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Abstract—Connected sensors are on the march to
become pervasive. While they are often deployed for a
single purpose it is worth to take a second look. In this
study, we show that the widespread Netatmo weather
station which is intended to monitor and improve in-
door climate can be used to estimate binary occupancy
of individual rooms. We collected data from 11 rooms
in 3 apartments including binary occupancy for several
days. We show that CO2 measurements and derivatives
thereof qualify as observables to be used in Hidden
Markov Models and achieve accuracies well above 75%
in most cases. However, we see that the accuracy metric
is often misleading for such timeseries data and consider
additional performance metrics as well which show
varying results depending on the respective occupancy
patterns of a room.

I. Introduction
The Internet of Things (IOT) promises to change the

world and our lives. Billions of connected devices will be
deployed which deliver zettabytes of data. However, so far
most so-called IOT applications are vertically integrated
and the generated data is captured in silos [1]. Before a
Future Internet [2] is able to break those silos, an escape
is given by a growing number of APIs which allow to find
new means for data and enable developers to build mash-
ups revealing innovative use-cases and applications. One
prominent area of application for the IOT is the smart
home. Contrary to intelligent fridges, smart thermostats
and room climate monitoring solutions are gaining trac-
tion. Therefore, it is worth to take a second look at the
arising data. In this study, we show that measurement data
from the Netatmo weather station1, a commercial indoor
and outdoor climate sensor with a cloud API, can be
used for binary occupancy estimation of individual rooms.
This information in turn may be useful for several smart
home application, e.g. to control heating systems more
efficiently. The structure of this work is as follows. First,
the Netatmo weather station is presented in Section II.
Thereafter, in Section III previous work on environmental
sensor-based occupancy detection is reviewed. In Section
IV, the observational setup and data acquisition shown.
Next, in Section V the Hidden Markov Model (HMM) is
introduced and the feature identification is discussed. In

1http://www.netatmo.com

Section VI the performance of the occupancy estimation
using the HMMs is presented along several performance
metrics. Before concluding in Section VIII, limitations and
the application of the estimation for heating control is
discussed in Section VII.

II. Room Climate Sensors
Netatmo is probably the first mainstream connected

room climate sensor and outdoor weather station. The
system consists of a base station that measures temper-
ature, relative humidity, CO2, barometric pressure and
acoustics in 5min resolution. The base station has both, a
wifi and a 868 Mhz, module. The 868 Mhz module allows
to connect an outdoor module that measures temperature,
relative humidity and barometric pressure, and up to
three additional room modules which are similar to the
outdoor module but entail an additional CO2 sensor. The
wifi module enables the communication with the Netatmo
cloud service where the measurement data is stored and
is available through an authenticated RESTful API. The
intended main use case is to monitor indoor environmental
variables in order to improve your indoor wellness. Figure
1a shows the base station, the outdoor module and the
main screen of the iPhone app. The map in Fig. 1b indi-
cates the spread of just this particular IOT room climate
sensor. Note also that sharing outdoor temperature data
is voluntary and meanwhile comparable products have hit
the market.

III. Previous Work
There is a vast amount of research focusing on occu-

pancy detection and further concepts of indoor location
tracking and identification [3]–[7]. However, the purpose
of this work is to illustrate that a widespread commercial
room climate sensor can be alienated to infer room-level
occupancy. For this reason, the focus of this review is on
research that is based on comparable sensors.

Living beings generate heat, exhale moisture and CO2,
and usually produce some noise. Therefore, it is natural
to ask the question if room climate sensors can be used to
detect occupancy. Thus far, scholars have mainly focused
on office buildings. In this scenario, room climate sensors
with CO2-sensing capabilities are already common to



(a) Sensor modules and iPhone app (b) Weathermap showing outdoor temperatures of participating
Netatmo modules

Fig. 1. Netatmo connected room climate sensor/weather station

provide input for HVAC systems. The prevalent approach
was to develop a steady-state or dynamic model based on
the mass balance of CO2. However, this approach is only
viable if room sizes and air exchange rates are known. The
idea of applying machine learning techniques on indoor
climate sensor data in order to infer occupancy was first
implemented by Lam and Dong et al. [5]. They equipped
an open plan office space with a CO2 sensor network
(2min sampling rate), and an additional sensing network
consisting of luminosity, temperature, relative humidity,
motion (PIR) and acoustics sensors (1min sampling rate).
Based on a measure called information gain the best set
of features to predict occupancy levels were selected. This
process led to a feature set consisting of CO2, acoustics
and motion. In a follow up, Dong et al. [8] used these
features to feed Support Vector Machines, Neural Net-
works and Hidden Markov Models (HMMs) and concluded
that HMMs are better suited because they exhibit less
fluctuations due to their inherent temporal structure.
Quantitative results in terms of accuracy, however, are not
conclusive. Han et al. [9] argued that temporal correlations
between non-consecutive measurements of environmental
parameters may be important. These correlations were
taken into account by using an Autoregressive Hidden
Markov Model (ARHMM). However, the average accu-
racy merely improved from 79.63% (HMM) to 80.78%
(ARHMM), although the number of model parameters in-
creases significantly. Only recently CO2-based occupancy
detection in residential buildings was investigated in com-
parison to PIR and device-free localization [7]. A three-
bedroom dwelling was equipped with CO2 sensors, PIR
sensors, and an ultra-wideband tracking system in several
rooms. Furthermore, the dwelling was equipped with a
mechanical ventilation heat recovery (MVHR) system. In

this study, occupancy detection on room and dwelling level
was not investigated using machine learning techniques
but rather by discussing the graphs of the time series
data. Concerning CO2, the authors concluded that air
circulation patterns and status of doors and windows
strongly effect CO2 measurements and should therefore
taken into account in order to allow reliable occupancy
detection.

In summary, besides the recent, qualitative discussion
occupancy estimation using room climate sensors was only
investigated in office scenarios. Such a setting differs dis-
tinctively from the residential setting. While those offices
were equipped with ventilation systems, a typical dwelling
in central and northern Europe is ventilated manually by
opening windows. Furthermore, occupancy patterns and
the number of occupants are not comparable.

IV. Data Acquisition
Room climate data was collected in three apartments

with 11 rooms in total (see Table I). Binary occupancy
data was collected for periods between one and two weeks
using switches in two apartments and cameras in one
apartment. The switches were installed in the hallway
besides every door to a room and a sign was attached to
the door in order to remind inhabitants to operate the
switch when entering a room as first as well as leaving a
room as last. The switches transferred their status to a
Raspberry Pi which logged the states and stored it in the
database. In the apartment with cameras, two cameras
were installed in the hallway which covered every door.
The open source computer vision library OpenCV [10] was
used to extract sequences with movements in the vicinity
of doors. The timestamps of these events were extracted
automatically and written to a file. Thereafter events were
labeled manually.



TABLE I
List of rooms.

Apartment Room Occupancy Period [days] Id

1
Kitchen Switch 9 1
Livingroom Switch 9 2
Bathroom Switch 9 3
Bedroom Switch 9 4

2
Kitchen Switch 11 5
Livingroom Switch 11 6
Bathroom Switch 11 7
Bedroom Switch 11 8

3
Bedroom Camera 16 9
Bedroom Camera 15 10
Bathroom Camera 16 11

V. Methodology
A. Hidden Markov Model

A Hidden Markov Model2 is a statistical model in which
the dynamics are described by a first-order Markov process
with unobservable (hidden) states. The hidden states are
expected to generate distinct observables. In general a
HMM is defined by a parameter set which can be written
as the 3-tuple λ = (A, b, π). The matrix A consists of the
state transition probabilities

aij = P (qt+1 = Sj |qt = Si) 1 ≤ i, j ≤ N (1)

where {Si} is the set of hidden states with cardinality N .
b denotes the observation symbol probability distribution
or emission distribution

bi(xt) = P (Xt = xt|qt = Si) 1 ≤ i ≤ N (2)

where xt denotes the instantiation of the observables at
time t. These may be categorical or continuous. Finally,
the initial state probabilities are described by

πi = P (q1 = Si) 1 ≤ i ≤ N (3)

An illustration of the HMM can be seen at Fig. 2.
In this work, for each room an independent HMM

is assumed. The hidden states are identified with the
occupancy of a particular room. A room is in the occupied
state (O) if at least one person is present and in the vacant
state (V) otherwise (N = 2). While this model is rather
simple it has the advantage of having a small number of
parameters which enables an reliable estimation using a
limited training set.

B. Feature Identification
In the beginning of Section III the effect of human

presence on environmental variables was briefly discussed.
Now the question arises which measurement variables
qualify as observables for the HMM and how should the re-
spective emission probabilities be modelled. An approach
to pursue these questions is to investigate histograms of
measurement data. Figure 3 shows histograms of CO2,

2Consult [11] for an excellent introduction.
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Fig. 2. Illustration of the Hidden Markov Model. Si denotes the state
S at the i-th time step. X

(j)
i denotes the j-th observable at the i-th

time step.

its first and second derivative3 as well as of temperature
and relative humidity. Red (blue) color indicates that the
room is vacant (occupied). In the histograms of CO2 and
their derivatives occupancy and vacancy can be separated
reasonably well. This is not the case for temperature
and relative humidity. Other influences cover the effect
of human presence on these variables. In the case of tem-
perature for instance, outside temperature, solar radiation
and the heating system have a far greater effect on room
temperature than a single human being. Hence, CO2 and
its first and second derivative are selected as features,
i.e. observables, for the HMM. While the derivatives of
CO2 could be modeled as categorical variables being
either positive or negative, for the actual CO2 values
a continuous distribution has to be used. However, in
order to have a simple model one multivariate Gaussian
distribution is used to model the emission probabilities. A
multivariate Gaussian distribution is defined by a vector
of the means and the covariance matrix. Here, we assume
no correlations between the observables which leads to a
diagonal covariance matrix where the elements are given
by the variances.

C. Training
The data was divided in a training and validation set.

The training set consists of the first 7 days while the re-
maining days (apartment 1: 2, apartment 2: 4, apartment
3: 9) are used for validation. Through simulations and
considering the size of the overall data set, we found that
at least one week, i.e. seven days of training information,
is needed for the model to adjust its parameters and
guarantee an adequate performance.

The state transition probabilities aij are given by count-
ing the transitions in the training set and computing their
relative frequencies. In order to calculate the emission
probabilities, the measurement data of the observables in
the training set is divided according to the state they
belong to. Thereafter, the parameters of the Gaussian

3Derivatives are computed by interpolating the original data with
third-order splines and computing derivatives thereof.
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Fig. 3. Histograms for feature identification (room Id 9). The cyan (red) color denotes occupancy (vacancy).

distributions are approximated by

µi ≈ x̄i = 1
ni

ni∑
j=1

xij (4)

and

σ2
i ≈ s2

i = 1
ni − 1

ni∑
j=1

(xij − x̄i)2 (5)

where ni denotes the cardinality of the training set with
state Si. The initial state probability πi is set to be the
relative frequency of Si in the training set.

D. Prediction of Hidden State Sequence
The prediction of the hidden state sequence is iden-

tified with the problem of finding the single best state
sequence given the model and observations, i.e. maxi-
mizing P (S|X,λ). The formal solution to this problem
is based on dynamical programming and is called the
Viterbi algorithm [12], [13]. Herein, an implementation of
the algorithm in R was used [14].

VI. Results
A. Performance Metrics for Binary Occupancy Estima-
tion

In order to evaluate the performance of the binary
occupancy estimation the following metrics are consid-
ered: accuracy ( T P +T N

T P +F P +T N+F N ), precision ( T P
T P +F P ),

sensitivity ( T P
T P +F N ), specificity ( T N

F P +T N ) and F1 score
( 2T P

2T P +F P +F N ). Hereby, TP is the number of true posi-
tives, TN the number of true negatives, FP the number
of false positives and FN the number of false negatives.
Positive (negative) refers to the occupied (vacant) state.
In all cases a higher number means that the model is able
to make a better prediction.

B. Evaluation
In Figure 4 the performance metrics of the prediction

are shown. The accuracy as well as the specificity is above
75% in most cases. At first glance accuracy seems to
be a reasonable metric as it is defined as the ratio of
correct predictions and all predictions. However, if a room
is vacant most of the time, the accuracy might be close
to one even though the model failed to predict the short
intervals of occupancy. Specificity which is given by the
ratio of correct vacancy predictions and all vacant times
is even more biased in such a case. Since all residents are
working, there is in general a much higher probability to
find a room vacant than occupied. Therefore, precision and
sensitivity are much more informative. It can be seen that
in rooms which are visited frequently for short periods
of time like bathrooms and kitchens these measures are
particularly low (c.f. Fig. 6). The zeros in these metrics for
room 2 are because the living room was not used during
the two days which were used for validation.

Figure 5 illustrates two days of occupancy estimation
for two different rooms. These are archetypal, since Fig.
5a represents a room with quite continuous periods of
occupancy (bedroom) whereas Fig. 5b represents a room
with brief visits (bathroom). Besides the delay in the
evening, the occupancy estimation of the bedroom resem-
bles the general occupancy pattern. For the bathroom,
only the longer visits are detected. Since the room is small
the occupancy prediction is hardly delayed. However, the
transition to the vacant state is delayed.

VII. Discussion

A. Occupancy Ground Truth
The results for the apartment with camera-based ground

truth are considerably better than for the apartments with



0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

6 7 8 9 10 11

Room Id

M
et

ric
 S

co
re

Accuracy F1score Precision Sensitivity Specificity

Fig. 4. Performance metrics on validation set.

switch-based ground truth. Looking at the individual time
series of each room the reason for this becomes obvious.
Although there were signs at each door to remind partici-
pants to operate the switches it is uncertain if they did it
always correctly. Indeed, there are occurrences in the data
which are obviously erroneous. For instance, in one case
ground truth shows that the kitchen (Id 5) was occupied
all over the night but the participants explained that
this did not happen. Therefore, the switch-based ground
truth is dubious. The camera-based approach in contrary
is precise but the effort to evaluate the recordings is huge
although we used computer vision-based motion detection
to streamline the process. Furthermore not every partic-
ipant agrees to be monitored by cameras. In a first test,
we tried to use iBeacons4 to gain room-level occupancy
information. This approach involves that the participants
would always carry their smartphones. However, it turned
out that location tracking using one iBeacon per room so
far is not stable enough to enable trustworthy room-level
occupancy information.

B. Limitations
Obviously, the concentration and diffusion of CO2 de-

pends on the room size, air velocity and infiltration rate
and thus the state of windows and doors. Since this study
was carried out during winter between the end of January
and the beginning of February) windows were typically
only opened for short time periods5. During these periods
CO2-based observables are inappropriate to estimate oc-
cupancy. Hence, in summer, when windows may be open
continuously, this approach won’t work.

4A technology based on Bluetooth Low Energy
5Airing can be seen in the data quite well.

Furthermore, as already discussed briefly in Section
VI-B, short intervals of occupancy (or vacancy) are hard
to predict (see Fig. 5b). This has two main reasons. First,
the sampling rate of the sensor is 5 min. Second, depending
on the size of the room and the location of the sensor it
may take some until significant changes of CO2 reach the
sensor. An additional instant sensing method like acoustics
(which is available within the Netatmo base station but
again only as 5 min moving averages) or motion could
lead to a great improvement in such scenarios.

Finally, in this work a simple form of supervised learning
was used to determine the parameters of the HMM. In a
real-world setting such training data won’t be available.
However, considering Figure 3 again, it might be at least
possible to define emission probabilities that could work
for different rooms. In addition, the room category may
give estimates for the transition probabilities.

C. Possible Application
Given the aforementioned limitations, a promising

application of this type of occupancy estimation is
occupancy-based heating. Since the occupancy estimation
typically lags behind the ground truth this approach is
not suitable for a reactive control system, i.e switching
the heating on (off) if occupancy (vacancy) is detected.
Note, however, that heating systems, in particular hy-
dronic systems prevailing in Europe, in general exhibit
a delayed response. In addition building dynamics are
slow. Therefore, it is already too late to switch on the
heating when people arrive. For this reason, a predictive
control system [15, c.f.] is favourable which would benefit
from historical occupancy information inferred from room
climate measurements.

VIII. Conclusion

In this work, we showed how room climate sensor data
from a consumer IOT weather station can be used to
infer binary occupancy estimation of individual rooms by
applying the well-known machine learning technique of
Hidden Markov Models. We find that observables based
on CO2 measurements qualify for occupancy estimation,
while temperature and humidity are depending more on
other environmental conditions. Although accuracies of
the occupancy estimations are high (> 75%) in almost all
cases, we find a good resemblance of the occupancy profiles
only for rooms with continuous periods of occupancy like
bedrooms and living rooms. This is supported by looking
at finer performance metrics like precision and sensitivity.

As an application we expect that in particular predictive
heating control systems could benefit from such a simple
and unobtrusive occupancy estimation. The method, how-
ever, is not suitable for reactive scenarios like switching
light, since it may take some time until the change of
CO2 is sufficiently large. This is in particular true for
larger rooms. Additional measurements like luminosity
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and acoustics, as e.g. offered by CubeSensors6 may help
to overcome these issues. Further, classical motion-based
occupancy detection could be supported by climate sensor-
based occupancy estimation because living beings interact
with their environment even if they don’t move. So far
the approach was based on having occupancy ground
truth information in order to train the model. Future
work will be directed to finding unsupervised approaches.
Interestingly, there is more than just occupancy hidden in
room climate sensor data. Ventilation behavior, showering,
cooking, sleeping and probably many more activities could
be extracted such that your smart home knows even more
about its inhabitants.
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