
 

 Ilic & Fleisch, 2016  1 

Augmented Reality and the 
Internet of Things 
 
Alexander Ilic & Elgar Fleisch 

Auto-ID Labs White Paper WP-BIZAPP-068 

December 2016 

 

 

 
 

 
 

Alexander Ilic 
Director 
Auto-ID Labs 
ETH Zürich / University of St. Gallen 
 

 

 

 
 

Elgar Fleisch 
Co-Chair 
Auto-ID Labs 
ETH Zürich / University of St. Gallen 
 

 

 

 
 
 
Contact: 
 
Email: alexander.ilic@autoidlabs.ch 
 
www.autoidlabs.org 
 
 
 
 

   
B

us
in

es
s 

Pr
oc

es
se

s 
&

 A
pp

lic
at

io
ns

 



 

 Ilic & Fleisch, 2016  2 

Abstract 
The Internet of Things allows for the development of hybrid solutions merging physical 
products with digital services. After the widespread adoption of Internet of Things in supply 
chains, we are now witnessing a surge of consumer Internet of Things applications. Due to 
the proliferation of smartphones, Internet of Things applications gain personal, interactive, 
and behavioral context. Smartphones thus take up a gateway role and mediate between and 
among people, physical and digital things, and/or the environment. In this article, we discuss 
why Augmented Reality technologies are essential for evolving this gateway role in the 
Internet of Things and how alternate form-factors of the smartphone (e.g. glasses, watches, 
contacts, gloves, etc.) might impact context-aware service interactions.  
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1. Introduction 
The Internet of Things (IoT) represents the paradigm that the Internet extends to the physical 
world. Eventually, every physical object will be connected to the Internet and serve as digital 
nerve ending for novel applications and services.  

Sanjay Sarma’s seminal paper on the 5 cent tag has identified the critical path for making it 
economically feasible to use IoT applications for a wide range of supply chain processes 
(Sarma, 2001). Radio-frequency identification (RFID) and barcode applications have since 
then become an integral part of any supply chain operation.  

With the first large scale deployments of IoT applications in the field, Fleisch (2010) 
elaborated on the economic perspective of the IoT and illustrated seven key value drivers. 
He demonstrated that IoT technologies drive the marginal costs for sensing towards zero. As 
the price of a sensing event declines, it becomes more attractive to sense more often. When 
measurements are taken in higher spatial and temporal resolution, processes can be 
managed in entirely different ways. Fleisch et al. (2014) reflected that this High-Resolution 
Management (HRM) thinking will unlock a new digital value proposition and drive the industry 
towards service business models. 

While previously IoT was mainly concerned with 
machine-machine communication, the 
smartphone entered the user into the equation. 
Smartphones act as gateways that mediate 
between and among people, physical and 
digital things, and/or the environment (Figure 1). 
They make it easy to augment physical objects 
with additional information or access related 
digital services. Smartphones are the 
computers that know us best and accompany 
us throughout our daily lives. They also can 
provide feedback that may guide us or change 
our mind. 

With the vision of computers becoming more invisible and fading into the background, 
Augmented Reality (AR) technology has the potential to further enhance the role of the 
smartphone in the IoT. We discuss why AR technologies are important to evolve the IoT and 
how alternate form-factors of smartphones (e.g. smart glasses, watches, contacts, gloves, 
etc.) might impact context-aware product-service interactions.  

 

InternetPhysical world

User

Personal device

Figure 1. Personal devices act as gateways in 
the IoT with interfaces to physical objects, the 
user, and the Internet 
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2. AR devices as digital service gateways  
Thanks to the built-in camera and recent gaming hype, Augmented Reality applications have 
become popular on smartphones. Big companies are currently experimenting how to further 
leverage the AR paradigm by putting the smartphone into new form factors.  

Although AR technologies and smart glasses have been discussed in research for decades, 
they only recently appeared with support of the big IT companies. The first attempt to 
(partially) replace smartphones with smart glasses was done by Google in 2013 with their 
project Glass. The project failed to become a commercial success, not due to technical but 
mainly due to privacy and social acceptance reasons. Nevertheless, it started a rich 
experimentation phase especially for business applications with smart glasses. The benefits 
of having a smart device that leaves the hands free while providing contextual support are 
extremely versatile. As a further prominent example, Microsoft initiated their project HoloLens 
for smart glasses in 2016. It is expected that further devices and breakthroughs in this area 
will follow. 

 

Based on the Mixed Reality continuum (Milgram & Kishino, 1994), AR extends IoT 
experiences from the real environment towards the virtual environment (Figure 2). In addition 
to enabling novel user experiences for interacting with objects and the environment, AR also 
reveals new insights about the user. The same sensing technologies required for high-end 
AR displays can be used to measure the user. This gives new insights into the behavioral, 
cognitive, and emotional state of the user. With these insights, product-service interactions 
can be reshaped on a whole new level. 

Virtual
environment

Real
environment

Virtual
reality (VR)

Augmented
virtuality

Augmented
reality (AR)

Tangible
user interfaces

Mixed Reality (MR)

Figure 2. The reality-virtuality continuum (adapted from Milgram & Kishino (1994))   
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The following sections review how AR can be used to accelerate developments and usage of 
the IoT. The focus will be on the product-service interaction. Objects will become a point-of-
service, whereas services can be categorized as follows (Figure 3):  

•  Identification service: retrieving a 
digital identifier of a physical 
object and thereby enabling 
monitoring and other higher level 
services. 

• Control services: connecting to a 
smart object to read or change the 
state of the object. 

• Lifecycle services: retrieving 
related services to an identified 
object (e.g. ordering of spare 
parts). See Xu & Ilic (2014) for a 
comprehensive overview. 

Several of the ideas and concepts are applicable already to smartphones but likely will unfold 
their true potential only with smart devices designed for AR such as smart glasses. The 
following sections are therefore an extrapolation of observations and lessons learned in order 
to enable predictions that may guide further developers of AR-enhanced IoT applications.  

The next sections are organized by the three critical interfaces personal devices provide in 
their function as gateway: an interface to the physical world, the interface to the user, and the 
Internet interface to the rest of the world. 

 

Identification 
service

Control
services

Lifecycle
services

Figure 3. Product-service interaction hierarchy 
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3. Physical world interface: Object interaction 
The key element for accessing the digital service component of a physical product is object 
identification. We distinguish between the following three types of objects: 

• Smart objects: The functionality of the product is enhanced by fully integrating a 
computing, communication, sensing, and/or an actuating unit. The digital identifier is 
unique and part of the product. Smart objects provide a digital communication 
interface for interaction and control with the product. They also may have a direct 
communication link to the Internet. The number of smart devices is estimated to 
exceed 25 billion units1 by 2020 and thereby representing the smallest group of 
objects in this categorization. 

• Tagged objects: Products retain their original state and functionality, but a tag is 
physically attached or integrated with the object. The digital identifier is 
retrospectively added to the product with the tag and can be read wirelessly or 
optically. Since the tag is just co-located, there is no control interface for changing or 
reading the state of the product, which the tag is attached to. Today, the most 
prominent example for digital identifiers are barcodes or RFID tags used in retailing 
based on the standard of the Global Trade Identification Number (GTIN). However, 
these identifiers are predominantly class level identifiers, which means that different 
instances of the same product share the same identifier. For traceability, anti-
counterfeiting, and marketing there is now gradually a move towards serial level 
identifiers. In this case, each individual instance of a product has its own unique 
number. The startup Evrythng alone will equip 10 billion pieces of clothing over the 
next three years with a unique digital identity2. 

• Plain objects: The product is not prepared in any way for the Internet of Things. The 
digital identifier can only be inferred with object recognition or context-labeling. In 
comparison to the other two types, this will still be by far the largest group of objects. 
Cisco estimates that currently 1.5 trillion (99.4%) of all physical objects are yet to be 
connected3. Therefore, this is one of the biggest areas of opportunity to either 
connect them by attaching a tag or applying technologies (such as object recognition) 
that derive an identifier by combining contextual factors with object properties. 

The next sections review different identification technologies that are relevant for AR IoT 
systems. The focus is deliberately not on smart objects but rather on the topic of connecting 
the previously unconnected objects with a unique serial level identifier. The lessons learned 
are derived from a number of research projects on product-service interactions (Xu, 2016). 
The most recent study was conducted in a real-world office environment in Munich, Germany 
from January & February 2016 with 43 users. A key finding was that most existing 
approaches for product-service interactions are not yet ready for multi-user situations. 

                                                
1 http://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-things-forecasts-and-market-estimates-2016/ 
2 http://fortune.com/2016/04/18/evrythng-avery-dennison/ 
3 http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoE_Economy_FAQ.pdf 
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3.1. Optical codes  
A typical approach to assign a digital identity to physical 
objects is via optical codes. These include 1D barcodes, QR 
codes, or novel approaches such as digital watermarking, with 
the code hidden in the pattern of the product4. These codes 
typically store either a unique number that can be resolved to 
an URL of a service point or directly a service point URL. The 
advantage is that these codes are cheap to deploy and can be 
read by any device with a camera. A disadvantage is that they 
require a clear line-of-sight and that the operating range is 
fairly limited. As a rule of thumb, the minimum size of e.g. a 
QR code is one tenth of the expected scanning distance. 
While QR codes have been around for a while, the scan rate 
by consumers remains low (Quigley & Burke, 2013). However, 
when used with AR devices such as smart glasses, new 
benefits such as hands-free working can be unlocked and 
increase attractiveness in a business context5.  

3.2. Wireless transmitters 
Most smart products come with a built-in wireless 
communication capability featuring Bluetooth Low Energy 
(BLE) and/or WiFi integration. These interfaces allow for 
controlling and managing the devices directly via the user’s 
smartphone. For tagged objects, often BLE beacons are 
used since RFID and NFC support is limited on today’s 
smartphones. The beacons typically broadcast a unique 
identifier and/or URL such as used in Google’s Physical 
Web project. We observed a session increase of 35% 
compared to QR code users due to the fact that BLE 
broadcasts can be received even if the smartphone is 
locked. However, 93% of these sessions were triggered 
accidently by people walking by. To reduce this spam 
problem, we implemented a physical button on top of the 
beacon that only broadcasts the service URL when needed 
by a user (see Figure 5). As a result, the group with the 
BLE button had a 2.9 times higher service usage than the 
group with traditional beacons. As AR devices also support 
wireless interfaces, it is likely that objects with wireless tags will be also fully usable in this 
context. A disadvantage, however, was that the button has to be placed at an easily 
accessible place and thus reduces the benefit of the wireless range.  

                                                
4 https://www.digimarc.com/application/retail 
5 For examples with Microsoft HoloLens and Google Glass, please see http://www.scandit.com/tag/google-glass/ 

Figure 4. Example of a QR 
tagged object to invoke a 
supply reordering service 

Figure 5. Example of a BLE 
tagged object with physical 
button to start the interaction 



 

 Ilic & Fleisch, 2016  8 

3.3. Object recognition 
Object recognition is a promising technology 
with the potential to replace optical codes on 
objects. It is driven by advances in scene 
understanding and deep learning. Object 
recognition uses the camera to identify an 
object based on its visual features. This 
means that it can work instantly without any 
tags or special preparation of the object in 
question. Since objects may look very similar 
and are often only partially visible, the results 
are intrinsically ambiguous. In the best case, 
object recognition yields a high probability 
guess for the object at a class level. In order 
to derive useful digital identifiers, additional 
context information has to be used. 

Based on the learnings of the Munich study6, we propose field-of-view interactions - a new 
type of interaction suitable for AR IoT systems. FOV interactions use a hybrid approach 
combining object recognition with contextual cues. It overcomes the range limitation of 
optical codes while still being able to provide high identification accuracy. The interaction 
becomes more naturally since it is tied to the area of attention of the user – defined by the 
field of view. It provides a seamless way of supporting multi-user interactions. We used 
Microsoft’s HoloLens for implementing proof-of-principle (Figure 6) as follows. The first step 
is to determine the current context and build recognition priors using one or more of the 
following datasets: 

• Location: The physical location of the user and object in 3D space. This may leverage 
a semantically enriched or annotated 3D map of the environment 

• Available wireless IDs: The WiFi/ BLE identifiers and measured signal strengths of 
the devices in proximity of the user 

• Interaction history: Based on the current location and habits of the user, frequent 
interactions will be prioritized with higher probabilities 

With the context information defined by the recognition priors, the actual object recognition is 
performed on a current camera image. In the proof-of-principle, this has to be manually 
triggered with the HoloLens clicker or the air-tap gesture. Future evolutions could potentially 
run this at framerate. As a last step, we run a mapping of the generated internal identifiers 
against a database with manual identifier labels or look-up tables. This could e.g. turn the 
Bluetooth ID of a MacBook into a serial number, which can be used to query third party 
repair & spare part services (see Figure 4). As a visual element, we display a virtual button 
superimposed in a subtle way on the recognized objects that can be opened. The user can 
then directly invoke a control service of the object (e.g. changing color of lights) or lifecycle 
service provided by a third party (e.g. ordering supplies). 
                                                
6 https://www.autoidlabs.ch/product-as-a-service/ 

Figure 6. HoloLens screenshot of a field-of-
view interaction prototype for retrieving 
contextual lifecycle services to an object. 
Virtual buttons instead of physical ones. 
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4. Human interface: The personal perspective 
AR technology fuses the physical world with digital content and thus has the potential of 
further evolving our human abilities. While AR applications are already possible with today’s 
smartphones, they are not specifically designed for AR interactions. It mostly remains a 
human-computer interface question when and not if different form-factors (e.g. smart 
glasses) will replace today’s smartphones. But it is not only the interaction modalities that will 
be affected by this change. A major part of new forms of AR devices is that they enable us to 
measure the user on a new scale. This data gives valuable insights into the user’s cognitive, 
emotional, and behavioral patterns, which can ultimately be used to design mind-changing 
and more natural applications in the IoT. 

4.1. Personalization: Learning preferences & context 
Since smartphones accompany us throughout the day, we implicitly feed them with data that 
can reveal personal patterns and preferences. A prominent example is the automatic 
identification of points-of-interest (e.g. where we live and work) due to our movement 
patterns (Gambs et al., 2010). Another example is the data set of installed apps. Apps mirror 
our interests and personality. In a study with 2410 users, we found that 99.75% of the users 
have a unique set of installed apps (Frey et al., 2016). This set can be used to automatically 
estimate demographics, interests, life events (Frey et al., 2015) and even personality traits 
(Xu et al., 2016) of a user. While this data can be sensitive when shared with third parties, 
ongoing research points out ways on how to enable better personalization without 
compromising privacy. When designing IoT applications, it is important that privacy control is 
built-in from the beginning. The user should be in full control of her data. Promising solution 
approaches include e.g. a blockchain based method that even allows for secure sharing with 
third parties (Frey et al., 2016; Zyskind et al., 2015).  

With AR, the topic of automatic detection of the user preferences and patterns becomes even 
more important. The camera provides an additional data source that tells the IoT system in 
which environment it operates and can help to anticipate what the user aims to do next. 
Activity recognition based on multiple sensors (Roggen et al., 2013) and environment 
recognition (Cleveland et al., 2016) will thereby play a key role to enable a fully personalized 
experience. Environments might also become smarter and recognize the user’s intentions 
and actions. This could further complement the smart device’s abilities. A recent example of 
such an environment is Amazon Go, which uses computer vision technology to automatically 
detect when a user picks up an item and puts it into a virtual cart7. 

 

 

                                                
7 http://www.geekwire.com/2016/amazon-go-works-technology-behind-online-retailers-groundbreaking-new-grocery-store/ 
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4.2. Measuring the user: Towards digital biomarkers 
AR is not just an opportunity for enabling an immersive, personalized user experience. It also 
provides new means for measuring the user. Digital biomarkers – the digital counterpart of 
classical biomarkers (Strimbu & Tavel, 2010) – represent a new class of physiological and 
behavioral measures. They can be monitored with consumer devices and serve as indicators 
for physio-pathological, neurological, and behavioral conditions. The following table lists 
selected examples of digital biomarkers that can be measured with smartphones and AR 
devices. 

 

Digital biomarker  Data sources  Description of example 

Breathing Microphone Asthma control: Analyzing microphone data to reveal 
breathing in/out patterns, chest vs. belly breathing, and 
estimation of the respiratory peak flow rate 

Spatial orientation IMUs, camera 
(visual tracking) 

Early dementia screening: Analyzing the motion 
accuracy when performing tasks to locate virtually 
placed objects 

Mood Texting, calls, 
apps, etc. 

Depression and burnout: Analyzing the phone/AR device 
usage patterns of texting, calling, and apps to monitor 
mood and workload over time 

Physical activity Step counter, 
IMUs, etc. 

Fitness: Analyzing movement patterns and activity 
throughout the day 

Calorie intake Camera Obesity: The user’s food intake is analyzed through the 
camera with deep learning to estimate portion size and 
calories  

Micro-motor noise IMUs Stress: Evaluation of micro-motor noise patterns of 2D 
(e.g. MouseTracker) or 3D input trajectories (e.g. head, 
controller, etc.) 

Eye movement Eye-tracking Anxiety/fear: Analysis of eye movements and pupil size 
variations 

 

The inexpensive, continuous, and real-time sensing abilities provided by IoT systems and AR 
devices will provide a myriad of data points for developing new digital biomarkers. Once 
validated, they may even serve as a basis for digital therapies. It is expected that digital 
biomarkers will foster the development of IoT applications that feature behavior change 
interventions and emotion-aware responses. 
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4.3. Persuasive computing: Influencing behavior 
Kahneman (2003) explains our decision-making behavior with two different systems. System 
1 is governed by intuition and utilizes heuristics and biases to come to fast conclusions. 
System 2 relies on rationality and therefore can produce completely different results than 
system 1. Several researchers showed that system 1 provides a major opportunity for 
systematically influencing behavior on a large scale. With so-called nudges the predictability 
of the mistakes of system 1 can be exploited (Thaler & Sunstein, 2008). This can be further 
enhanced and automated when combining this with information systems (Fogg, 2002). 
Smartphones are already used today on a large scale as mind-changers and support us in 
e.g. adopting healthier habits (Higgins, 2016).  

AR systems could take this to a whole new level, since they can not only expose us in a 
subtle way to nudges, but also potentially trick our brain in visually experiencing digital 
objects similar to physical ones. This is best explained with the psychological concept of 
presence (Figure 7). The term has been coined over 30 years ago by Minsky (1980) and 
gained significant popularity in the past few years due to the rise of mainstream virtual reality 
and augmented reality applications (Sheridan, 2016). In addition to user characteristics, the 
following factors are required to establish presence (Ijsselsteijn et al., 2000): 

• Extent and fidelity of sensory information: 
This refers to the technical ability to create 
appropriate inputs for the human 
perception system and includes properties 
such as field-of-view, resolution, or spatial 
audio. 

• Match between sensors and the display: 
This refers to sensor-motor contingencies 
i.e. the link between a user’s actions and 
their perceptible results in the system. 
This includes e.g. the tracking of a user’s 
head and corresponding real-time 
updates of the display.  

• Content factors: These refer to the ability to modify the environment, one’s own 
representation in VR/AR, autonomy of the environment, and social elements such 
as reactions by other actors (virtual or real) as response to one’s verbal and non-
verbal communication cues. 

In other words, an AR/VR system with digital objects is perceived as real in our head when 
perfect presence is achieved. This makes it suitable to train our system 1 in a systematic 
way. As an example, this explains the popularity of Virtual Reality Exposure Therapy (VRET) 
applications to desensitize memories surrounding trauma. Therefore, it is expected that when 
interacting with things, nudges in AR systems will become a powerful way to assist us in our 
daily lives. Of course, this also means that developers of IoT systems have to be more aware 
of the privacy and ethical implications when designing such powerful systems.  

122 PRESENCE: VOLUME I , NUMBER I

of information concerning a salient variable to ap-
propriate sensors of the observer);

2 control of relation of sensors to environment (e.g.,
ability of the observer to modify his viewpoint for
visual parallax or visual field, or to reposition his
head to modify binaural hearing, or ability to per-
form haptic search) ; and

3 ability to modify physical environment (e.g., the
extent ofmotor control to actually change objects
in the environment or their relation to one an-

other)
.

These determinants may be represented as three or-
thogonal axes (see Fig. 2) since the three can be varied
independently in an experiment. Perceived extent of sen-
sory information is sometimes regarded as the only sa-
lient factor. Sometimes the other two are lumped to-
gether as "user interaction" (Zeltzer, 1990). Figure 2
shows "perfect presence" as the maximum of all three,
though it is far from clear by what function "presence" is
determined by combinations of the three. It surely is not
a simple vector sum.
Lines of constant information communicated are sug-

gested in the figure to indicate that the "extent of sen-
sory information" is a much greater consumer of infor-
mation (bits) than are the two control components,
"control of sensors" and "ability to modify
environment."

5 Major Task Variables
5.1 Independent Variables of the Task
I am not suggesting that the three principal deter-

minants of presence operate alone. They are surely task
dependent. It seems to me there are two major proper-
ties of tasks that affect behavior, both subjective and ob-
jective. These I call (1) task difficulty and (2) degree of
automation. Task difficulty may be defined in terms of
entropy measures, such as Fitts' index ofdifficulty (Fitts,
1954). Degree of automation means the extent to which
the control of the task (the ability to modify the environ-
ment) is automatic as contrasted to being manual. There
is a scale from manual to automatic, where intermediate

extent of sensory
information Á perfect presence

lines of constant
information flow

ability to
modify
environment

control of
sensors

Figure 2. Principal determinants ofsense ofpresence for a given task.

levels of automation are normally called supervisory con-
trol (Sheridan, 1987).

5.2 Dependent Variables: From Presence
to Performance

Given the three independent determinants of pres-
ence I see the larger research challenge to be the determi-
nation of the dependent variables: (1) sense ofpresence, as
measured by subjective rating and objective measures suggest-
ed above, (2) objective training efficiency, and (3) ultimate
task performance. This mapping is illustrated in Figure 3.
Tasks in which presence, learning, and performance

interrelate take many forms in time and space and stimu-
lus intensity (e.g., brightness, loudness, force). Some-
times the dynamic aspects of sensing and control are the
most important. Sometimes it is the relation of stimuli
in space. It may be useful to distinguish these and con-
sider several cases. However, before considering exam-
ples of either the temporal or spatial relations, it is im-
portant to distinguish the relative effects of efferent
information and afferent information on presence, train-
ing, and performance.

6 Afferent and Efferent Filtering:
Independence and Coupling

Causality of events in a human-machine system is
commonly characterized as a closed information/control

Figure 7. Illustration of the concept of 
presence (Sheridan, 1992) 
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4.4. Affective computing: Influencing emotions 
Gaver et al. (2003) highlighted that we might develop unexpected emotional attachments to 
smart things due to repeated interactions. One example is the study of Sung et al. (2007), 
who explored the phenomenon of seemingly social relationships between vacuum robots and 
their owners. System 1 will decide to a great degree of how successful the adoption of a 
smart thing will be. Fleisch (2010) stresses therefore the potential of emotional product 
features that can be unlocked with the IoT.  

As the affective computing paradigm (Bailey & 
Konstan, 2006; Tao & Tan, 2005) suggests, this 
requires the ability to sense and recognize emotion 
of a user. Thanks to the rich sensor suite (e.g. 
microphones, cameras, IMUs, etc.) associated with 
AR systems, digital biomarkers now become 
possible for the IoT. For example, micro-motor 
patterns give insights into mental processing 
patterns (Freeman & Ambady, 2010) and our eyes 
provide data on focus, attention, mental effort, and 
decision processes (Cavanagh et al., 2014; 
Kahneman, 1973). One example of how this can be 
used in AR is by Augereau et al. (2016) who use 
smart glasses to determine the language 
proficiency level of a user. Furthermore, by 
combining proximity sensors with machine learning, 
AR glasses are able to recognize a user’s emotions 
(see Figure 8).  

It is expected therefore that the tracking of head, hands, eyes etc. Amft et al. (2015) will 
provide a basis for embedding interactions with things into a more useful context of the 
user’s state and lead to unlocking emotional value propositions in the IoT.  
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ABSTRACT
This paper presents a novel smart eyewear that uses embed-
ded photo reflective sensors and machine learning to recog-
nize a wearer’s facial expressions in daily life. We leverage
the skin deformation when wearers change their facial expres-
sions. With small photo reflective sensors, we measure the
proximity between the skin surface on a face and the eyewear
frame where 17 sensors are integrated. A Support Vector Ma-
chine (SVM) algorithm was applied for the sensor informa-
tion. The sensors can cover various facial muscle movements
and can be integrated into everyday glasses.
The main contributions of our work are as follows. (1) The
eyewear recognizes eight facial expressions (92.8% accuracy
for one time use and 78.1% for use on 3 different days). (2)
It is designed and implemented considering social acceptabil-
ity. The device looks like normal eyewear, so users can wear
it anytime, anywhere. (3) Initial field trials in daily life were
undertaken.
Our work is one of the first attempts to recognize and evaluate
a variety of facial expressions in the form of an unobtrusive
wearable device.
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Figure 1. User Wears Our Smart Eyewear

INTRODUCTION
The concept of Affective Computing has been around re-
cently [17] and a number of researchers are gaining more
and more insights into affect detection using various ap-
proaches [1]. One of the approaches is recognizing facial
expressions from video sequences. However, this approach
is only reliable in an experimental setting.

Our goal is to recognize people’s facial expressions in daily
life. Keltner et al. described that our facial expressions pro-
vide information about our emotional states [8]. Facial ex-
pressions can let us intuit affective states including state of
mind, wellbeing, social interaction, etc. because they change
spontaneously over the course of a day depending on our
mental and physical condition and when we interact with the
environment. Although we can tell our own facial expres-
sions, we are not usually aware of our facial expressions or
their flow in daily life as it requires cognitive effort. There-
fore, we believe quantifying the state of facial expressions in
daily life will help us better understand our affective states
and lifestyle.
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Figure 8. Smart eyewear prototype that 
is able to recognize emotions by using 
photo reflective sensors in the frame and 
machine learning (Masai et al., 2016)  
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5. Internet interface: Connected to the rest of 
the world 

The third core element of the IoT is the connection to the Internet. IoT systems are generally 
not limited to single users, but greatly benefit from a connection to the rest of the world. We 
already outlined the challenges of product-service interactions in local multi-user 
environments and extend the discussion to a global setting. While the opportunities for the 
global service perspective have been reviewed in detail, we only briefly recap particular 
points from an AR perspective: 

• Discovery and invocation of remote services: By using digital identifiers of objects and 
providing a metadata context, suitable services by third parties can be made instantly 
accessible on a global scale. This would lead to an open market to find the best 
services available for any specific object and issue at hand. 

• Connection with other users: As several examples show, the social and collaborative 
aspect of AR can be unlocked in scenarios such as remote support or virtual 
meetings. For example, this might include the usage of holograms as suggested by 
Microsoft. 

• Leveraging global databases and collective intelligence: Local information can be 
collected, analyzed, and enriched when combined with global databases and 
repositories. User generated content can be shared and thus help to contribute to a 
better mapping of the physical world to the Internet. 

• Global optimization and prediction: By observing the data of multiple users, predictive 
algorithms can help to optimize a system to a level surpassing the scope of any local 
optimization. For example, a smart heating system of a building would adapt 
differently if it had data from multiple users and habits over a longer time compared to 
the limited possibilities of local control. 

Since the business models in this area are still evolving, it is hard to predict how these 
services will be monetized and what the killer applications will be. However, it is already clear 
that this will pose new challenges for standards (e.g. digital identifiers), shared data 
strategies (Lebeck et al., 2016), and collaborative machine learning applications (Robert et 
al., 2016). 
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6. Implications and outlook 
As outlined, the IoT can benefit a great deal from AR. Starting with smartphones, the IoT was 
enhanced by a personal gateway that connects physical objects, the user, and the Internet. 
This role will further evolve with the use of AR technologies as outlined in this article.  

Smartphones will be replaced by specific AR devices  
While supporting AR applications, smartphones are not designed for this purpose. Thus, it is 
highly likely that over the next decade, smartphones will be replaced by specific devices in 
new form-factors (e.g. glasses) with superior performance in conveying presence in AR 
experiences.  

AR will connect more objects to the IoT 
By bringing in a heavy focus on visual computing and object recognition, AR will offer 
additional ways to automatically assign digital identifiers to physical objects. This will help to 
expand from specially manufactured smart objects and tagged objects to the vast majority of 
plain objects. Thus, more projects can be turned into points of service for accessing lifecycle 
services. 

AR will enable shared interactions with objects 
Today, most IoT systems require a setup that authorizes only a fixed set of people to access 
their control or lifecycle services. This limits these applications for a multi-user environment. 
In this article, we have introduced FOV interactions leveraging a hybrid object recognition 
approach to improve the user experience and enable proximity-based service interactions in 
a spontaneous way.  

VR will serve as a sandbox to improve IoT user experiences  
Although Mark Weiser sees the ubiquitous computing approach of IoT as “roughly the 
opposite of virtual reality” (Weiser, 1999), VR will still play a key role to accelerate the 
development of IoT applications. Similar as A/B testing for websites, VR offers the ability to 
understand and optimize people’s interactions with objects in simulated environments. It 
represents a sandbox especially for spontaneous reactions and interactions driven by our 
system 1. Thus, VR can be seen as a distraction-free area to craft new, seamless user 
experiences that later can be deployed in the field via AR. 

Digital biomarkers will enable a behavior and emotion-aware IoT 
More than smartphones, AR devices will enable the understanding of the user’s context in 
terms of behavior, health, and emotions. Currently, most IoT products are designed in a very 
rational way. Digital biomarkers measure the user and enable the design of behavior and 
emotion-aware IoT applications. In the future, we hopefully see smart things smiling back at 
us and offering help when they sense that we are confused. After all, smart things should not 
exist to keep us busy, but rather to make our lives easier. 
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