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Abstract
Rigorous blood glucose management is vital for individuals

with diabetes to prevent states of too low blood glucose (hy-

poglycemia). While there are continuous glucose monitors

available, they are expensive and not available for many

patients. Related work suggests a correlation between

the blood glucose level and physiological measures, such

as heart rate variability. We therefore propose a machine

learning model to detect hypoglycemia on basis of data

from smartwatch sensors gathered in a proof-of-concept

study. In further work, we want to integrate our model in

wearables and warn individuals with diabetes of possible

hypoglycemia. However, presenting just the detection out-

put alone might be confusing to a patient especially if it is a

false positive result. We thus use SHAP (SHapley Additive

exPlanations) values for feature attribution and a method for

subsequently explaining the model decision in a compre-

hensible way on smartwatches.

Author Keywords
diabetes; hypoglycemia detection; wearables; machine

learning; explainable artificial intelligence; SHAP values.

CCS Concepts
•Applied computing → Consumer health; •Human-

centered computing → Ubiquitous and mobile computing;
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Introduction
Diabetes mellitus is a common metabolic disorder, which is

characterized by elevated blood glucose (BG) levels (hyper-

glycemia). It affects approximately 460 million people world-

wide and a near doubling of these cases is expected within

the next 10 to 25 years. Roughly 10% (USD 760 billion) of

global health expenditure is spent on diabetes worldwide

every year [3].

Type 1 diabetes mellitus (T1DM) is a chronic autoimmune

disease and accounts for approximately 10% of all diabetes

mellitus cases. T1DM is characterized by an absolute in-

sulin deficiency and, therefore, requires insulin replacement

to keep BG in a normal range. Consensus Guidelines spec-

ify a target BG range of 3.9–10mmol/L (70–180 mg/dL) [1].

Depending on the medical situation and the patient pref-

erence, insulin therapy is either carried out with an insulin

pump or with multiple daily injections. However, exogenous

insulin therapy does not exactly replicate the normal phys-

iological insulin secretion and, therefore, bears the risk of

insulin over- and underdosing leading to states of dysg-

lycemia (too low or too high BG).

Figure 1: A person with an

invasive, continuous glucose

monitor sensor in their upper arm

and its corresponding reader.

Despite ongoing developments in the treatment of diabetes

mellitus, low BG (hypoglycemia) remains one of the most

relevant, acute, and disabling complications in those pa-

tients. While severe hypoglycemia may lead to heart ar-

rhythmia, seizures, coma, or even death [17], its mild form

impairs a variety of physical and psychical functions [5].

Since dysglycemia is associated with severe short- and

long-term complications, a rigorous BG self-measurement

is inevitable for individuals with T1DM. Conventionally, BG

is measured with a fingerstick test, which requires piercing

the skin to retrieve a sample of capillary blood. Besides,

glucose can also be monitored using a continuous glucose

monitor, which estimates the actual BG via a small sensor

in the subcutaneous tissue under the skin. Such an exem-

plary device is depicted in Figure 1. However, these moni-

toring devices can impose a medical and financial burden,

ranging from the inability of proper handling to the lack of

reimbursement as well as individual factors (e.g., allergic

reaction to the adhesive of the device).

Heart Rate Variability and Diabetes

Heart rate variability (HRV) reflects the adaptions of the

human heart to abrupt physiological changes. It gives in-

sight into involuntary and subconscious functions as it

measures the interactions between the sympathetic and

parasympathetic divisions of the autonomic nervous sys-

tem. HRV shows individual responses to physical exercise,

psychophysiological stress, and heart diseases [16].

For diabetes, changes in HRV measures have been asso-

ciated with hypoglycemic episodes [14]. Also, short-time

measurements (i.e., 5 minutes) of HRV have been shown

to correlate with hypoglycemia [14]. To reach a wider audi-

ence in everyday life, we aim to use broadly available con-

sumer wearable devices such as smartwatches instead

of professional electrocardiographies (ECGs) to measure

HRV. The study in [11] shows that data from smartwatches

was highly accurate when compared to professional ECGs

in long-term measurements.

Wearable Health Computing

Wearables are often equipped with multiple sensors to col-

lect physiological data. For example, there are wrist-based

consumer smartwatches which provide data such as inter-

beat intervals recorded by an optical sensor (see Figure 2),

three-axis accelerometer data, step count, burned calories,

or proprietary stress values [6].

Additionally, such wearables are – compared to professional

medical equipment – more easily accessible to a broad au-
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dience and also suitable for ubiquitous use. Using such

common and low-priced alternatives to medical equipment

could mean an improvement of existing diabetes therapies

and self-management applications [12].

Objective

This work demonstrates our research-in-progress on the

potential of applying methods of machine learning to detect

hypoglycemic states among individuals with T1DM based

on smartwatch sensor data. Furthermore, we aim to use

approaches of explainable artificial intelligence (AI) to make

the classification output comprehensible to individuals with

diabetes in everyday life. For this purpose, we propose a

smartwatch-based hypoglycemia warning interface which

explains the underlying model decision-making in a com-

prehensible way to individuals with diabetes.

Methods

Figure 2: Back view of a consumer

smartwatch with its optical pulse

sensor active (green LEDs).

Heart Rate Variability

HRV features are calculated from an inter-beat interval

sequence, which is a series of time distances between

normal-to-normal heartbeat intervals. HRV can be mea-

sured in both the time and frequency domain [16]. In the

time domain, measures such as root mean square of the

successive differences (RMSSD), standard deviation of

normal-to-normal interval (SDNN), number of successive

normal-to-normal interval differences exceeding 50ms

(NN50), percentage of successive normal-to-normal inter-

val differences exceeding 50ms (pNN50), median normal-

to-normal interval (medianNNI), coefficient of variation of

normal-to-normal intervals (CVNNI), and coefficient of vari-

ation of successive differences (CVSD) are prevailing. In

the frequency domain measures of high frequency (HF),

low frequency (LF), very-low frequency (VLF), ultra-low fre-

quency (ULF), and the ratio of LF to HF (LF/HF-ratio) are

commonly used (see [15] for an overview).

According to the Task Force of the European Society of

Cardiology [16], short-term recordings of 2 to 5 minutes

should be assessed with SDNN and RMSSD in the time

domain and HF, LF, and VLF in the frequency domain.

RMSSD has also been found to be reliable when calcu-

lated with a sample of 60 seconds, which was not always

the case for SDNN or frequency-based measures [9]. Ultra-

short-term measures of HRV such as RMSSD would thus

allow monitoring streams of physiological changes with rel-

atively high resolution and short-term adaption capability.

Classification and Feature Attribution

yExplainability is one of the major urges of machine learn-

ing applications in healthcare. Thus, we particularly focused

our research on models and algorithms, of which the out-

puts are comprehensible and we refrained from using com-

plex deep neural network architectures. We applied differ-

ent kinds of machine learning models ranging from logistic

regression to decision trees for binary classification. Finally,

we focused on building a model based on a gradient boost-

ing decision tree (GBDT) [4]. An undoubted advantage of

comparatively simple models such as decision trees is, be-

sides their easier comprehensibility, that they can also be

employed in resource-constrained computing environment

such as smartwatches.

With increasing model complexity, the correct interpretation

of the model output gets inherently difficult. However, we

want to address the question of why a model makes cer-

tain classifications and which features these decisions are

based upon. Therefore we leverage SHAP (SHapley Addi-

tive exPlanations) values, which have already successfully

been applied in a medical research context [7]. SHAP val-

ues assign a feature attribution value to each observation

and class. They thus explain the impact of each feature on

the model output. These values are relevant for deriving
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physiological conditions from the model output.

Domain Feature

time RMSSD

SDNN

NN50

pNN50

medianNNI

CVNNI

CVSD

frequency VLF

LF

HF

LF/HF-ratio

Table 1: Generated HRV features.

Metric Mean SD

AUC 0.938 0.068

accuracy 82.7% 13.9%

sensitivity 76.7% 25.4%

specificity 84.2% 19.7%

SD = standard deviation

Table 2: Results of the 10-fold

cross validation of a simple GBDT

classifier for hypoglycemia.

Data collection

We conducted a proof-of-concept study with one otherwise

healthy individual with T1DM. Data was collected in a nat-

uralistic setting over a period of one week. Physiological

data by means of inter-beat intervals was recorded with an

Empatica E4 smartwatch. Glucose data was obtained via a

continuous glucose monitor, the FreeStyle Libre, which pro-

vides a measurement roughly every 15 minutes. The sub-

ject continued with their BG management as usual during

the study period. Thus, the recorded hypoglycemic phases

represent those, which were not recognized or not proac-

tively prevented by the subject.

During pre-processing, we derived the HRV features listed

in Table 1 from the inter-beat interval sequence. Further,

statistical heart rate features (minimum, maximum, mean,

standard deviation) were calculated. For feature calcula-

tion, we used a sliding window approach with a window size

of 180 seconds and a step size of 1 second. BG measure-

ments were re-sampled by piece-wise linear interpolation to

match the frequency of physiological data. The data clean-

ing and pre-processing resulted in a total of 74,552 obser-

vations of which 15,168 (20.4%) belong to the positive class

(hypoglycemia).

Results

Hypoglycemia Detection Model

The best performing model was based on a GBDT. The

model input are the heart rate and HRV features and the

classification task is defined as a binary decision between

normal BG levels (negative) and hypoglycemia (positive).

For our analysis, we define hypoglycemia as observations

with a BG level of <3.9mmol/L according to [1].

We ran a stratified 10-fold cross-validation on the dataset.

The trained GBDT model was able to classify the obser-

vations in the test set with a mean accuracy of 82.7% and

a mean area under curve (AUC) of 0.938. See Table 2 for

further result metrics.

Feature Attribution

The SHAP explainer was run on the model from one of the

cross validation folds. Figure 3 shows an exemplary SHAP

dependency plot for the features RMSSD (along x-axis)

and LF/HF-ratio (dot coloring), which are known to have a

relationship with hypoglycemia [10]. A higher SHAP value

(y-axis) in the graph corresponds to a higher probability of

classification as hypoglycemia. The figure thus shows an

inverse relationship between RMSSD and the probability of

classifying hypoglycemia. The plot further shows the inter-

action with the frequency-domain based LF/HF-ratio feature

and reveals that an increased feature value corresponds to

an increased probability of classification as hypoglycemia.

Figure 3: SHAP dependency plot visualizing the impact of

RMSSD and min HR feature values on the hypoglycemia

probability output.
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Discussion
Our limited proof of-concept study already showed promis-

ing results that it is feasible to detect hypoglycemic condi-

tions based on smartwatch-based sensor data. Further-

more, we are convinced that we can enhance the detection

on the basis of additional data and well-known cause-effect

relationships.

H2: Situation

motion data

H1: Physiology

heart rate variability

H4: Tendency

glucose calibration

H3: Time of day

time

Hypoglycemia 

probability

Wearable sensor data

Historic patterns

Figure 4: Four hypothesized

cause-effect-relationships for

hypoglycemic BG levels in T1DM

and the data which is used to

assess them.

Potential Cause-Effect Relationships in Hypoglycemia Detec-

tion

Our ongoing research activities are based on a comprehen-

sive framework for hypoglycemia detection which is summa-

rized in Figure 4. The presented work leads us to the con-

clusion, that physiological data can indeed be used to infer

hypoglycemic phases (H1). The SHAP dependency plot

in Figure 3 shows that lower RMSSD values correspond

to a higher probability of the model classifying an obser-

vation as hypoglycemia. This observation is in line with a

prior study, stating that the RMSSD decreases during hypo-

glycemic phases [10]. Interestingly, the GBDT model was

able to find and learn the relationship between RMSSD and

hypoglycemia autonomously.

Furthermore, we will investigate three additional, poten-

tial cause-effect relationships for hypoglycemia detection

in individuals with T1DM (H2, H3, H4). The underlying fun-

damental principles of all four cause-effect relationships

(H1–H4) have been investigated individually by related

work. These subsequently briefly discussed relationships

are assessable with the capabilities of today’s consumer

smartwatches.

H1: Physiology As discussed earlier, altered HRV values

such as a lower RMSSD can give an indication of hypo-

glycemic states [10]. The HRV features relevant for phys-

iological detection can be computed from the inter-beat

interval sequence recorded by a smartwatch. Furthermore,

stress assessment in the form of a discrete value is already

today a common feature in consumer smartwatches.

H2: Situation The current posture and activity situation of

a person is a further profound hypoglycemia indicator. Ly-

ing positions like resting on a couch watching TV or sleep-

ing over a prolonged period bear the risk of reduced hypo-

glycemia awareness and therefore may increase the risk of

severe and prolonged hypoglycemia [13]. Moreover, being

physically active over an extended period of time, leads to

a higher likeliness of hypoglycemia as well [18]. Therefore

we aim to detect the posture and activity situation based

on accelerometer data of a smartwatch to infer the risk of

hypoglycemia.

H3: Time of day The time of the day gives a general in-

dication of hypoglycemia probability [2]. The BG level of

individuals with T1DM tends to adhere to a personal, daily

BG pattern for any given day. This pattern can be learned

over time and personalize the influence of the time of day

on hypoglycemia warnings.

H4: Tendency There is a general tendency of the BG level

behavior over the day which can be inferred from the fasting

BG level in the morning [8]. We thus propose, analogous

to some continuous glucose monitors which need to be

calibrated regularly, to provide the detection system with

the actual BG level in the morning. The relevant data for

determining the tendency is a calibration of the algorithm

given by a measurement of fasting glucose in the morning.

This potential relationship seems particularly promising for

hypoglycemia detection together with the time of day.

Explaining Model Outputs to Individuals with Diabetes

Once the model is implemented on a smartwatch and yields

a positive classification result (hypoglycemia), we want to

warn the user. However, the model will not be completely
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accurate in its detection. It would aim for a trade-off with

high sensitivity (recall) and prefer to warn the user too of-

ten instead of too seldom. Consequently, the model output

might sometimes be confusing to the user, especially if it

is a false positive result. We thus aim to explain the model

output to the user and let them know, how the model came

to its conclusion in case of a warning.

Furthermore, too frequent warnings may as well have the

negative impact of the user ignoring them. Thus, we will

distinguish between detected states of hypoglycemia and

severe hypoglycemia (BG level of <3.0mmol/L [1]). Since

severe hypoglycemia is accompanied by more perceptible

symptoms, we expect future models to recognize those crit-

ical phases even better. While for mild hypoglycemia the

warning should be adjustable to the user preference, the

warning for severe hypoglycemia should be presented in a

more assertive way.

Figure 5: A mock-up of the

smartwatch user interface for the

decision explanation.

We aim to employ SHAP values for real-time feature attri-

bution of the model output. In the case of a positive clas-

sification (hypoglycemia), we will transfer these feature at-

tributions to estimate the influence of each of our four hy-

pothesized cause-effect-relationships on the hypoglycemic

state. Along with a hypoglycemia warning, the estimated

influences will then be visualized to the user in a compre-

hensible way on the smartwatch display.

Figure 5 shows a mock-up for a smartwatch user interface

explaining the cause-effect relationships to an individual

with diabetes. In this particular case, the model warns of

a low BG level based on multiple factors, which could for

example be based on the person lying on a couch watch-

ing TV. First, indicated by the almost closed violet ring, the

physiological state of the person is an important contribu-

tion to detecting hypoglycemia (H1). This could indicate al-

tered HRV values such as a lowered RMSSD. Furthermore,

indicated by the greenish ring, the situation and activity con-

text are an important factor for the model decision (H2).

As mentioned above, during rest periods hypoglycemia is

unlikely to be detected by individuals with diabetes due to

limited perception capabilities. Thus, the features for H1

and H2 are the major reason for the hypoglycemia warning

in this case.

We believe, that such explanations to individuals with dia-

betes have an educational effect and help them to better

understand and cope with their disease.

Conclusion

This work shows the results of our ongoing research in hy-

poglycemia detection from physiological data. We show the

feasibility of building a machine learning model for detect-

ing hypoglycemia. Additionally, we give an outlook on how

we plan to explain model classifications of hypoglycemia to

individuals with diabetes with easy understandable visual-

izations on a smartwatch.

In further work, we will integrate additional sensors as input

features to the model. This includes movement information

from the accelerometer as well as a sensor for electroder-

mal activity, which is today already available in professional

smartwatches such as the Empatica E4. In further work, we

plan to implement and evaluate our concept for the hypo-

glycemia warning system on a smartwatch in a longitudinal

field-study among multiple individuals with continuous glu-

cose monitors for reference.

While wearables might not yield perfect accuracy in detect-

ing hypoglycemia, we believe that our visually explained

hypoglycemia warning can contribute to the everyday life of

individuals with diabetes.
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