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ABSTRACT 

Identification of packaged products in retail environments still 

relies on barcodes, requiring active user input and limited to one 

product at a time. Computer vision (CV) has already enabled many 

applications, but has so far been under-discussed in the retail 

domain, albeit allowing for faster, hands-free, more natural human-

object interaction (e.g. via mixed reality headsets). To assess the 

potential of current convolutional neural network (CNN) 

architectures to reliably identify packaged products within a retail 

environment, we created and open-source a dataset of 300 images 

of vending machines with 15k labeled instances of 90 products. We 

assessed observed accuracies from transfer learning for image-

based product classification (IC) and multi-product object detection 

(OD) on multiple CNN architectures, and the number of images 

instances required per product to achieve meaningful predictions. 

Results show that as little as six images are enough for 90% IC 

accuracy, but around 30 images are needed for 95% IC accuracy. 

For simultaneous OD, 42 instances per product are necessary and 

far more than 100 instances to produce robust results. Thus, this 

study demonstrates that even in realistic, fast-paced retail 

environments, image-based product identification provides an 

alternative to barcodes, especially for use-cases that do not require 

perfect 100% accuracy. 
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1 Motivation 

Although the computer vision field has advanced significantly over 

the recent years, object detection and image classification of 

packaged products in retail environments still remains at its 

infancies, thereby limiting the development of novel, more natural 

human-product interactions. Ever since the introduction of AlexNet 

[21], the consequential development of (deep) convolutional neural 

networks (CNN) [13, 48] and the increased affordability and 

availability of ever more performant hardware has advanced object 

detection and image classification across many domains, leading to 

novel, advanced applications. For example, the detection of road 

signs and traffic situations through computer vision has enabled the 

development of autonomous cars and the real-time translation of 

image-encoded words has eased the life of travelers [27, 34]. 

Further application areas of computer vision include guidance of 

robots, interpretation of satellite images, analysis of medical 

images (e.g. from x-ray scans), photomicrographs in microscopy, 

and industrial inspection [6]. Surprisingly, published research on 

image classification and object identification of packaged food 

products still remains at an early stage, despite the almost daily 

frequency with which consumers interact with packaged products. 

This is counterintuitive, as first retailers have recently started to 

introduce related technologies, such as computer vision supported 

self-checkout [1, 45, 46], albeit on small scales featuring only small 

and compact store layouts,  requiring strictly fixed shelf maps 

(planograms), supporting only a limited product portfolio, and 

relying on fixed, stationary cameras.  

 

One barrier towards public research on computer vision on 

packaged products has been the lack of publicly available labelled 

datasets, as producers have been hesitant to release images of their 

own products into the public. Therefore, research on identification 

of packaged products relies on relatively few, rather small and quite 

old datasets [9, 17]. Existing studies on identifying packaged 

products via computer vision indicate promising potential [8, 17, 

43, 44], but they rely on such limited datasets and are conducted 

under resource-intense lab conditions, and do therefore not prove 

real-world applicability of computer vision based product 

identification. Although standards on product identifiers (e.g. 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full 

citation on the first page. Copyrights for components of this work owned by others 

than the author(s) must be honored. Abstracting with credit is permitted. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, requires prior 

specific permission and/or a fee. Request permissions from Permissions@acm.org. 

October   22–25, 2019, Bilbao, Spain 

© 2019 Copyright is held by the owner/author(s). Publication rights licensed to  

ACM ISBN 978-1-4503-7207-7/19/10…$15.00 

https://doi.org/10.1145/3365871.3365899 

https://doi.org/10.1145/3365871.3365899


IoT’19, October 22-25, 2019, Bilbao, Spain Fuchs, K. et al. 

 

 

 

GTIN [10]) allowed the aggregation of public ingredient databases 

on packaged products (e.g. Openfoodfacts.com with over 800 000 

product entries [31]),  there does not yet exist a similarly large 

aggregation of labelled product images. Therefore, in contrast to 

other datasets in related fields (e.g. FoodNet101 with 101 000 

labelled images of composed dishes [32]), no large-scale dataset of 

labelled images of packaged products for training of computer 

vision models has been published yet. In addition, the sheer 

magnitude of different product classes compounds this issue, as 

supermarkets offer thousands of products that may even be 

changing in their package appearance over time.  

 

After overcoming the existing barriers and given the expected 

adoption of mixed reality headsets over the next years, the 

simultaneous location and mapping (SLAM) of packaged products 

[2] via wearable headsets will allow for novel human-product 

interactions, for example by identifying contexts from shelves or 

areas in the supermarket. Today, consumers and retail employees 

rely on barcode scanning with handheld devices (e.g. smartphones) 

to identify packaged products, e.g. for checking nutrients or a price. 

The existing optical scan is limited since it is only capable of 

identifying one item at a time, requires close proximity, and the 

line-up of scanner and the product barcode, which is usually on the 

backside. Thus, the user must actively trigger the process, requiring 

effort and high saliency on the user side. Similarly for recently 

suggested consumer-oriented augmented reality applications via 

markers tagged on the shelf, users must actively align their device 

with the shelf’s marker to allow for the correct identification [3]. 

Given the fast-paced retail environment in which consumers pass 

thousands of products within few minutes, neither shelf-based 

markers, nor barcodes allow for convenient, hand-free, passively 

triggered human-product interaction. Therefore, a new product 

identifier based on the visual layout of each packaged product in 

order to support automatic identification (e.g. via the cameras of 

wearable mixed-reality headsets) of packaged products is needed. 

CNN-based feature extractors are a strong candidate as they are 

able to transform matrix data of a product image into a one-

dimensional vector. Recent progressions in deep learning and 

representation learning have created many such feature extractors 

[23], which are generic and multi-purpose  which can be applied to 

a range of objects [18]. Given that a robust CNN-based product 

detection can be achieved, this would then allow for novel 

handsfree human-product interaction. First, detecting products 

from wearable cameras does not require any additional store-

installed hardware (e.g. fixed cameras) or up-to-date planogram 

interfaces, as the identification solely relies on the video feed (e.g. 

from the wearable headset of consumers or employees). Second, 

the identification of multiple products within single frames of the 

video feed at the same time becomes possible. Third, given a 

sufficient object detection accuracy (i.e. high mean average 

precision (mAP)), the retrieval of product dimensions becomes 

feasible. Finally, also the relative positioning of user and products 

can be approximated via spatial computing [19]. With these 

advantages, the display of product-related information or services 

can be achieved. For example, supporting consumers in finding the 

healthiest product within a shelf while remaining hands-free by 

simply viewing through a mixed-reality headset, as suggested by El 

Sayed [7] and Microsoft [16]. Also, inventory analysis could 

become more effective and efficient via automated robots or 

employees wearing head-sets that allow for detection of misplaced 

items, false labels or any other deviation from the current 

planogram. Also, store planning, employee training and even theft 

prevention could be enhanced or supported by computer vision-

based identification of packaged products.  

  

 
Figure 1: Vending machine and potential use-case of wearable 

mixed reality headsets. 

 

Therefore, this paper aims to contribute towards the 

development of image classification and object detection on 

packaged product data under realistic ‘in-the-wild’ conditions. 

2 Related Work 

Convolutional neural networks (CNNs) have been applied in many 

different applications, but still require context-specific adaptation 

in order to enable image classification and object detection. 

Compared to traditional classification methods, CNNs do not rely 

on pre-defined mappings (e.g. planograms), markers (e.g. barcodes, 

QR codes) or heuristically hand-designed algorithms for detection 

of objects in images but on learning how to classify from data. 

Thus, making them a natural choice for implementation of a 

computer vision-based detection of packaged products in a retail 

environment [2]. The choice of a certain CNN architecture and its 

hyper-parameters are context-, task- and design-dependent and 

cannot necessarily directly be transferred to each new context or 

dataset without adaptation and consequential testing on actual, 

realistic context-specific data. There are no guidelines in terms of 

how to choose an optimal training dataset of images for an CNN, 

however the more data and the more variance present in a dataset, 

the higher the likelihood of successfully classifying an unknown 

instance of a known object. Therefore, labelled training data 

collected under realistic conditions such as the ones collected and 

assessed for this study becomes a valuable tool for development of 

computer vision-based solutions.  
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After collection of sufficient training data, a CNN is then 

validated and tested on previously unseen data in order to assess the 

network’s accuracy and ultimately ability to support a certain task, 

e.g. image classification (i.e. which product displayed on an image 

patch) and object detection (i.e. which products are located where 

on the image and what are their dimensions). With enough training 

data and a suitable architecture choice, CNNs can be taught to 

extract features on multiple levels, and in some applications such 

as face recognition even achieves above human performance [33]. 

In terms of image classification, recent accuracy rates range above 

84% [42] on the Imagenet dataset [36]. For object detection tasks, 

recent results show accuracy (i.e. mean average precision as 

defined by the COCO challenge [25]) ranks around 60% [30] on 

the Open Images dataset [22]. Object detection extends image 

classification by the added probabilistic step of locating the 

position of the object, which increases the complexity of achieving 

high accuracy compared to classifying a perfectly masked image.    

 

Today, there exists a wide range of established CNN 

architecture with varying levels of complexity, able to combine 

image classification and object detection. MobileNet [12, 38] is a 

CNN aimed to support implementations on mobile devices with 

limited computational capabilities. Next, ResNet [4, 11] (presented 

at ILSVRC2015) by Kaiming He et al. features heavy batch 

normalization and 152 layers, making it computationally more 

intense than MobileNet. Finally, Inception v4 [40] was 

demonstrated to outperform ResNet at ILSVRC2017, albeit 

featuring again higher complexity. Each CNN architecture type 

differs in the required computational effort involved in predicting 

objects within the video frame and classifying them accordingly. 

Given the motivation for computer vision and the challenges 

around implementing them within a realistic, fast-paced retail 

environment, we therefore assess the potential of proven CNNs (i.e. 

MobileNet, ResNet, Inception v4) to enable image classification 

and object detection within a realistic retail environment, using 

cloud-based computing infrastructure as well as consumer devices. 

3  Setup Design 

The goal of this study is to contribute to the research of image-

based product identification in retail environments. 

 

 
Figure 2: Vending machine picture with a labelled, rectangular 

image patch (e.g. Maltesers snack 100g). (Product classes: 90 in 

total, of which N=39 with over 100 labelled image patches). 

3.1    Vending Machine  

For the purpose of this study, we chose vending machine from 

Selecta (Figure 1), the European market leader (125’000 machines 

worldwide), as the study location and source of data. The main 

reasoning behind this decision was to focus on a retail setup that 

had a limited number of products for which the research team had 

to manually image patches accordingly. The majority of Selecta 

machines have an equally assorted product collection with typical 

snacks (e.g. chocolate bars, crisps) and beverages (e.g. Coca Cola, 

Red Bull). Further, we aimed to focus on vertically displayed 

packaged products (which is the wider established norm in retail 

environments). In addition, as vending machines are present in 

many regions globally, this study could potentially be reconstructed 

in other regions again. Last, but not least, the conduction of a 

mixed-reality headset mediated user study, which is not part of this 

paper was conducted, leveraging the object detection and image 

classification developed in this study (Figure 7).  

 

The selection of the vending machine as focus allows for a 

certain level of generalizability, since the study could potentially 

be reproduced and applied in similar form across vending machines 

internationally. Nevertheless, the generalizability towards other 

retail layout with non-vertical product representation and thousands 

of products remains a limitation, requiring further work that goes 

beyond of the focus of this study. 

 

3.2    Research Questions 

In order to assess the potential of CNNs to enable image 

classification and object detection of packaged products in the 

vending machine, we assess the accuracy and requirements for 

image classification and object detection separately in this study. 

Still, since classification and detection are tasks that build upon 

each other we decided to create one large object detection dataset 

and evaluate both, classification and detection tasks, via labelling 

image patches from the same sample (Figure 2). 

 

Image classification operations are the backbone of object 

detection operations as they classify an object that was found to be 

potentially interesting within an image in a first step. Especially due 

to the absence of publicly available labelled training data for 

packaged products, and since labelled product images are 

potentially expensive to acquire or generate for the millions of 

products that exist in the world, we decided to evaluate how many 

labelled image instances of a product are required to achieve 

suitable performance. Thus, to succeed in object detection the first 

corner stone is a successful image classification performance thus 

we pose the following two research questions (RQ).  

 

RQ1. Can current CNNs yield a sufficiently high accuracy for 

image-based product classification in a realistic retail environment? 

 

RQ2. How many instances of product images are required to 

achieve 90% (95%) accuracy in image-based product classification 

in a realistic retail environment? 
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Based upon the results of the image classification tasks we are 

going to address the same objective for object detection (which 

includes image classification as a subsequent task). 

 

RQ3. Can current CNNs in combination with object detection 

networks (ODNs) yield a sufficiently high enough mean average 

precision for image-based product detection? 

 

RQ4. How many instances of product images are required to 

achieve 90% (95%) mean average precision (mAP) in image-based 

product detection in a fast-paced realistic retail environment? 

 

In the context of this study, ‘fast-paced’ as part of the research 

questions aims to take into account realistic conditions in a retail 

environment. Namely, that consumers or employees expect instant 

results (i.e. within 1 second), as they are potentially passing 

thousands of products on their journey through a retail store. The 

duration of one second proved well-suited in multiple user tests, 

when equipping a user with a HoloLens device in front of the 

vending machine type used in this study (Figure 1 and Figure 7). 

With different CNN architectures featuring varying complexity 

levels and accuracy rates, the trade-off between latency, accuracy, 

number of available training images, computational environment 

(i.e. mobile device or cloud backend) are the focus of this study. 

This allows us to use an alternative option to reduce k (the number 

of images used for training) for the object detection task by turning 

the object detection task into a video object detection task with 

motion and spatial information where we try to detect the object in 

i.e. one second by allowing the neural net to detect a product on as 

many images as it can process in this time. We can use spatial 

information from algorithms such as SLAM [2, 29, 37], video 

object tracking [20, 24] or optical flow to track [15, 28] the position 

over multiple frames. The prediction scores from those multiple 

frames are then average-pooled to choose the maximum-

confidence prediction across all frames (within one second). In this 

case, the latency of the neural net architecture becomes another 

parameter to influence the mAP. 

3.3 Convolutional Neural Networks (CNNs) 

There are many CNN architectures available for image 

classification and object detection. With Inception Resnet V2 [41], 

Resnet 50 V2 [11] and Mobilnet V2 [39] as classification networks, 

we use a subset of popular architectures of differing complexity. 

The corresponding, implemented object detection networks 

(ODNs) are listed below:  

1. Inception. Inception Resnet V2 [41] for classification, with  
Faster RCNN [35] for object detection 

2. Resnet. Resnet 50 V2 [11] for classification, with SSD and 

Focal Pyramid Networks (Retinanet) [26] for object detection. 
3. Mobilenet. Mobilnet V2 [39] for classification, with SSD [47] 

for object detection. 

We train all neural networks with finetuning from existing 

checkpoints, for image classification those checkpoints are from 

Tensorflow hub and are pretrained with the ImageNet 2012 dataset 

[36] and for object detection those checkpoints are from the 

Tensorflow object detection API [14] which are pretrained with the 

COCO 2014 dataset [25]. 

3.4  Image Datasets 

To ensure consistency across multiple k ∈ [0,100] images, we 

chose a subset of N=39 products from the vending machine, for 

which the total labelled dataset includes at least 100 (training) + 20 

(test) instances per product class. Thus, we can evaluate the CNN 

architectures for any k smaller or equal to 100 for the N=39 

products. For product classification we excluded the 20 instances 

per class as a holdout dataset. Similar for product detection, the 

holdout dataset including randomly sampled 20% of the images 

that guarantee there are at least 100 instances of each product in the 

training set. This means the test set for object detection was 

unbalanced in number of classes but as well included at least 20 

instances of every product. 

 

Figure 3: Generation of training data with k images per 

product class for the training of the neural networks. 

 

For each k smaller than 100, subsamples of the entire training 

dataset were chosen. For the image classification, the images were 

simply excluded from the dataset (Figure 3). For the object 

detection task, the differing frequency of certain product instances 

that were present multiple times in vending machine, makes this 

impossible (e.g. RedBull is present four times in every Selecta 

vending machine). We randomly chose instances in the training set 

to be blacked out until every labelled product exists exactly k times 

across all training images (Figure 3). Training images without 

labelled instances (i.e fully blacked out) were excluded. For every 

k, the training dataset looks slightly different, since there are 

different images blacked out, the holdout set is however the same 
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for all datasets. During training, we further randomly subsampled 

from the training set by cutting out random image patches of the 

training images, to create training data with varying box sizes and 

positions of the products on the image. 

3.5 Technical Devices 

The devices used to record images and test the latency are a 

Microsoft Hololens and a OnePlus 6t Android smartphone. For 

training and inference the Google Cloud with P100 GPU instances 

and TPU v2 instances was used. 

4 Results 

To address the research questions RQ1 to RQ4, we compare the 

performance of the three CNNs that were introduced in the previous 

chapterm, i.e. Inception Resnet V2 (‘Inception’), Resnet 50 V2 

(‘Resnet’), Mobilenet V2 (‘Mobilenet’), on the image classification 

and object detection tasks using the generated image datasets from 

the vending machine setup. 

4.1 Image Classification 

First, we address the image classification problem. Concretely, we 

test the potential of the three CNNs to correctly classify labelled 

image patches, i.e. identify which one of the in total N=39 products 

from the vending machine sample is displayed in an image snippet. 

 

RQ1. Can current CNNs yield a sufficiently high accuracy for 

image-based product classification in a realistic retail environment? 

 

To address RQ1, we used classes with a sufficiently large k of 

labelled image patches and selected 100 (training) + 20 (test) 

instances per each of the N=39 applicable product classes as the 

training dataset. As depicted in Figure 4, when using the entire 

training dataset, we observe relatively high accuracy across the 

three CNNs: Resnet achieved a 95% accuracy, Mobilenet reached 

a 97.1% accuracy and Inception even demonstrated an accuracy 

rate of 97.7%. Given that CNN-based accuracy rates in image 

classification problems in recent studies range above 84% [42], we 

can confirm RQ1 as it seems very well possible to reach accuracies 

above 95% percent with all network architectures as Figure 4 

shows. 

 

RQ2. How many instances of product images are required to 

achieve 90% (95%) accuracy in image-based product classification 

in a realistic retail environment? 

 

As publicly available labelled datasets for packaged products 

are lacking, we addressed the research question on how many 

images are needed at least to achieve a sufficient accuracy in order 

to support reliable image classification. Especially since most 

retailers or brands to not share labelled images from realistic retail 

environment, the development of computer vision-based 

identification on packaged products is hindered. To address RQ2, 

we varied the number of k image patches that were used for training 

of the CNNs.  

As depicted in Figure 4, we can report that as little as only six 

instances of a product are enough to create a classifier with the 

Inception CNN that is able to classify products with an accuracy of 

90% and 26 instances for an accuracy of 95%. The Inception 

architecture with its relatively high complexity is the CNN with the 

lowest k necessary to achieve high accuracy rates. But the other 

architectures follow swiftly with Resnet requiring 10 images for 

90% accuracy and 35 for 95%, as well as Mobilenet needing 20 

instances for 90% and 51 images for 95% accuracy. To answer 

RQ2, we conclude that at least six images can be sufficient for less 

critical applications, where false positives or false negatives are not 

harmful, and where 90% accuracy is sufficient. For more robust 

image classification, at least 26 images or more seem necessary. 

While for lower k there are large differences between the different 

networks, for higher k the architectures converge and achieve 

similar accuracy rates.  

 

 
Figure 4: Product classification accuracy per number of 

training instances per product. 

4.2 Object Detection 

Next, we assessed the potential of object detection networks (ODN) 

to support the product detection within images of the retail 

environment. Again, the study context is the vending machine to 

represent a realistic retail environment. The object detection task 

includes the identification of image patches that contain products 

and the subsequent correct classification of the detected image 

patches (Figure 2). This means, in order to achieve a high accuracy, 

the ODN have to achieve both, i) detecting the position of objects 

in the vending machine assortment and ii) correctly classify the 

detected objects against the labelled ground truth. Finally, the 

achieved performance is assessed by calculating the mean average 

precision (mAP) [25] for an intersect over union (IoU) [25] of 0.5, 

as recommended by similar studies in other fields.  

 

RQ3. Can current ODNs yield a sufficiently high enough mean 

average precision for image-based product detection? 

 

To address RQ3, we used a sufficiently large dataset and 

therefore decided to leverage the entire 100 labelled training 

images of the vending machine assortment with its subsequent 

labelled image patches for the N=39 product classes. As depicted 

in Figure 5, only the Resnet/Retinanet architecture can achieve a 

mAP of over 0.9 when using the 100 images and patches of the 



IoT’19, October 22-25, 2019, Bilbao, Spain Fuchs, K. et al. 

 

 

 

vending machine assortment (93.4%). The Resnet/Retinanet can 

even reach an accuracy of 98.6%, when used with all available data 

(i.e. classes have varing numbers of training images, from 100 to 

1000 images, with a mean around 250. Due to the uneven 

distribution, the 98.6% are not depicted in Figure 5). Inception was 

able to break 90% when the entire data set was used with 94.5% 

mAP and the Mobilenet architecture was not able to achieve a mAP 

of over 90%. Therefore, we confirm RQ3, that object detection can 

be achieved with the right architecture choice of combination of 

CNN and ODN.  

 

RQ4. How many instances of product images are required to 

achieve 90% (95%) mean average precision (mAP) in image-based 

product detection in a fast-paced realistic retail environment? 

 

As depicted in Figure 5, during the object detection task, only 

the Resnet/Retinanet architecture reached a mean average precision 

(mAP) [25] of 0.9 for an intersect over union (IoU) [25] of 0.5 for 

a k lower than 100, requiring at least 42 images. None of the neural 

networks can achieve an mAP of over 0.95 with less than 100 

instances and only Resnet/Retinanet with the full training dataset. 

Therefore, for RQ4 we can say the k and thus the effort for object 

detection are far larger and we cannot even calculate a definite 

number for 95% mAP. The architecture seems to play a much larger 

role as the focal pyramid network architecture of the Retinanet was 

far superior when used to detect objects. However an explanation 

might be just the perfect amount of regularization through 

downsized images of 320 x 320 pixels.  

 

 
Figure 5: Product detection mean average precision (mAP) per 

number of training instances (bounding box) per product. 

 

In realistic circumstances within retail environment, where 

there is most likely a video stream, the error rates can theoretically 

be reduced further by using multiple frames within a second of a 

video to detect the object, using a mean confidence pooling 

approach. For a network with already high accuracy such as 93.8% 

for Retinanet, thus predicting the right object is far more likely than 

predicting the same wrong object multiple times, and a possible 

frame rate of 6 per second as we have evaluated for a detection 

through gRPC on the cloud (in line with [14]), the accuracy could 

reach nearly 100% if we use the following formula to calculate the 

chance of not finding the object with those frames 𝑒𝑟𝑟𝑜𝑟 =

(1 − 𝑚𝐴𝑃)𝑓𝑝𝑠 . In this case not only the accuracy and the 

architecture are important but as well the latency and the hardware, 

as for example Mobilenet can run at 12 fps on a mobile device 

(tested with authors mobile phone). Those considerations will be 

very important for real use-cases in industry. 

 

 
Figure 6: Edge cases that were challenging for product 

classification via computer vision in retail environments. 

 

4.3 Edge Cases 

Besides addressing the research questions, the study also allows for 

discussion of challenges in computer vision-based product 

identification as the edge cases where predictions went wrong can 

be retrieved (Figure 6). In most retail-related use-cases, false 

positives or false negatives might only affect the user experience, 

since a consumer might see a wrong advertisement in mixed reality, 

or an employee might have to scan a barcode if an item was not 

detected correctly via the headset through computer vision. Thus, 

compared to other computer vision applications such as 

autonomous cars or tumor predictions, the cost of misclassification 

is mostly of low severity user experience or low financial impact.  

 

The most common misclassifications resulted from the 

following four edge cases. Products might have similar backsides 

such as Fuze IceTea Lemon (1.1) and Fuze IceTea Peach (1.2) 

which mainly differ in the color of their lids that were hidden by 

the shelf. Some products also feature only subtle color nuances, 

such as Red Bull (2.1) and Red Bull sugarfree (2.1) which both 

feature varying shades of blue. Some producers use similar 

packaging among different products, such Coca Cola (3.1) and 

Coca Cola Zero (3.2) which have very similar fonts, colors and 

designs. Finally, a product can come in different sizes, such as Coca 

Cola 0.5L PET (4.1) and Coca Cola 0.33L can (4.2), thereby 

impairing accuracy of object detection within retail environments. 
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5 Discussion 

In this study, we addressed the potential of image classification and 

object detection to identify packaged products within a typical 

retail environment. Computer vision-based identification of 

packaged products is still a nascent field and is lacking publicly 

available datasets and published research. Still, image classification 

and object detection are promising approaches towards visual 

product identification as they allow for several advantages over 

conventional marker-based or barcode-based identification, such as 

passively triggered detection (instead of active scanning), no need 

for store-installed hardware or planogram interfaces, identification 

of multiple objects simultaneously, retrieval of product dimensions 

and relative user positioning via spatial computing.   

 

Regarding the image classification (IC) as the correct 

identification of a product within an image patch, our study 

demonstrated feasibility and observed accuracy rates of 95%-

97.7% (RQ1) with 100 images per class through transfer learning. 

Further, the assessment of the minimum number of required images 

to support IC (RQ2) concluded that at least six (for 90% accuracy) 

to 26 images (for 95% accuracy) are required for training of 

relevant models. This study therefore confirms the feasibility of IC 

on packaged products, and also demonstrated that the integration of 

IC within a research or real-world implementation is already 

feasible with limited amount of investment and effort as current 

labeling services indicate a pricing of 35$ per 1000 images, leading 

to labeling costs of just 0.91 USD per product to support IC with 

an accuracy of 95%.  

 

Object detection (OD) as extension to IC involves identifying 

the position and the class of one or multiple objects within an 

overall image. For RQ3, we observed that OD is possible, albeit 

heavily depends on the architecture choice, as out of three 

architectures only the Resnet/Retinanet architecture succeeded in 

achieving at reaching an mAP of over 90% (i.e. 93.4%) after having 

been trained on 100 images. Addressing RQ4 revealed, that we can 

confirm that it is feasible to achieve an mAP of 90% with 42 

instances per class, also using the Resnet/Retinanet architecture. An 

mAP of over 95% could only also only be observed with the 

Resnet/Retinanet architecture, but only with far more than 100 

images per product. Theoretically, the accuracy for already 

performant networks can be improved by using video data and 

factoring latency and infrastructure choices. This study therefore 

also confirm feasibility of OD on packaged products, albeit 

demonstrating that the effort for object detection is far higher, as it 

not only requires more data, but labeling this data is as well more 

expansive at 69$ per 1000 results, leading to cost for 2.90 USD per 

product class for an mAP of 90%. 

 

It is very hard to solve computer vision problems for all 

products, viewing angles, shelf situations. Some objects where it is 

even impossible for humans to differentiate the products from the 

backside without reading the detailed print, such as the edge cases 

mentioned in this study. Still, the overall accuracy of around 95% 

should not be a critical problem for future human-product 

interaction use-cases such as advertisement, displaying nutrients or 

recipes or services. However, when 100% accuracy is necessary the 

barcode should still be used. For now, computer vision cannot 

provide such reliability, but their other advantages make them a 

promising and convenient, alternative identification technology. 

6 Conclusion 

Given the nascent state of computer vision on packaged retail 

products, this paper contributes to the development in this field by 

demonstrating feasibility of object detection and image 

classification under realistic circumstances within an in-the-wild 

retail environment. Contributions to research include the adaption 

to a new domain, with results for realistic circumstances. Further 

we show promising object detection results for multi object 

detection without detection groups. All of which provides the 

viability of the technology for future human interaction research 

and use-cases. Managerial implications include the dataset 

requirements for enabling current retail environment to support 

computer-vision based product identification, combined with the 

call for public labeled dataset needed for the field, Finally, this 

study contributes to the development by open sourcing the dataset 

of labelled images to advance the research in this area. We believe 

that the community should engage in this process by extending 

public databases such as ‘Verified by GS1’ or Openfoodfacts with 

image collection, labeling and segmentation, to support the basis 

for similar research at larger, potentially one day global scale.  

 

For example, the display of nutritional information in mixed 

reality displayed as digital overlay on the vending machine surface 

detected through spatial computing demonstrates a potential use-

case of computer vision-based product identification that has 

previously not been possible with barcode scanning (Figure 7). 

Such product-consumer interactions could be supported by GS1’s 

Digital Link standard [5], that aims to enable digital interactions 

between consumers and products. 

 
Figure 7: Computer vision on packaged products allow novel 

human-object interactions, e.g. passively triggered diet 

interventions in absence of markers or barcodes (Screenshot of 

Microsoft HoloLens viewing the study’s vending machine). 

 

The findings of this paper shall be considered under certain 

limitations. Currently, there is no feedback loop to gather for image 

interpretation, since the research questions evolved around initial 

feasibility of IC and OD. which can then use a feedback loop to 

gather more data. Future progress in object detection and zero-shot 
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learning can reduce the number of required items, as well as 

improvements in hardware such as specialized inference chips such 

as the mobile TPU presented recently by Google. Finally, the 

number of classes is far from the millions of products that exist in 

the world or the thousands for a single shop. Increasing the number 

of classes drastically always creates a new challenge to work with. 

Thus, we will continue to explore product identification from visual 

representation and try to establish an approach with zero-shot 

learning capabilities. For the future, interesting areas of research 

are how to reduce the required k to detect images to possibly even 

one, through the use of ensemble methods, such as detection of text, 

product group detection and positional data of products in shelves 

and vending machines, through IoT data or by using digital anchors 

in a version of SLAM where products are simultaneously detected 

and mapped. All of this data combined in a global knowledge graph 

which allows to perfectly identify any product would allow for 

shopping experiences with completely new, more natural and 

immersive human-product interactions (for example via mixed-

reality headsets as suggested in Figure 1 and Figure 7). Finally, the 

release of the 300 images of vending machines assortments with 

15k labeled instances of 90 products is planned to stimulate 

research on computer vision on packaged retail products. 
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