer learning approaches performed as well or better
than the competition baseline approaches that used feature engi-
neering (static features and BoAW). These results show that feature
engineering is not necessary to get good emotion classification
results for real-world speech data from older adults. This work
focused on using pretrained models as feature extractors. Hence,
we did not fine-tune the pretrained YAMNet and BERT models on
this data. Doing so in the future could improve the recognition
results.

Finally, this work is a key step towards recognizing the emotions
of elderly individuals in daily life. We have collected speech and
video data with self-reported emotion labels fromGerman-speaking
elderly individuals in their daily life after they underwent inpatient
cardiovascular rehabilitation. Our future work will build upon this
work and explore emotion recognition within that unique context.

5 CONCLUSIONS
In this work, we used a transfer learning approach to classify low,
medium, and high emotion labels of the valence and arousal di-
mension of audio data collected from German-speaking elderly
individuals. We used pretrained CNN and BERT models to extract
acoustic and linguistic features respectively and fed them into sep-
arate machine learning models. Additionally, we fused the features
in a multimodal approach and fed them to machine learning models.
Our models performed better than the official competition baseline
for the valence recognition task by 8.8%. Also, our results show that
feature engineering is not necessary and transfer learning can be
leveraged to produce decent performance for the task of recogniz-
ing the emotions of elderly individuals. This work is a step towards
better recognition of the emotions of the elderly which could even-
tually inform the development of interventions to manage their
mental health.
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