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Abstract— In recent years, driver behavior analysis has led
to countless driver assistance systems. In these systems, earlier
detection of a driver’s maneuver intentions offers opportunities
to improve driving experience and safety. Especially brake
maneuvers are of fundamental importance because they are
directly related to the avoidance of potential hazards.

Current state-of-the-art brake assistance systems rely on the
release speed of accelerator pedal as an indicator whether a
brake event is planned. However, this simple and practical
algorithm, fails to capture the overall movement pattern of
accelerator pedal behaviors and cannot utilize rich information
from different vehicle sensors.

To address this issue, we propose a novel recurrent neural
network architecture for the purpose of brake maneuver
prediction. The proposed method exploits the advantages of
multiple sensors. Unlike conventional practices where all signals
are aggregated to a single neural network, we leverage the
confidence of each sensor. We evaluate our approach based
on a dataset of 44 drivers, comprising around 500 hours of
naturalistic driving data. The evaluation results show that
the proposed algorithm outperforms baseline method by large
margin.

I. INTRODUCTION

The transportation safety is of significant importance.
Each year, around 20 to 50 million people suffer from
traffic accident, with more than 1.2 million people killed
in traffic collisions [1]. There are two basic strategies to
avoid collisions, namely steering to evade or braking. To
perform evasion without causing any additional risk to traffic
flow, highly developed driving abilities and high situation
awareness are required [2]. Many researches also showed
that in critical situations, braking is favored than steering
[3], [4]. Moreover, despite of advanced sensing and control
techniques, Advance Driver Assistance System (ADAS) with
emergency steering for collision avoidance is not yet avail-
able for public [5]. Additionally, drivers tend to perform
actions that are against automatic steering assistance at
subconscious level [6]. Overall, the applicability of steering
interventions have a limited agreement with drivers whereas
braking is in favor.

There are essentially two types of methods to improve the
driving safety via brake. The first type is emergency brake
systems, which rely on external cameras, radar, or lidar to
detect ambient obstacles and imminent collisions and apply
automatic brake maneuver. The other type is brake assistance
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systems that infer hard brake intention from driver behaviors
and prepare deceleration in advance or reinforce the brake
if the driver fails to press the brake pedal hardly enough. In
this paper, we focus on the improvement of the later one,
the brake assistance system. In brake assistance systems,
one of the inferences of the driver’s intention is based on
release speed of the accelerator pedal, since in the event
of potential collisions drivers usually release the accelerator
pedal faster than normal and slam the brake pedal [7]–[10].
Existing solutions apply negative torque measures prior to
brakes, for example, by controlling the engine air intake, the
electric motor, or by closing the gap between brake disc and
pads [9]. These measures can shorten the brake preparation
time and thus the braking distance.

Brake assistance systems are advantageous in several
perspectives. In addition to the improved safety, such systems
are tolerant to false alarm. It is worth noting that applying
negative torque measures to the wheels does not result in an
automatic brake. In the case of a false alarm, brake assistance
systems only create minor deceleration. This property favors
the acceptance of consumers and avoids that alarm mistrust
leads to drivers’ rejection of assistance [11], [12].

Nevertheless, an improved inference accuracy is benefi-
cial. First, it increases the sustainability and the efficiency
of vehicles. An imprecise system causes undue wear to
brake systems. For example, friction elements may have
diminished braking capacity; false application of negative
torque causes unnecessary fuel consumption. Furthermore,
anticipating brake maneuver can also benefit other traffic
participants, for example, by turning on brake lights or
broadcasting maneuver information via V2V communication
[13]–[15].

We interviewed long-term brake assistance system re-
searchers from an industry-leading automotive supplier and
confirmed that conventional accelerator actuated emergency
brake systems are triggered when release speed of accelera-
tor exceeds a predefined threshold. However, this approach
entails some inherent shortcomings. First, the motion pattern
of accelerator pedal contains more information than just its
speed. Second, in modern vehicles, heterogeneous sensor
information can be queried, which provides a comprehensive
picture of the state of vehicle and driver. Nevertheless, it is
challenging to manually build a rule-based algorithm that can
model complex information.

Neural networks are a popular technique to build models
with high expressiveness. There are many researches that use
neural networks to process CAN-Bus data, e.g. [16], [17].
Most of these works aggregate all signals to one neural net-



work, aiming to model complex relations between sensors.
However, such design has the risk that neural networks over-
fit to the relations that do not generalize as we will show in
the following.

To predict brake maneuvers, we have found that each
sensor has a different level of confidence in certain scenarios.
Using this feature an improved performance can be achieved
compared to modeling the relations between different sen-
sors. The paper is structured as follows: in Sec-II, related
researches on driver maneuver prediction are described.
The field test settings and model design are presented in
Sec-III. In Sec-IV, we present the detailed analysis of the
proposed algorithm and the comparison with the state-of-
the-art method. In the final section, we discuss potential
improvements.

Overall, the main contributions of our paper are:
• We first demonstrate that even basic recurrent neural

network (RNN) can outperform existing industrial so-
lutions.

• We propose a novel recurrent neural architecture that
leverages confidence of different vehicle sensors and
further improves the performance.

• We provide comprehensive validation of the proposed
method using a naturalistic dataset.

• Our proposed method is based exclusively on CAN-Bus
data without any additional sensory and can be readily
deployed in current vehicles.

II. RELATED WORK

A large body of research in driver behavior analysis and
maneuver prediction relies on inside monitoring cameras.
The cameras capture the drivers behaviors such as head
pose, gaze, or foot movement to infer maneuvers as braking,
acceleration, or turns [18]–[22]. These methods, despite
their proven effectiveness, are yet seldom adapted because
monitoring cameras are uncommon in vehicles. Moreover,
additional supervision by camera can raise privacy issue.

In practice, a common method for the inference of brake
intention is to monitor the accelerator pedal as several patents
show. In [7], [8], the inventors presented a process that
executes automatic braking operation, when the return speed
of the accelerator pedal exceeds a threshold. In [9], the patent
holder uses a sensor configured to determine the rate of
travel of the accelerator pedal. In the case of the sensor
detecting a quick release of the accelerator pedal, the control
module of a vehicle checks other vehicle sensors that could
indicate a braking event. If other vehicle sensors also report
an alarm, negative torque is applied to wheels. In [10], the
braking force is a function of the speed applied by the
driver to the accelerator pedal and the relative position of the
accelerator pedal. These widespread methods only included
a few information about the accelerator pedal but not the
complete movement pattern. In addition, [20]–[22] showed
that monitoring foot movement of drivers contributes to an
overall higher accuracy of brake maneuver prediction.

The latest work from Hallac et al. [17] takes a different
approach than focusing solely on braking detection. From a

large number of CAN signals, the authors segment individual
events by compactly displaying the signals using a RNN as
encoder. Hard brake events are one of the categories. Their
approach also shows that the large number of CAN signals
makes it possible to reliably predict future CAN signal
values. However, their approach lacks a specific application
scenario and is mostly exploitative. Our research should
combine both approaches. We aim at a specific use case and
apply the strength of RNN with sensor confidence to perform
brake maneuver forecasts based on existing sensors. There
are researches [23]–[26] that demonstrate modeling confi-
dence and uncertainties can improve neural network perfor-
mance; besides, in both theory and practices, e.g. [27]–[29],
ensemble of multiple estimators (in our context, different
sensors) can generally improve prediction performance. Our
proposed method differs in that we focus the on confidence
of sensor inputs and hence provide a novel ensemble method
for sensor fusion. Furthermore, we explore and provide
explainable reasons why the proposed method outperforms
rule-based algorithm and neural network approaches that do
not consider sensor confidence.

III. DATASET DESCRIPTION

Data Acquisition. Our research is based on a dataset from
a large naturalistic field study in cooperation with a national
road assistance service. In this field study, 50 professional
road assistance drivers drove over a period of three months
on real roads in Switzerland. Total driving distance accu-
mulated to approximately 300,000 kilometers. There was no
limitation on drivers about the routes they chose or any spe-
cial tasks they should perform. During the drives, CAN-Bus
data was accessed and collected via the OBD-II interface. All
vehicles were of the same type. The sensors have different
sample frequency and as a signal preprocessing step we
resample and interpolate them to 10 Hz. After data cleansing,
44 drivers with on average around 12 hours of driving data
was used.

Among all sensors, we choose the following signals for
brake maneuver prediction: speed values of all 4 wheels,
accelerator pedal position, brake pedal position, longitudinal
and lateral acceleration. Brake pedal position is only used to
annotate hard brake events but not used as algorithm input.
The reason for using only a small subset of all CAN-Bus
signals are: a) the chosen sensors are the most common
ones across different types of vehicles and this ensures the
generalization ability of the algorithm; b) the chosen sensors
are most representative for the dynamics of a vehicle before
hard brakes; by restricting to these sensors, we make sure our
neural network is not over-fitting to vehicle specific sensors
that are coupled to accelerator or brake pedal; c) a small
subset of signals allows us to increase computation efficiency
for time critical tasks.
Event Segmentation. We first introduce the definitions of
brake event and accelerator event. Sensors like brake pedal
and accelerator pedal can be differentiated into on and
off states. Off states present the period when the pedal is
released completely and on states present the period when



acceleration or brake maneuvers are operated. The on states
can be segmented using the algorithm proposed in [30].
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Fig. 1: Definition of positive and negative samples

Positive and Negative Samples. We first define brake slam
as the moment when the brake pedal position increases over
more than 25% of its total range within 0.1s. We only
consider the brakes as hard brakes if a slam happens in the
initial part (i.e. before the first derivative of brake position
reaches zero) of a brake event. There are brake events in
which slams happen in the later part of the event. However,
a brake slam in the later part is not of important significance,
because in such case, a vehicle is already prepared for
brakes. Based on the above definitions, we derive positive
and negative samples as follows (also shown in Fig. 1):
Positive samples: accelerator events that are followed by hard
brakes and the brake slam happens within certain time gap
after the release of accelerator pedal.
Negative samples: accelerator events that are not followed
by any brake events within time gap.
We choose the length of the time gap as 1.0s. It is noteworthy
that accelerator events followed by soft brakes are not of our
interest, because in such case, a true positive alarm does
not contribute significantly to safer driving. Compared to
[17], there are significantly more positive examples in our
data set (368 positive examples in around 520 hours vs.
122 positive examples in 2098 hours of driving data). Our
hard brake definition is slightly more relaxed to focus not
only on extreme events. To evaluate generalization capability
of algorithms, we perform all experiments 10 times by
randomly splitting data into train (36 drivers) and test (8
drivers) sets.

IV. METHODS

A. Baseline Method

According to the description in [7]–[10] and our interview
with brake system experts from a industry-leading automo-
tive supplier, we rebuild the Algorithm 1 for the detection of
rapid accelerator pedal release. The algorithm iterates over
all signals of an accelerator event ~X . If within a selected time
interval, the release speed of the accelerator pedal is above
a certain threshold, the algorithm returns true and brake
preparation measures would be executed. If the threshold is
never exceeded, the algorithm returns false and there is no
brake preparation. threshold and interval are tuned via grid

search and the optimal values are threshold = 6% of total
brake pedal range with interval = 0.1s.

Algorithm 1 Accelerator Pedal Rapid Release Detection

1: Input: ~X . Input is a segmented accelerator event
2: N = len(~X)
3: f lag threshold = False
4: for i = interval : N do
5: release speed = ~X [i− interval]−~X [i]
6: if release speed > threshold then
7: f lag threshold = True
8: if f lag threshold then
9: return True

10: else
11: return False

B. Proposed Method

Input and Feature Engineering The average length of an
acceleration event is around 12s in our dataset. Since the
most relevant information about an upcoming brake lies in
the later part of an acceleration event, we only take the
last 3s of an event as input. We have found that a longer
input sequence does not contribute to better performance.
We choose the following sensors and their first and second
derivatives as input:
• Accelerator pedal position (1×3)
• Longitudinal and lateral acceleration (2×3)
• Steering wheel angle (1×3)
• Speeds of four wheels (4×3)

Recurrent Architecture Recurrent neural networks (RNN)
are widely use for modelling of contextual temporal informa-
tion. Unlike feed-forward neural architectures that compute
an output~o(t) at each time step, RNNs compute an additional
hidden state ~h(t) that function as a task-relevant summary
of the past input sequence ~x(0)...~x(t) up to time t. Various
of variants of RNN such as Gated recurrent unit (GRU) [31]
and Long short-term memory (LSTM) [32] are proposed that
can better handle information across large time scale. In this
paper we use a specific form of RNNs, namely GRU. The
advantage of GRU over RNN is that a GRU has an update
gate~z(t) and a reset gate~r(t) that control how much influence
the current input ~x(t) and the previous hidden state ~h(t−1)
has on the next hidden state ~h(t). The update procedure is
as follows:

~z(t) = σ(Wz~x(t)+Uz~h(t−1)),

~r(t) = σ(Wr~x(t)+Ur~h(t−1)),

~h(t)=~z(t)◦~h(t−1)+(1−~z(t))◦σ(Wh~x(t)+~r(t)◦Uh~h(t−1)),

where Wz,r,h and Uz,r,h are GRU parameters and σ , ◦ denote
tanh function and element-wise product respectively.

One of the basic approach to model temporal information
is using GRU as an encoder. In practices, to utilize the
dependence of different sensors, all signals are concatenated



and fed into one GRU, we denote this approach with su-
perscription (all). A sequence of signal ~x(all)(1, ..., t) is fed
into a GRU. At the end of the sequence, the hidden state
~h(all)(t), which summarizes the whole sequence, is processed
by a fully connected (FC) layer FC and Softmax function to
obtain~y(all) = [y(all)

0 ,y(all)
1 ]T , with y(all)

0 and y(all)
1 representing

the probability of the sequence state being negative or
positive and y(all)

0 +y(all)
1 = 1 . We refer to this conventional

approach as Basic GRU. A schematic plot of the network
is show in Fig. 2a. A compact representation of the neural
network can be written as ~y(all) = f (all)(~x(all);W(all)

0,1 ), with

W(all)
0 and W(all)

1 being the network parameters that make
decision for negative or positive predictions, respectively.
It should be mentioned that W(all)

0 6= W(all)
1 and W(all)

0 ∩
W(all)

1 6=∅.
During our research, it was found out that feeding all

signals into one neural network, however, has the conse-
quence that the network over-fits to the dominant signal
that provides the most information. As a result, we lose the
information of other sensors that may have higher confidence
about the driver’s intentions in certain situations. Besides, if
all signals are fed into one network, the network may over-
fits to the correlations between sensors that do not generalize.
To leverage the advantages of multi-sensors, we divide signal
into n different categories (denoted as ~x(k)(t), k = 1, ...,n)
and train for each category of sensors a individual network
(denoted as f (k)(x(k);W(k)

0,1)). At the end of a sequence, each

network predicts the probability ~y(k) = [y(k)0 ,y(k)1 ]T of hard
brakes. The decision ~y∗ = [y∗0,y

∗
1]

T is made by focusing the
sensor with the highest confidence for each state, computed
as follows:

y∗0 = max(y(1)0 , ...,y(n)0 ) (1)

y∗1 = max(y(1)1 , ...,y(n)1 ) (2)

For example, a decision can be made as ~y∗ = [y(i)0 ,y( j)
1 ]T ,

meaning sensor i has the highest confidence for the sequence
being negative while sensor j for positive with i 6= j (because
y(k)0 +y(k)1 = 1, ∀k = 1, ...,n). We refer to the above described
decision procedure as RNN ensemble. In addition to RNN
ensemble, we further proposed RNN focus with modified
parameters update scheme, stated as follows. The decision
~y∗ is compared with ground truth one-hot vector and the
loss L is computed as cross-entropy; given this loss, network
parameters are updated via back-propagation. It should be
mentioned that RNN focus is different from training multiple
networks on several signals and invoking vote mechanism.
In our case, each network f (k)(x(k);W(k)

s ) is only trained on
a sample, if the network has the highest confidence for the
prediction s among all networks. This can be better described
in the update scheme as follows:

W(i)
0 =−η

∂L

∂W(i)
0

1
i=argmax(y(1)0 ,...,y(n)0 )

+W(i)
0 (3)

W( j)
1 =−η

∂L

∂W( j)
1

1
j=argmax(y(1)1 ,...,y(n)1 )

+W( j)
1 (4)

W(k)
0,1 = W(k)

0,1, ∀k 6= i or j, (5)

where η is learning rate and 1 is indicator function. Unlike
Basic GRU, where a f (all) has to make decision for all
scenarios, RNN focus forces each individual f (k) to generate
high probability for a state, only when it is very certain;
otherwise, each f (k) is allowed to be ambiguous (because of
no update of parameters, described in Eq. 5). This operation
can be done by Max-pooling. A schematic plot of the
network is show in Fig. 2b.
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Fig. 2: (a) Basic GRU. (b) Proposed method RNN focus
leveraging confidence of individual signal

The neural network implementation is done in Tensor-
flow. We use Relu for all activation functions and update
parameters using RMSProp optimizer [33] with a learning
rate of 0.0005. To prevent over-fitting, a dropout rate of
0.2 and L2 regularization with λ = 2∗10−5 are applied. We
train the network for 1500 steps where the network reaches
convergence.

V. EVALUATION AND RESULTS

A. Unbalanced Dataset

Hard brakes are rare events and therefore we face the
unbalanced dataset problem. To solve this problem, we
collect negative samples as 5 times many as positive samples.
During the training, we make sure the numbers of positive
and negative samples are equal in every batch by random
sampling. This procedure ensures that the neural network
will not be over-fitted to the majority while being exposed
to as many samples as possible. During the testing, we
replicate positive test samples 5 times and therefore construct
a balanced test dataset.

B. Comparison between baseline, Basic GRU and proposed
methods

An overview of the performance comparison is given in
Tab. I. Baseline is the performance of Algorithm 1 using
the optimal parameters. We run the experiments of Basic
GRU with different categories of signals, where Sub. Signals
means a subset of signals containing only accelerator pedal,
speed of 4 wheels and steering wheel angle. The RNN
ensemble differs from RNN focus in that RNN ensemble trains



each network individually (namely without using update
scheme in Eq. 3-5) but makes decision based on Eq. 1-2.

We use one recurrent layer with 8 hidden units. Adding
more recurrent layers or hidden units does not improve the
performance while increases computation complexity, which
is not desirable in time critical context.

TPR FPR Accuracy
Baseline 64.50% 41.01% 61.75%

B
as

ic
G

RU

Accelerator pedal 63.99% 17.79% 73.10%
Speed of 4 wheels 57.05% 20.86% 68.09%

Long. and later. acc. 45.54% 25.63% 59.96%
Steer. wheel angle 45.63% 27.96% 58.83%

All signals 57.81% 17.99% 69.91%
Sub. signals 60.16% 18.30% 70.93%

RNN ensemble 63.47% 15.27% 74.09%
RNN focus 65.83% 14.90% 75.47%

TABLE I: Performance Comparison

Compared with the baseline method, the Basic GRU with
accelerator pedal improves the accuracy by 11.35%. This
demonstrates that RNN has higher expressiveness of accel-
erator pedal movement than the baseline method. Signals
from other sensors cannot achieve an accuracy as high
as accelerator pedal. The Basic GRU using all signal as
input does not provide a better result. The results show
that fusing multiple sensors as inputs does not contribute
to improvement, which is not inline with common sense.

The contradictory results indicate that the network may
over-fit to relations between sensors that do not necessarily
reflect a driver’s intention. In addition, as shown in Tab. I,
accelerator is the dominating signal for prediction. This
means there is also risk that the neural network is train biased
towards this signal. Especially, we found Basic GRU trained
solely on accelerator, wheel speeds or steering wheel produce
most divergent predictions, which means each category of
signals captures a driver’s intention from different perspec-
tives. This leads to the choice of Sub. Signals. Targeting this
problem, RNN ensemble and RNN focus device individual
networks trained on these three categories of signals. The
experiments show that we can benefit from such design. RNN
focus outperforms RNN ensemble and improves Basic GRU
(Acc. pedal) architecture by around another 2.37%.

Baseline, Basic GRU and RNN focus can be tuned to
balance between true and false positive rate. For the baseline
method, this is done by adjusting the threshold of accelerator
pedal gradients in Algorithm 1. Basic GRU and RNN focus
produce for a given input sequence the probability of the
sequence being positive or negative. The default threshold
value for decision making is 50%. To avoid high false
positive rate, the threshold can increase and vice versa. The
Receiver Operating Characteristic (ROC) and corresponding
area under curve (AUC) are given in Fig. 3. As shown in
the figure, for most given false positive rate, the RNN focus
achieves a higher true positive rate than Basic GRU (Acc.
pedal) and baseline.

Fig. 3: Receive Operation Characteristic of both methods

C. Insights into RNN decisions
Though neural networks are well-known for their unex-

plainable property, it is interesting to explore how and what
features / patterns does the neural network use to differentiate
itself from the baseline method. For this purpose, we plot
several typical true positive / negative samples that are
correctly predicted by Basic GRU (Acc. Pedal) and RNN
focus but failed by the baseline method or Basic GRU,
respectively. In both Fig. 4 and 5, we plot 5s of input signal
and following 2s after the end of accelerator events. We omit
longitudinal and lateral acceleration and plot only the average
speed of four wheels and the steering wheel value because
they alone provide enough and comparable insights for our
explanations.

(a) (b)

Fig. 4: True positive (a) and true negative (b) samples
detected by Basic GRU but not by baseline method

(a) (b)

Fig. 5: True positive (a) and true negative (b) samples
detected by the RNN focus but not by Basic GRU

We first compare Basic GRU and baseline method. As
can be seen in Fig. 4a, the driver does not release the



accelerator pedal rapidly, which leads to a small gradient
of the signal. However, the end of the accelerator event
demonstrates an increased gradient (i.e. increased absolute
value of first derivative), which means the driver releases the
pedal in an accelerated way. This indicates that the driver
has intention to decelerate. As a result, a brake maneuver
follows. For negative samples, as shown in Fig. 4b, the
driver accelerated moderately before he quickly released the
accelerator pedal, which indicates that the release would
not lead to successive deceleration. As a result, no further
brake maneuver occurs. Though such movement patterns can
also be defined mathematically, neural network approach
offers a convenient way of modeling. The learning ability
of neural networks further enables more flexible over-the-air
adaptation to specific drivers.

Nevertheless, accelerator pedal signal alone can be mis-
leading. We further compare Basic GRU and RNN focus. In
Fig. 5a, the driver applies moderate force to the accelerator
pedal before he fully releases it. However, an accelerator
release accompanied with a large change in steering wheel
angle indicates that the driver may just have made a turn
into new lane and needs deceleration. In Fig. 5b, the release
of accelerator pedal only has a medium large gradient,
which leads to a mediocre probability of accelerator signal.
Meanwhile, steering wheel and vehicle speed remain rather
constant, indicating high probability of no brake maneuver.
Summarizing the confidences of all sensors, RNN focus gives
a negative prediction. A possible explanation for this example
could be: the vehicle moves straightly at a high velocity; the
driver has tiredness in her/his legs and therefore represses
the accelerator pedal to relax.

D. Reliability of the RNN approach

To further exam the usefulness of the RNN focus, we
test the trained the network RNN focus on a large balanced
dataset that has relaxed condition on hard brakes, namely
positive samples are accelerator events followed by lighter
brake slam (15% instead of 25% of brake range within 0.1s)
in 2s (instead of 1s). The performance in different risky
scenario is plotted in Fig. 6. The more left, more upper
positions of the matrix corresponds to more risky states. As
can be seen, the more risky a scenario is, the better accuracy
the RNN focus can achieve. Furthermore, in scenarios where
brake pedal is pressed over 45% within 0.1s, the RNN focus
achieves a true positive rate of 100% over the whole dataset.
The RNN focus enables parallel processing of individual
signals on separated small size neural network. An overview
of computation time and model complexity are given in
Tab. II. The arrangement of parallel architecture of the RNN
focus allows us to not increase computation time dramat-
ically while using more complex model as compared to
Basic GRU. Nevertheless, neural network approaches are far
more complicated than the baseline method, which can even
be realized by analog circuits. Considering the importance
of safety issue and the advancement of specialized neural
processor, we believe the proposed method is promising for
real applications. The computation time is evaluated for one

classification example on a CPU set-up with an Intel-i5 2.7
GHz and 8 GB 1867 MHz DDR3 RAM.
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time gap between accelerator event and hard brake

Fig. 6: Reliability of the RNN focus

Basic GRU Basic GRU
Baseline (Acc. pedal) (All Signal) RNN focus

comp. time 42 µs 19.23 ms 20.74 ms 19.95 ms
#parameters 2 306 810 1134

TABLE II: Computation efficiency for one classification
example

VI. DISCUSSION AND OUTLOOK

This work targets a very practical yet important problem
in industries. We showed that by leveraging RNN technique
with focus on sensor confidence, prediction accuracy and
AUC of ROC can be improved by around 13.72% and 14%
as compared to the conventional algorithm. When compared
to the neural networks without sensor confidence, we can
improve the accuracy and AUC by around 2.37% and 5%.
The proposed method does not require additional sensors in
vehicles and enables convenient implementation in practices.
While the advancement of artificial intelligence may lead
eventually to autonomous vehicles (AV), the latest research
shows that human drivers are 15 to 4000 times better than
existing AV technologies for accidents per cumulative mile
and drivers of AVs need to be as alert as drivers of non-
AV vehicles [34]. Therefore, given the performance and the
compatibility, we believe the proposed method can poten-
tially increase driving safety by large margin in foreseeable
future. Moreover, the result of this paper demonstrates that
conventional sensor fusion approaches that use one neural
network to process all CAN-Bus data can be sub-optimal
for certain cases. This discovery suggests several potential
directions for further exploration. On the one hand, the
proposed RNN focus presents a novel way of sensor fusion,
which can be applied to minimize uncertainty for intelligent
transportation applications; on the other hand, more powerful
regularization methods for neural networks are desirable to
fully utilize heterogeneous sensors in modern vehicles. As
such, we are excited for future works targeting depicted
challenges.
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