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Abstract— Despite efforts to reduce them, traffic accidents
continue to increase and bypass reduction targets. The costs of
traffic accidents are enormous, killing 1.35 million people every
year and costing 3% of most countries’ GDP. Recent research
aims to target interventions at high-accident-density locations,
called accident hotspots. New methods and technologies can
systematically identify hotspots, but it remains unclear whether
hotspots contribute to accident costs as well as volume. This
paper investigates the monetary and human costs of accident
hotspots. We analyze a dataset of all accidents from 2011 -
2017 in Switzerland. We identify hotspots, then analyze their
contributions to traffic accident costs. We find that hotspot
accidents are not different in monetary costliness or injury
rates from non-hotspot accidents, so hotspots drive costs along
with accident volume. However, hotspot accidents are less fatal,
so hotspot targeting might not be best for fatalities. If hotspots
are reduced to normal road conditions, total monetary costs
can be reduced by up to 5% per year as a theoretical upper
bound. Targeting the top 10% most frequent, costly, injurious,
or deadly hotspots yeilds different results for different cost
types, with accident number and monetary cost targets creating
the highest reductions overall.

I. INTRODUCTION

Despite continuous investment in road and vehicle safety,
as well as improvements in technology standards, the number
of road traffic accidents has steadily increased in recent
decades. For example, the USA saw a 5.6% increase in the
number of traffic-accident deaths from 2015 to 2016, on
top of an 8.4% jump from 2014 to 2015. Road deaths in
the European zone also increased in both 2015 and 2016,
widening the gap to that region’s stated goal of halving road
fatalities from 2010 to 2020 [1].

According to the World Health Organization, traffic acci-
dents have heavy costs: 1.35 million people die every year
from road accidents, and they cost most countries 3% of
GDP [2]. Countries and international bodies go to great
lengths to prevent and reduce the costs of road accidents [3],
with a major focus on identifying and intervening upon
the most vulnerable and high-risk people, places, and sit-
uations [2].

Certain locations are quantitatively more dangerous than
others, for reasons ranging from poor road infrastructure to
bad lighting or vulnerability to weather conditions. These
high-risk locations are known as ‘“accident hotspots™ [4].
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Accident hotspots are a natural point of intervention for
reducing the number, severity, and costliness of traffic ac-
cidents. A key issue for this purpose is identifying hotspots
systematically, then leveraging that information to reduce ac-
cidents. For example, warning drivers of upcoming hotspots
can reduce the number of critical driving maneuvers like
sharp braking [5].

However, although hotspots are a clear point of inter-
vention, it is not clear how much they contribute to traffic
accident costs. They probably generate significant costs due
to sheer volume, but they might be outweighed by extremely
high-cost accidents in non-hotspot locations. This paper
investigates whether accident hotspots are major drivers of
total traffic accident costs. We examine monetary costs as
well as human costs, represented by injuries and fatalities.
We also assess the potential for cost reduction from hotspot-
based intervention strategies. This holistic view of hotspots’
impact can help direct how and where efforts should be spent
to efficiently improve road safety.

II. RELATED WORK

This paper brings together two strands of literature.
The first develops methods for identifying traffic accident
hotspots, and the second examines the costs of traffic acci-
dents. In this section, we briefly review those two strands
and the small group of other studies that examine the costs
of hotspot-like locations, times, seasons, and behaviors.

A. Hotspot Identification and Analysis

Over the past sixty years, various researchers have inves-
tigated road accident hotspots and developed a number of
hotspot identification (HSID) methods.

Simple and common non-spatial techniques use roads’
underlying structure and consider traffic accidents on set road
segments. The Crash Frequency (CF) method is simplest,
determining segment danger from accident numbers while
taking road conditions into account [6]. Like CF, the Crash
Rate (CR) method uses accident numbers, but unlike CF,
CR accounts for traffic volume [7]. Although both methods
are intuitive and commonly used, they both fail to consider
random fluctuations in accident numbers and are weaker
statistically than other HSID methods [8].

Newer methods use more robust statistical analyses to
identify accident hotspots. One of the most well known and
widely used is the Empirical Bayesian (EB) method. EB
statistically outperforms other HSID techniques, including
CR and CF, but like those methods it fails to account for
spatial data and accident patterns [9], [10].



Spatial data analysis methods are possible thanks to devel-
opments in Geographic Information Systems (GIS), precise
geo-coded data, and digital maps [11], [10]. The most com-
mon spatial HSID techniques are K-means clustering, spatial
autocorrelation, and Kernel Density Estimation (KDE). KDE
is the strongest in terms of statistical performance — on
par with EB — and has been researched extensively [12].
KDE is particularly useful for HSID when combined with
other methods like repeatability analysis [13], statistical
analysis [14], and K-means clustering [15].

The most recent method is a data-mining clustering tech-
nique known as Density-Based Spatial Clustering of Appli-
cation with Noise (DBSCAN). This classifies elements into
clusters such that each cluster has higher element density
than the area around it. DBSCAN can efficiently identify
clusters of random shapes and discriminate between cluster
members and outliers [5], [4].

B. Costs of Traffic Accidents

There is an extensive literature on estimating the costs
of traffic accidents in specific countries [16], [17], [18],
under specific conditions like seasonal weather [19], and
in conjunction with other public health issues like alcohol
use [20]. Researchers address total costs, the proportion of
costs made up from specific accident types [21], and the dif-
ference between traffic accident costs and the potential costs
of other scenarios like increased walking or cycling [22].

The costs of traffic accidents can be direct and indirect.
Direct costs include property damage, medical care, emer-
gency response, and insurance administration. Indirect costs
mainly include lost productivity due to injuries, fatalities, and
time lost in traffic jams [23]. Both cost types affect involved
parties, third parties, and insurance. High-income countries
are especially affected by indirect costs due to their higher
potential losses in productive capacity and quality of life [2].

Calculating the cost of an incident like a traffic accident
is complex. Direct costs seem straightforward, but medical
costs are ongoing and emergency response costs like police
and medical transportation are spread over many events. In-
direct costs are even more challenging, requiring estimations
of lost productivity with great uncertainty (i.e. a fatality in
a young person), over large and diverse groups (i.e. the
value of one hour spent in traffic for 50 people), and with
unclear parameters (i.e. an injured person who has returned
to work but is less productive than before). Methods for
approximating costs vary, but most take an economic or
epidemiological approach that includes some elements of
cost-benefit analysis [22], cost-of-illness studies [23], [24],
or willingness-to-pay studies [25].

C. The Cost of Hotspots

Reducing accidents by reducing high-risk situations is an
obvious step, and many of the papers cited above make
at least some recommendations that apply to reducing the
biggest risk factors for traffic accidents in order to reduce
their impact. However, new HSID techniques have created
a new way of finding high-risk traffic situations and those

have not been fully evaluated in terms of cost. The question
remains whether hotspots found by HSID are major contrib-
utors to total traffic costs, or if they mainly drive accident
numbers.

[26] addressed the issue, using EB and regression methods
to identify “blackspots” and finding that well-applied safety
policies can reduce up to 5% of total accident costs. [27]
showed that hotspots predicted by a multivariate Poisson-
lognormal (MVPLN) model correlate with the severity of ob-
served accidents. [28] attempted to predict severe accidents
specifically, finding that different types of machine learning
techniques predict accidents of different severity levels. This
indicates that different HSID methods might yeild hotspots
with different impacts on costs.

Most of the research on hotspots focuses on prediction
accuracy rather than cost impact. Conversely, research on
the cost of accidents looks for the highest-cost accidents or
accident types instead of hotspots. When cost studies look
at high-frequency zones, they are identified very differently
from how hotspots are found. This study combines those two
approaches to examine the cost of hotspots and their impact
on total costs.

III. DATA & METHODOLOGY

We use the DBSCAN method to identify accident hotspots,
following the DBSCAN application and Swiss coordinate
system transformation procedure used on the same dataset
in [4]. The DBSCAN algorithm takes two parameters for
clustering: the minimum number of points within one cluster
and the minimum distance between two points in the same
cluster. Following [4], we set the parameters of the DBSCAN
algorithm to a minimum number of 10 accidents per hotspot
in moving five-year periods, or a minimum of two accidents
per year, and a minimum distance of 15 meters between two
accidents. We did not apply different HSID mechanisms in
this case because most of the more advanced methods require
controlling for traffic density, which was not available in the
data used here.

A. Data

The major challenge of assessing hotspots’ contribution
to traffic accident costs is finding a dataset rich enough
to identify hotspots, calculate direct costs, and approximate
indirect costs. We use a dataset of all Swiss car accidents
2011-2017, which includes all of the necessary spatial data
for HSID, on-scene estimates of total accident cost from law
enforcement officers, and injury and fatality counts for each
accident.

The estimate of financial costs comes from on-scene police
officers, who give the “total predicted cost” of the accident
in their incident reports. We refer to these as monetary
costs. Human costs include the number of injured people
and fatalities in each accident. We never combine injuries and
fatalities because we do not have sufficient data to determine
the cost ratio between injury and death.

Data were collected by on-scene Swiss policemen at the
time of each accident using their standard accident reporting



TABLE 1
DESCRIPTIVE STATISTICS

Year  Accidents Damage [KCHF]  Injuries  Fatalities
2011 54,269 439,425 23,242 320
2012 54,171 442,427 22,218 339
2013 53,052 426,868 21,379 269
2014 51,756 396,918 21,521 243
2015 53,235 412,265 25,368 253
2016 55,053 408,375 25,177 216
2017 56,112 430,523 25,067 230
Total 377,648 2,956,801 163,972 1,870

protocol. In addition to the spatial data for DBSCAN HSID,
each accident report includes the date, total predicted cost
(damage, in thousands of Swiss Francs or kCHF), number of
injuries, and number of fatalities. Table 1 shows descriptive
statistics. The full sample includes 377,648 total accidents,
accounting for more than 2.9 billion CHF in monetary
damages and 163,972 injuries plus 1,870 fatalities.

IV. RESULTS

We begin by describing the accident hotspots we found
and their contributions to accident numbers. Then we test
whether hotspots are costlier, less costly, or the same cost
as non-hotspot accidents. If hotspot accidents are similar to
or more costly than non-hotspot accidents, then hotspots are
a good place to intervene for the goal of reducing traffic
accident costs. We finish by identifying the potential cost
savings from intervening on hotspots.

A. Hotspots

We identify between 1,260 and 1,400 accident hotspots
per five-year period (Figure 1, left axis), accounting for 8-
9% of all traffic accidents (right axis). Over time, the number
of accident hotspots increases, as does the proportion of
accidents they account for. This indicates that hotspots are an
important point of intervention for reducing traffic accident
numbers. However, hotspots vary in their individual impact.

Impact of Accident Hotspots

Number of Accident Hotspots
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Fig. 1. Impact of accident hotspots over time by number of hotspots and
proportion of all accidents that happen in hotspots

Figure 2 shows the distribution of hotspots by size in
terms of accident numbers for samples ending in 2016,
2017, and 2018. The distribution is heavily right-skewed,

with most hotspots being smaller and fewer having large
accident numbers. For the 2018 cohort, the mean number of
accidents per hotspot is 17.3. The median hotspot size is 13
accidents, with only the top four hotspots having more than
100 accidents per five-year time period.

In every time period, there is an outlier hotspot with more
than 400 accidents. Over time, the size of hotspots increases
— the time period ending in 2018 has hotspots in the 140-
and 160-accident ranges while the other time periods have
gaps between 100 and 400 accidents per hotspot.
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Fig. 2. Histogram of hotspot size by accident numbers

B. The Monetary Cost of Hotspots

First, we test whether the monetary costs of hotspot
accidents are different from non-hotspot or overall average
accidents. Figure 3 shows the mean cost of accidents overall,
in hotspots, and outside hotspots over time. The shaded
areas around the lines are one standard deviation from the
mean. We find that hotspot accidents are not significantly
different from the mean or from non-hotspot accidents at
any significance level: they make up for their “fair share” of
monetary costs. The trend over time appears to be roughly
parallel, with hotspot accidents following the cost trends
of non-hotspot and average accidents. This confirms that
intervening on a hotspot should, on average, reduce costs
proportionate to the number of accidents eliminated.
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Fig. 3. Monetary costs of average accidents, hotspot accidents, and non-

hotspot accidents over time



C. The Human Cost of Hotspots

Second, we test whether the human costs of hotspot acci-
dents differ from non-hotspot or average accidents. Figure 4
shows the human cost of hotspot accidents by comparing the
proportion of injuries and fatalities that occur inside hotspots
to the proportion of accidents that are in hotspots, with one
standard deviation from the mean shaded. We do not show
a 95% confidence interval to avoid muddying the figure, but
fatalities are significantly different from the rate of accidents
at hotspots at the 0.05% significance level. If the proportion
of injuries or fatalies in hotspots is significantly different
from the incidence of hotspot accidents, then hotspots make
up for more or less than their “fair share” of human costs.
If not, hotspots are similar in human costs to non-hotspot
accidents.

We find that hotspot injury rates are not significantly
different from the rate of hotspot accidents, so hotspots
account for their fair share of injuries. However, the propor-
tion of total fatalities that occurs in hotspots is significantly
lower than the proportion of accidents that are hotspots, so
hotspots have lower fatalities than non-hotspot accidents.
This indicates that hotspots are important for the bulk of
human costs, but not as important for the most extreme
human costs.

Human Costs of Accident Hotspots
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Fig. 4. Human cost contribution by accidents at hotspots, injured people
at hotspots and fatalities at hotspots including the 1% standard deviation
interval.

D. Potential Savings

As previously discussed, we need to be cautious when
deriving implications from our results because the data does
not perfectly capture costs as a formal cost-of-illness study
would. What we can do is establish bounds within which
potential cost savings from interventions at hotspots might
lie. To do this, we explore what would happen to costs
if hotspots were reduced to the point that they no longer
qualified as hotspots.

There were 1,384 hotspots in the cohort ending in 2018.
These hotspots account for 8.9% of all accidents, or 23,960
total accidents. The average monetary cost per accident in
this group is 8,204 CHF, making a total cost of 40,970,513
CHF for hotspot accidents in the most recent time period,
out of the total 430 million CHF.

Eliminating a hotspot completely is the best-case scenario
for traffic intervention, but that does not mean there are zero
accidents at that location. Because of the lower limit for
hotspot status, elimination only reduces accidents at each
location to two per year for five years. If we reduce every
hotspot to two accidents, 2,768 accidents remain for a total
hotspot-accident monetary cost of 18,261,841 CHF per year.
Using the total annual monetary costs of traffic accidents in
2018 as a benchmark, this is a 5.27% savings and an absolute
upper bound. Interestingly, 5% is the same number that [26]
reached in their analysis.

Using similar calculations on injury and fatality data, as
shown in Equation (1), we can find the potential human cost
savings. In Equation (1), the first term returns the number of
injuries that happened at a hotspot. The second term shows
the potential savings with the lower limit of two accidents
per year remaining. Applying this formula the hotspot data,
we find potential human cost savings of 860 injuries and 2.2
fatalities per year.

Reduction = (In juries,yy - Injuries ys%) -

<1 2-Hotspots > 0

Accidents,ys

To highlight a more realistic scenario, we can use the same
hotspot elimination calculations to find the upper bound if an
intervention eliminated the top 10% of hotspots by frequency,
monetary cost, injuries, and fatalities. Table 2 shows the
annual reduction for each cost type if those hotspots are
reduced to normal accident levels of two accidents per year.
All numbers are the average of the most recent five-year
cohort.

TABLE II
MAXIMUM POTENTIAL COST REDUCTION BY NORMALIZING THE TOP
10% OF HOTSPOTS ACCORDING TO FOUR CRITERIA

Savings Accidents kCHF Injuries  Fatalities
Priority
Accidents 1,013 7,202 200 -0.04
(%) (1.88%) (1.74%)  (0.84%)  (-0.02%)
Monetary 729 11,053 205 -0.24
(%) (1.35%) (2.66%)  (0.86%)  (-0.10%)
Injuries 550 6,239 390 0.36
(%) (1.02%) (1.50%)  (1.65%)  (0.15%)
Fatalities 382 2,970 101 4.16
(%) (0.71%) (0.72%)  (0.43%)  (1.72%)

By adjusting the top 10% of hotspots to normal road safety
levels, we can reduce cost elements by up to 2.66%. In
general, targeting the highest accident-number and highest
monetary-cost hotspots creates the biggest percent reduc-
tions. Reductions range from 1.65% to 2.66% in the targeted
cost factor, and are generally positive between .43% and
1.74% in non-target cost factors except for fatalities, which
are low and even slightly negative in two cases. Overall,
accident numbers, injuries, and monetary costs reduce in
response to any target and the most when targeted theselves.



The difference with fatalities may be that they are some-
how unique relative to the other cost factors, or it may arise
from the relatively low number of fatalities and the influence
of a few very high-fatality accidents. We cannot empirically
prioritize or directly compare across categories becuase we
do not have the information necessary to compare a fatality
to a cost savings in another category. Decision-makers can
identify and enact their own priorities.

V. DISCUSSION AND OUTLOOK

The newest HSID methods can systematically identify
traffic accident hotspots. These are an attractive target for
intervention because they can offer efficient impact on ac-
cident frequency. The main goal of intervening at traffic
hotspots is to reduce the total cost of traffic accidents,
in terms of both monetary and human losses. This study
has shown that hotspots are a good targeting strategy for
reducing monetary costs and injury rates associated with
traffic accidents, although they may not be the best approach
for reducing fatalities.

A. Limitations

This study has a number of limitations. Our measures for
costs are not perfectly aligned with the direct and indirect
costs usually used to assess traffic accidents. In addition, our
monetary costs are estimates from on-scene law enforcement
officers, not final accounting. We use injury rates and types to
approximate lost productivity and medical costs, but these are
neither precise nor necessarily comparable across categories.
We intentionally keep injuries and fatalities separate, and
never mix either with monetary costs, because we do not
have the data to adequately value injuries or fatalities in
monetary terms.

Our dataset does not include any information for third-
party costs like loss of productivity in traffic or insurance
administration. There may be some indication of those costs
in police officer’s reporting because they can observe traffic
and vehicle damage, but none of our estimates can say
anything about costs except approximate monetary costs
incurred during the accident, injury rates, and fatality rates.

The most important limitations are on our estimates of
the theoretical upper bound of cost savings if hotspots are
reduced to normal accident levels. We cannot emphasize
enough that these are the absolute highest possible savings
and that they are theoretical. There may be an unavoidable
reason for a hotspot that mean it cannot ever be brought
to normal accident levels. Therefore, these estimates should
never be an expectation or even a goal. They are merely the
maximum potential.

B. Contributions

This study makes three groups of contributions. First, we
identify hotspots in Switzerland and show that the number
and size of accident hotspots is increasing over time. Second,
we demonstrate that hotspots are good intervention targets
by showing that their costs and injury rates per accident are
similar to non-hotspot accidents. We also show that hotspots

are not the best method of targeting traffic fatalities. Finally,
we test the potential of using hotspots to reduce traffic
accident costs through total and targeted hotspot remediation.

When we look at the trends in accidents, hotspots, and
hotspot sizes over time, we find that all three are increasing
in Switzerland. As accident numbers grow and continue
to consolodate into hotspots, the hotspots themselves may
become even more important for managing increasing traffic
probelems, accidents, and costs.

The monetary costs of accidents in hotspots are not
different from accidents outside hotspots. Therefore fixing
hotspots to reduce accident frequency will lower costs pro-
portionally — on average. That finding can be applied in
other countries that may not have the right data available
to support the assumption that reducing hotspots will reduce
total traffic accident costs. However, the data in this study
comes from Switzerland, where non-hotspot accidents may
be particularly common and costly due to the country’s many
mountainous areas.

The human costs of accidents are more nuanced. Rates
of injury in hotspots are not different from the rate of total
accidents in hotspots, so reducing hotspots should reduce
injuries. Conversely, rates of fatality in hotspots are lower
than expected, so hotspot accidents are not as deadly as
non-hotspot accidents. Injuries are much more common than
fatalities and make up for the vast majority of the human-
cost-related incidents, but fatalities are the worst possible
outcome so they can never be overlooked.

If we test hotspot elimination as a route to reducing traffic-
accident costs, we find promising potential. Reducing all
hotspots to non-hotspot levels (two accidents per year every
year for five years) can save as much as 5% of total monetary
costs per year, 3% fewer injuries, and 1% fewer fatalities per
year. If policymakers spot-reduce the top 10% of hotspots
based on the hotspots’ accident numbers, monetary cost,
injury rate, or fatality rate, they can reduce those up to 1.88%,
2.66%, 1.65%, or 1.72%, respectively. However, choosing
a priority means that cost factor is reduced more than the
others, and fatalities require the most specific targeting. This
research can explore the potential effects of targeted policies,
but cannot recommend the best targets.

C. Outlook

As HSID improves, traffic accident hotspots have the
potential to become a useful tool for reducing traffic acci-
dent costs. The information that hotspots are important cost
drivers justifies their use as a tool for planning accident-
prevention actions. Further research can look into third-party
costs, determine whether the trends found here are consistent
with other places and times, and deepen the analysis of injury
levels, fatality prevention, and hotspot selection for optimal
intervention. Some hotspot-based interventions are already
underway at road authorities in Switzerland, and future
research should investigate the impact of these approaches
on all types of traffic accident costs.
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