
Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

cambridge university auto-id centre institute for manufacturing, university of cambridge, mill lane, cambridge, cb2 1rx, uk

abstract

This report is the result of seven weeks of work by Chien Yaw WONG from Institute for Manufacturing (IfM),
University of Cambridge. Out of the seven weeks of project, a week was spent at Massachusetts Institute
of Technology (MIT) Auto-ID Centre, Boston to engage the scientists about the issues around this project.
This report contains the project information regarding the integration of Auto-ID Tagging System with an
emerging approach to distributed control referred to as Holonic Manufacturing System (HMS).

This project involves integrating an HMS developed at IFM, University of Cambridge and Auto-ID Tagging
System initially developed at MIT. Both the system were successfully integrated but full integration was
not possible due to on-going development work at MIT Auto-ID Centre and lack of development time.

The main deliverable of this project is a software interface referred to as XCHANGE, which enables com-
munication between the HMS and the Auto-ID Tagging System. The XCHANGE is capable of on-the-fly
extraction of product information and converting them into the format used by HMS. A CRMInterface
(CustomerRelationshipManagementInterface) was also developed to provide a graphical user interface
for customers to customize their production order, check and alter production requirements, and
automatically communicate with the XCHANGE for product synchronization.

The benefit of this integration was analysed and a video demonstration was developed to illustrate the
key benefits.

Chien Yaw, WONG

Integration of Auto-ID Tagging System
with Holonic Manufacturing Systems

white paper

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

Biography

white paper

Integration of Auto-ID Tagging System
with Holonic Manufacturing Systems

CAM-AUTOID-WH-001 ©2001 Copyright 2

by Chien Yaw, WONG
PhD Candidate & Research Assistant

Chien Yaw is reading his Master
of Manufacturing Engineering at
Cambridge University. He has been
involved with several automation
control project including Holonic
Manufacturing System (HMS) and
PLC programming. With the close
collaboration between MIT and
Cambridge University, he aims
to integrate Auto-ID technology
with HMS to enable a paradigm
shift in the way things are manu-
factured in the future. He is also
heavily involved in evaluating and
analysing the benefit of adopting
e-Manufacturing. In his free time,
Chien Yaw enjoys playing the piano
and listening to funky jazz.

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

Contents

white paper

Integration of Auto-ID Tagging System
with Holonic Manufacturing Systems

1. Aims .. 5

2. Auto-ID Tagging System .. 6

2.1. The Electromagnetic Identification Tag .. 6

2.2. Standards .. 6

2.3. Architecture .. 7

3. Holonic Manufacturing System.. 9

3.1. Definition of Holonic Manufacturing System .. 9

3.2. The Holonic Control Architecture .. 9

3.3. Conventional Architecture Versus Holonic Architecture 11

4. The Integration Benefit .. 11

5. The Physical Integration .. 12

5.1. The Product .. 12

5.2. The Meter Box Assembly Cell .. 13

5.3. The Video Demonstration .. 18

6. The Soft Integration.. 20

6.1. The Implementation Approach .. 20

6.2. The Product Holon Integration with the Xchange .. 21

6.3. The CRMInterface Integration with the Xchange.. 26

6.4. Summary of Communication Protocols.. 29

7. Conclusion and Recommendations .. 30

CAM-AUTOID-WH-001 ©2001 Copyright 3

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

white paper

Integration of Auto-ID Tagging System
with Holonic Manufacturing Systems

CAM-AUTOID-WH-001 ©2001 Copyright 4

Contents

8. Appendix.. 31

8.1. Machine Cell Start-Up Procedure .. 31

8.2. Machine Cells Programming Number .. 31

8.3. .PRO file for MakeAC for Customer A (Output A) .. 32

8.4. .PRO file to produce ABC for Customer A (Output A) with the condition

that Part AC is on conveyor ..33

8.5. .PRO files for to move Part AC back to Output A if Part ABC is not

required to be manufactured .. 33

8.6. .PRO files for to move Part AC back to Output B if Part ABC is not

required to be manufactured .. 33

8.7. PML FILE: 0123456789012.xml.. 34

8.8. PML FILE: 0123456789012.xml.. 36

8.9. PML FILE: MakeAC.xml .. 38

8.10.PML FILE: MakeABC.xml (With Part AC on Conveyor) .. 39

8.11. PML File: PartManufacturedOutputA.xml.. 40

8.12.PML File: PartManufacturedOutputB.xml.. 40

8.13. Source Code: XCHANGE .. 41

8.14.Source Code: CRMInterface .. 49

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 5

This report is the result of seven weeks of work by Chien Yaw WONG from Institute for Manufacturing
(IfM), University of Cambridge. Out of the seven weeks of project, a week was spent at Massachusetts
Institute of Technology (MIT) Auto-ID Centre, Boston to engage the scientists about the issues around
this project. This report contains the project information regarding the integration of Auto-ID Tagging
System with an emerging approach to distributed control referred to as Holonic Manufacturing
System (HMS).

This project involves integrating an HMS developed at IFM, University of Cambridge and Auto-ID
Tagging System initially developed at MIT. Both the system were successfully integrated but full
integration was not possible due to on-going development work at MIT Auto-ID Centre and lack of
development time.

The main deliverable of this project is a software interface referred to as XCHANGE, which enables
communication between the HMS and the Auto-ID Tagging System. The XCHANGE is capable of
on-the-fly extraction of product information and converting them into the format used by HMS.
A CRMInterface (CustomerRelationshipManagementInterface) was also developed to provide a
graphical user interface for customers to customize their order and send the requirements to the
XCHANGE for synchronization.

The benefit of this integration was analysed and a video demonstration was developed to illustrate
the key benefits.

1. aims

This project aims to integrate Auto-ID Tagging System with Holonic Manufacturing System.

The basic deliverables for this project are to provide:
1. A fully integrated system of architecture consisting of MIT Auto-ID Tagging System and

Holonic Manufacturing System.
2. A full report itemising every aspect of the integration and the rationale behind it.

This report will largely be oriented as a manual for future development.

It was hoped that during the duration of this project, it would be possible to develop a
fully presentable demonstration video of the production cell. The demonstration video
is now available from Institute for Manufacturing.

The project timeline is as follow:
First Week:
– Scoping Week

Second Week:
– Review Auto-ID Documentation
– Review Holonic Manufacturing Documentation
– Identification of integration issues for discussion

Third Week:
– MIT Auto-ID Center Visit
– Identification of full Auto-ID functionality
– Discussion of integration issues

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 6

Fourth Week:
– Identification of Critical Success Factors (CSFs) for integration
– TimeBoxing of functionality and reiterations
– Generate possible demonstration scenarios

Fifth, Sixth & Seventh Week:
– Integration of both systems using DSDM approach
– Develop Cell Demonstration
– Cell Demonstration

2. overview of auto-id tagging system

The Auto-ID Center intiated at the Massachusetts Institute of Technology, and now also with a sister
centre of University of Cambridge, is a new industry sponsored lab charged with researching and
developing automated identification technologies and applications. The Auto-ID Center envisions a
world in which all electronic devices are networked and every object, whether it is physical or electronic,
is electronically tagged with information pertinent to that object.

This section will outline the infrastructure needed to enable the vision. At the time this report was
written, much of the standards and infrastructure are still in development. Hence, care must be taken
when using information from this section.

2.1. The Electromagnetic Identification Tag

The Electromagnetic Identification (EMID) tag is a memory device with circuitry for wireless contactless
communication with an external tag reader. It is capable of storing and transmitting information such
as the EPC code (Refer Section 2.2.1).

The Radio Frequency Identification (RFID) is a subset of EMID as EMID includes classes of device that use
sub-RF frequencies to transmit information. The tag cost must be significantly low for it to be commercially
viable (the preliminary cost target for MIT Auto-ID Center is 10 cents1).

2.2. Standards

2.2.1. Electronic Product Code
The Electronic Product Code (EPC) is a numbering scheme 2 that can provide unique identification for
physical or virtual entities. The code serves as a reference for networked information; no information
about the entity is stored within the code. The code will direct any queries about the entity to where it
should go to find information on the Internet.

Scientists at MIT Auto-ID Center have proposed a 96-bit scheme, including an 8-bit header and three
data partitions 3, as shown in Exhibit 1.

2.2.2. Product Markup Language
The Product Markup Language (PML) is a standard language for describing objects. It is based on
eXtensible Markup Language (XML).

1 The Network Physical World,
MIT Auto-ID WH-001.

2 http://auto-id.mit.edu

3 (Hyperlink “http://auto-id.mit.edu”)
– Fact Sheets

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 7

PML will describe physical objects, their configuration and state. This is an extension from XML,
which possesses information about the type of data, and HTML, which possesses information about
how information should be displayed.

PML will ultimately contain:
– Static Data – such as product history information
– Instructions – such as production processes recipe
– Dynamic Data – such as most up-to-date information about location of the product
– Software – such as intelligent agents that dictates behaviour of the product

2.2.3. Object Naming Service
Object Naming Service (ONS) 4 tells computer systems where to locate information on the Internet about
any object that carries an EPC. ONS is similar to the existing Internet’s Domain Name System (DNS),
which allows Internet routing computers to identify where the pages associated with a particular Web
site are stored.

ONS will be need to carry out much more tasks more quickly than the present DNS due to the sheer num-
ber of objects that could potentially carry an EPC code in the future (the number is to the order of trillions).

The EPC, PML and ONS completes the fundamental infrastructures that are needed to link information
with physical objects. The EPC identifies the product, the PML describes the product and the ONS links
them together.

2.3. Architecture

2.3.1. PML Servers
Special servers, called PML Server will store the PML files. At the time this report was written, the exact
specifications of PML Servers are not finalised.

It is likely that XQL will be the standard query language for the PML files that are stored in PML Server
because it is developed especially for XML, a standard that the PML is based on. XQL will only extract the
relevant information needed from a possibly huge PML file for data transfer. This reduces the size of data
transfer and increases information processing efficiency at the client-side.

2.3.2. The Savant
The Savant 5 is the central “active” component that sends synthesized data to the outside world without
being polled for that data. The Idiot-Savant is a passive device that can make limited inferences on data
input via XQL queries/requests.

The Savant is an intelligent agent that manages the information flow internally, and to the outside world.
The Savant that retrieves an EPC identifier will convert EPC ID to PML server (either local or global) using

electronic product code

X . XXX . XXX . XXXXX
Header
8 bits

Manufacturer
24 bits

Product
24 bits

Serial Number
40 bits

Exhibit 1: Electronic Product Code

5 J.L.Waldrop, 2001 (MIT)

4 Developed at Massachusetts
Institute of Technology by
Dr. David Brock, Professor
Sanjay Sarma and Joseph Foley

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 8

ONS. The Savant queries the PML server for PML file and will listen to incoming requested information
from the server. Some Savants will have the intelligence to update the PML files of certain EPCs using
XQL-enabled PML Server.

The path of a full ONS/PML query is as shown in Exhibit 2.

2.3.3. The Architecture Design
The architecture design that utilizes the standards of Auto-ID tagging system is as shown in Exhibit 3.
The network system is divided into Global and Local network. The local network resides within a
confined area, such as a manufacturing plant. The Global network consists of the PML Server that can
be accessed globally through the ONS server using TCP/IP 6.

The respective functions for Savant and DBMS 7 can be found in Exhibit 3.

the savant epc identifier
Exhibit 2: The Savant queries
the PML server file.

f
f

savant acqires

epc identifier

is pml server cached?

are we using an

xql filter

use cached

pml file

yes

fno

nof

hyes hno

query pml server for

file, include filter hyes

pml server prefilters

file and returns result

resolve pml server with

ons

nof query pml server

for entire file

pml server returns

entire file

is pml file for this epc

cached and fresh?

fnofno

Exhibit 3: The architecture design
that utilizes the standards of Auto-ID
tagging system.
Savant:
– DBMS Management
– PML Server(XQL-enabled)
– Control routines
– Drivers for local system

DBMS:
– Caches PML files locally
– Caches tag reader location
– Stores timestamp

7 Database Management Systems.

the architecture design

6 TCP/IP, as a set of communications
protocols, is based on layers. Unlike
SNA or OSI, which distinguish seven
layers of communication, there are
only four layers in the TCP/IP model.
They enable heterogeneous systems
to communicate by performing network-
related processing such as message
routing, network control, error detection,
and correction.

savant

ons pml server

tcp/ip global

tag

tag

reader

reader

dbms

g

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 9

3. overview of holonic manufacturing system

The concept of holonic manufacturing involves the operation of a manufacturing function based on
the cooperation of autonomous, functionally complete entities with diverse, often conflicting goals.
This section will outline the definition and philosophy of the system, and evaluate its characteristics
with the conventional control system. More details are included in a forthcoming Auto-ID white paper
on this subject. 8

3.1. Definition of Holonic Manufacturing System

Holonic Manufacturing Systems (HMS) is defined as a holarchy which integrates the entire range of
manufacturing activities from order booking through design, production and marketing to realise
the agile manufacturing enterprise. 9

The holarchy is defined as a system of holons which can co-operate to achieve a goal or objective.
The holarchy defines the basic rules for co-operation of the holons and thereby limits their autonomy.

In essence, Holonic Manufacturing System consists of a modular architecture to support reconfigurability
of a process as well as distributed algorithms for cooperative behaviour and decision-making execution.
In this report, more emphasis will be placed on the control architecture. Algorithms for planning,
scheduling and shop floor control will not be covered.

3.2. The Holonic Control Architecture

The particular holonic control architecture developed at IfM10 consists of resource holons and product
holons that interact giving distributed control. Resource holons have both a physical element
(equipment, devices etc) and a control element (machine control, decision making, communication).
Product holons also have a physical element (raw material, pallet/fixture) and a control element
(routing/process control, decision making, communication). The product holon contains a “recipe”
of the resources and operations that are required to create the finished product.

The Holonic Control Architecture is different from the conventional architecture because each product
entity (such as products to be manufactured-) and resource entity (such as machine cells) has the
capabilities for autonomous decision-making. As shown in Exhibit 4, the conventional architecture
“resources” consist of a top-down main control system that manages the engineering database and
process plan, and passes instructions down to the machines level. No decisions are made at the
machine level.

top-down main control system
Exhibit 4

8 White Papers from Institute for
Manufacturing, University of Cambridge.

9 http://hms.ifw.uni-hannover.de/
public/Feasibil/holo2.htm

10 Jin-Lung CHIRN, 2001, IfM

machinemachine machine

gg g

control system

process planengineering database

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 10

However, as shown in Exhibit 5, the resource holons comprises of the process plan, control systems
as well as the machine. The inclusion of the control system and process plan into the machine level as
a single autonomous entity enables decision-making in the resource holons. These decision making

capabilities will enable “cooperation” between other resource holons and product holons.

The cooperation between different resource holons and product holons is often quoted in the work of
Koestler in social organisations, living organisms and human beings. Koestler defines cooperation as
a process whereby a set of entities develops mutually acceptable plans and executes these plans.

This cooperation can be shown in Exhibit 6. In the diagram, there are numerous resource holons that
are in constant negotiations with the product holons as needed. The product holons have a set of
recipes, which dictates their path through only certain or all the resource holons, and make their way
through the resource holons by cooperation with other holons. These recipes are analogous to human
DNAs, as they dictate the physical and mental being of humans individually.

resource holons
Exhibit 5

Exhibit 6
resource holons that are in constant negotiation with product holons

resource holons

machine machine machine

ph1

ph2

product holon

path of product holon

resource holon

path of resource holon

g g g

g

g

control system

g

engineering database process plan

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 11

3.3. Conventional Architecture versus Holonic Architecture

The Evaluation Matrix, as shown in Exhibit 7 shows the difference between the conventional
architecture and holonic architecture.11

As a summary, the holonic architecture is potentially more robust and resilient compared to the
conventional architecture. As it is designed to support autonomous, cooperative decision making,
each product can be treated individually, and hence a potential for a mass customisation.

HMS can execute numerous scenarios, even scenarios that were never predicted before. The conventional
architecture could support these scenarios, but only if these scenarios are pre-determined and potentially
complex algorithms are put in place.

4. the integration benefit

The feasibility of integrating Auto-ID tagging system with the HMS will be the main deliverable in the
video demonstration. Not only will the demonstration show that the integration is possible, it will take
a step further to actually illustrate the benefit of such integration. Exhibit 8 shows the advantages of
both systems and the integrated system.

evaluation matrix conventional architecture holonic architecture

structure Top-down, Detrministic, Distributed Control with
Centralised Hierarchical decision-making capability

flexibility Rigid and static architecture Flexible, programmable and
and capabilities assigned dynamic architecture
to specific layers

production time Most efficient for highly Most efficient for highly
complex algorithm complex algorithm

machine utilisation Potential for high utilisation Random utilisation
and machine balancing depending on product mix

error recovery Low resilience to failures due High resilience to failure through
to complex coding dynamic reconfiguration

ration and task re-negotiation

initial set-up time Long and tedious due to low Short due to “Plug-n-Play”
level code design

customization Difficult for individual product Potential for 100%
customization

Exhibit 7

11 Adapted from C.Y.WONG,
C.TUOHY 2001 (MET)

Glass Window

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 12

5. physical systems integration

The physical integration, to be demonstrated here, of Holonic Manufacturing System with Auto-ID
Tagging system involves one of the current production cells within Institute for Manufacturing.

This section aims to provide as much information as possible about the product and the production
cell used in this integration. At the end of this section, the focus will be on the video demonstration
and what it intends to illustrate.

5.1. The Product

5.1.1. The Product: Meter Box
The Meter Box consists of three parts: Part A, Part B and Part C. Part A forms the base for Part B and
C to reside on and it contains a tag for identification. All the parts comes in three different colour:
red, yellow and black. For this demonstration, only black parts will be used.

distributed manufacturing auto-id tagging

– Distributed (Holonic) Control
– Autonomous
– Individual Product Customisation
– ‘No Schedule’ Possible
– Plug & Play Modular System
– Easily Reconfigurable
– Various Optimization Capabilities
– Highly Resilient To Disruptions

– Product Information Availability
– Unique Product Information
– Individual Product Identification
– ‘All Data’ Possible
– Dynamic information of product
– Customizable information
– Connectivity to other platforms
– Possible hidden tags

integrated system

– Uniquely identify products for customization
in assembly

– dynamic product product mix based on
customer requirements

– Further WIP customisation during assembly
– Intelligent Production System
– Accurate Diagnostic and Prognostic Capability

ff

Exhibit 8

Exhibit 9

front

Rear Screws

top

Front Screw

Frame Part B Frame Part B Part C

Base Part A

the meter box

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 13

The sequence of assembly starts with Part C fastened to Part A using a single screw to form Part AC.
The combination of Part B into Part AC using two screws fastened at the rear will form Part ABC, as
shown in Exhibit 9 and 10. For this reason, it is necessary to flip Product AC during assembly using
the flipper unit.

5.2. The Meter Box Assembly Cell

This assembly cell includes five physical machines and two main controllers. The following section
describes the operation of each of these machines. More detailed information can be found in
the Appendix.

Exhibit 11

Exhibit 10

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 14

5.2.1. Tagging System
The tagging system is used to identify Part A at the end of the conveyor. The tag reader is the Omron
V700-HMD11 and has read and write capabilities. It is connected physically to the PLC.

Exhibit 13:
1 Tag within Product ABC
2 Tag Reader

input

buffer

output

buffer

puma

flipper

jig2

table

hirata

jig1

f

f

f

f

f

the tagging system
Exhibit 12

2

1

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 15

5.2.2. Conveyor
The purpose of this conveyor is to feed the Fanuc with Part A, B and C located precisely at the end of the
conveyor using a physical separator (Exhibit 14). The conveyor belt can run on forward and reverse mode
as needed. At the end of the conveyor, a tag reader is attached to read the tag on Part A. This tag reader
is controlled by the computer through the PLC.

5.2.3. Fanuc Robot
The Fanuc system consists of a R-J3 main controller system with a Robot M-6i. The robot is a six-axis,
electric servo-driven robot designed for a variety of manufacturing and system processes. The Fanuc
is responsible to move all the parts in the assembly cell. R-J3 has a teaching programme which is
accessible by the PC.

5.2.4. Hirata Robot

Exhibit 15:
1 Pneumatic Picker

Exhibit 14:
1 Part C
2 Part B
3 Part A

1 2 3

1

The Hirata MB-240 fastens screws onto the back plane of Part AB to attach Part C. Screws are fed via
a feeding system (Exhibit 16). This fastening operation is executed on the jig table.

5.2.5. Flipper Unit
If Part C needs to be assembled to Part AB, four screws need to be fastened by the Hirata at the back
plane of Part AB (Exhibit 17). Hence, Part AB needs to be flipped in order for the Fanuc to position the
flipped Part AB on Part C, previously positioned by the Fanuc on the Table.

2

1

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 16

Exhibit 16:
1 Pneumatic Picker
2 Screw Feeder

Exhibit 17

f

f

5.2.6. Jig Table
This jig table is used to position the parts precisely for further assembly, either by the addition of
another part by the Fanuc or by screws fastened by the Hirata. The table has two jigs, with pneumatic
pistons, to realign the parts into location. The sensors are there to indicate whether parts are in the
jigs and it will flag the PLC appropriately.

5.2.7. Controller
There are two main control infrastructures in this cell: Omron PLC and PC controller. Omron PLC is
physically connected with all the machine cells except for the conveyor belt. It allocates addresses
to each of these machines and does low-level machine operation. The PC controller consists of two
computers connected via the Ethernet network and with the PLC via RS-232 link. The PC controller
uses high-level programming language to control the behaviour of the machine as an integrated cell.

1

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 17

Exhibit 19

Exhibit 18:
1 Jig 1
2 Jig 2 with Part ABC

f

f

2

5.2.8. Output Buffer
There are two output buffers: Output A and Output B. Finished products will be dropped into the output
buffer according to specified requirements.

5.3. The Video Demonstration

The integration of both systems will not just enable extrapolated linear benefits but will also provide
a big leap towards fully customizable customer-oriented products in a highly reconfigurable, resilient
modular production cells. Hence, ideally, the video demonstration12 ideally needs to prove a capability
that could not have existed in the conventional production system.

The benefit demonstration scenarios were selected as follow:
1. Similar Products, Unique Identification
2. Intelligent Product Status Update
3. Further Customer Customization Execution

Similar Products, Unique Identification
This first demonstration scenario showed the ability to treat physically identical products uniquely.
Physically identical means that both of the products demonstrated are visually indistinguishable. The
only difference is with the information stored within the products: both products have different EPC
numbers stored within the tag. Hence, any physical sensors (colour, weights, features etc), bar code
readers or image recognition will not be able to differentiate these products.

Although they are physically identical, these products could be different internally with different
embedded chips or parts, or with different information within the same embedded chip. These product
could have different customer specifications and hence possesses different production requirements.
In the demonstration, Customer A and Customer B placed their order for Product AC. Both of the

customers are assigned with unique EPC numbers that are embedded in the tags of Part A respectively,
as shown in Exhibit 21.

1

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 18

Exhibit 20:
1 Output A (right) & Output B (left)

f
f

12 Video Demonstration available from
Manufacturing Engineering Department,
Cambridge University

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 19

Both of the parts went through the production cell with Part C added on to it to form Product AC. At
that point, both Product AC looked identical but they were inherently because Product AC of Customer
A (EPC = 123456789012) was dropped into Output A once production completed and Product AC of
Customer B (EPC = 098765432109) was dropped into Output B.

Note that in the video demonstration, both products (Customer A and Customer B) are manufactured at
the same time in the machine cell. However, having identified the identity of the product at the beginning
of the production, the product holons will find their way through the production system until the correct
output buffer.

Intelligent Product Status Update.
This dictates the ability to keep track of products in manufacturing processes. The product status
updates will provide information about the current characteristics of the product and will use this
dynamic information for intelligent purposes.

In the demonstration, once Product AC was manufactured, its production status was updated in the
PML files to indicate that the product was manufactured. Hence, the attempts in bringing Product AC
back to the conveyor was harmless, as the product “recognized its state” and was taken back to the
output buffer (instead of trying to manufacture Product AC out of Product AC). This scenario might,
for example, replicate repeat testing or processing in a flexible routing environment.

Further Customer Customization Execution.
As more and more emphasis is placed upon Customer Relationship Management (CRM), the ability
to customize the product according to the wish of customers is likely to be vital for long-term survival
of the firm. To take that step further, customers will be have the production information transparency
and customize each and every product that they own individually, while it is still in the production
process. This is a tremendous shift from the traditional product information response of “Not yet
available” to “Your product is in Pallet 23, South Wing, Level 4. Do you wish to change the require-
ments of this product?”

In the demonstration, both Product AC from Customer A and B are in Output A and B respectively. As
shown in Scenario 2, both of the products were taken back from the conveyor straight into the correct
Outputs. However, when Customer A changes the requirement from “Product AC” to “Product ABC”,
the product with EPC=123456789012 (Customer A) was brought back into the production cell for further
manufacturing process (Part B is fastened to Product AC). However, as the requirement for Product B
was not changed, it was moved back into the Output B, similar to Scenario 2.

unique epc number that are embedded in the tags

fpart a

fpart b

customer a

customer b

Exhibit 21

tag with epc

123456789012

tag with epc

098765432109

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 20

6. software systems integration

The software integration involves new software developments and integration with the existing Holonic
Manufacturing System. This section will outline the approach and the software architecture design.

6.1. The Implementation Approach

6.1.1. Dynamic Systems Development Method
The Dynamic Systems Development Method (DSDM)13 is a framework of control for the development of
IT systems to tight timescales. The lifecycle that DSDM uses is iterative and incremental. As shown in
Exhibit 22, traditional approaches fix requirements (and deliver software which satisfies all of them)
while allowing time and resources to vary during development. In DSDM, the exact opposite is true, time
is fixed for the life of a project, resources are fixed as far as possible. This means that the requirements
that will be satisfied are allowed to change. Hence an important product of the business study, is a clear
prioritisation of the high-level functional and non-functional requirements. These functional require-
ments are prioritised in TimeBoxes using MOSCOW (Must, Ought, Should, Could and Wouldn’t). DSDM
projects guarantee to satisfy at least the minimum usable subset of requirements because it identifies
the critical success factors (functional requirements of “Must” from MOSCOW prioritisation) very early
in the project and act accordingly.

This implementation approach allows this integration to be categorised to three different level of sophis-
tication: Basic, Advanced, Sophisticated. In order to achieve higher level of sophistication, certain
functionalities that are normally developed in a proper development environment, will be abandoned.
For example, due to lack of time, functionalities that are not a MUST prioritisation in Basic could be
discarded in order for the next Advanced development to continue. This is analogous to a three-course
meals whereby the starter is not fully dined in order for the person to enjoy the main course, so on and
so forth.

6.1.2. Programming Language
The choice of programming language is dependent on a few criteria. The first and foremost is time con
straint. The proposed integration period is three weeks. This includes modification to the cell (adding
the output buffers), troubleshooting existing production cell problems and so on. Therefore, the
maximum time spent for coding should be less than one and a half week. The language must be easy
to learn and easy to code. The language must support and enable XML programming, Client/Server
communications and other necessary functions.

time

traditional

rad

recources

time recourcesfunctionality

functionality

h fixed f

h vary f

dynamic system development method
Exhibit 22

13 http://www.dsdm.org

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 21

As such, Delphi has been selected as the preferred choice. Delphi has set a new standard in high-per-
formance rapid application development. Delphi is open and extensible and does not suffer from a
limited feature set. Delphi ships with a very robust set of components, each of which can be customized
in appearance and in the way it handles events. The Pascal language is also robust, giving access to
a stable run-time library and complete access to the Windows API. The look and feel is quite similar
to Visual Basic, except that Delphi uses Pascal as the core language. Although Visual Basic and Visual
C++ are the norms, they are difficult to learn in such a short period of time to provide the required
functionalities.

Microsoft XML 2.0 component could be inserted into Visual Delphi and used to parse XML documents.
Since Microsoft XML 2.0 is not language dependent, the Delphi code could be adapted with minimal
changes to suit other programming languages, rendering the code considerably scalable.

6.2. The Product Holon Integration with the XCHANGE

The aim of this integration is to provide a quick, yet extensible interconnectivity platform between the
tagging system and Holonic Manufacturing System (HMS). This integration will allow the HMS to exploit
the benefits of Auto-ID Tagging system in the existing manufacturing cell. Due to the complex legacy
architecture of the HMS and short integration period, it is not practical to change the HMS architectural
database according to the standard. The proposed solution, as shown in Exhibit 23, is a middleware 14

that manages communication between both systems.

The aims of the XCHANGE are to:
– Establish communication and data transfer with HMS via Product Holon (PH)
– Establish communication and data transfer with PML Server, or directly access

PML files locally
– Read and write information into PML files as requested by HMS
– Convert PML file into .PRO recipe files
– Extract information from PML file

Establishing communication and data transfer with HMS via Product Holon (PH).
HMS and XCHANGE will communicate using TCP/IP as the basic four layers of communication15.

tag reader .pro recipe

97 bit tag

f

the product holon integration with xchange

pml 2

global

pml 1

local
local access

using xml

parser

xchange

tcp/ip

hms

ph

f

f

f

f

f

f
ff pml server

f

ff
f

f

Exhibit 23

15 http://www1.ibm.com/servers/
eserver/iseries/beyondtech/tcp_ip_
services.htm

14 Software that mediates between an
application program and a network.
It manages the interaction between
disparate applications across the
heterogeneous computing platforms.
The Object Request Broker (ORB),
software that manages communication
between objects, is an example of a
middleware program.

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 22

Other layers of communication protocols are as defined in Section 6.4. Once all seven layers of
communications are defined, HMS will be able to send and retrieve data from XCHANGE.

Establishing communication and data transfer with PML Server, or directly access PML files locally.
Once communication with HMS is established, XCHANGE needs to have a way of accessing the PML files.
There are two ways of achieving this. The first and easiest way is to store the PML files locally and local is
defined as where the XCHANGE programme is located. Alternatively, XCHANGE could communicate with
PML server via ONS, but at the time this report was written, such an infrastructure was yet to available.

Reading and Writing information into PML files as requested by HMS.
The ability to do this should be the ultimate objective of XCHANGE. Using pre-defined communication
protocols, HMS can request to write and read information from PML files through XCHANGE. The ability
to read will enable production data of a particular product to be stored in the PML. The ability to write
will, however, allow a big leap towards much more dynamic PML files, capable of storing near real-time
information about the product.

In this implementation, HMS will be able to read production data from PML, and update the production
status accordingly, whether it is not in production, completed Part AB or Part ABC. Once HMS has
completed Part AB or Part ABC, the production data will be re-written to enable that particular product
to be picked up from the start of the production (conveyor) straight to the end of the production (drop-
zone) unless the customer requires Part AB to be further manufactured into Part ABC.

Converting PML file into .PRO recipe files.
This requirement is dedicated for this implementation only. HMS can be considered as a legacy system,
and it uses .PRO recipe files to store production data (Refer Appendix for the difference between .PRO
file and PML file format). Hence, for every production data request, XCHANGE needs to convert the PML
file on the fly to .PRO format (or a manipulated .PRO format for file transfer protocol).

Extracting information from PML file.
The actual size of PML file could be very big. The whole file contains irrelevant information for certain
requests. Hence, it has to be filtered before responding to the request. This filtering will enable only
the relevant information to be sent and hence a smaller file size (as compared to the full PML file).

pml file

<ProductionStatus>

<Info> Not in Production> </Info>

<Operation/>

</ProductionStatus>

.

.

.

<ProductionInfo>

<Machineoperations>14</Machineoperations>

<Machine>Robot1</Machine>

<ProgramNumber>1</ProgramNumber>

.

.

</ProductionInfo>

Exhibit 24: Extract and
Convert to desired format

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 23

6.2.1. Implementation Approach
The DSDM approach segments different functionalities into Timeboxes as indicated in Exhibit 25.

In Timebox 1, the implementation focus is on the basic communication between PH and XCHANGE.
This includes TCP/IP Client-Server architecture as well as other defined protocols (Refer Section 6.4)
and standards.

In Timebox 2, a more advanced feature will enable a large PML file to be extracted according to
the information needed by the client and converted into the client’s legacy format. This will enable
minimal disruption to any legacy system that XCHANGE will be “plugged” into in the future.

In Timebox 3, XCHANGE will be developed to support multi-client access, not just PH but other
applications as well. To do so, it must have a single database that is flexible and scalable for other
applications to use. It will have the capability to “plug n play” different converters, to enable rapid
and efficient future integration.

timebox 1: basic aim

Communication Protocols MUST

Read Capability MUST

Read Recipe Info MUST

Local PML Access MUST

Single File Access MUST

Single Client Access MUST

EPC and PML standard MUST

timebox 2: advanced aim

Write Capability MUST

PML to .pro conversion Ought

Pseudo-XQL Dynamic Ought

PML information Should

Exception Handling Should

Timestamp Information Could

PML ServerCould Could

timebox 3: sophisticated aim

Multiple File Access Must

Multiple Client Access Ought

Single Database for Clients Ought

Interactivity btwn Client Global Ought

PML using ONS Should

XQL Should

Exhibit 25: MOSCOW Prioritisation
for PH & XCHANGE Integration

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 24

6.2.2. Development Results
XCHANGE has been developed into a pseudo idiot-savant. It has most of the requirements that
constitute an idiot-savant, but lacks the ability to contact the PML server to retrieve information from
the PML files. All the PML files are stored locally within XCHANGE. The full development result are
shown in Exhibit 26.

6.2.3. Look and Feel
The user interface of XCHANGE is self-explanatory. When XCHANGE is started, it automatically goes into
the server mode, and listens for incoming commands. The “Update Directory” button as shown in
Exhibit 27 updates the local PML files directory. The “Extracted XML Data” and “Activity History” are
static information regarding the processing of information.

timebox 1: basic aim result

Communication Protocols MUST Yes

Read Capability MUST Yes

Read Recipe Info MUST Yes

Local PML Access MUST Yes

Single File Access MUST Yes

Single Client Access MUST Partial

EPC and PML standard MUST Yes

timebox 2: advanced aim result

Write Capability MUST Yes

PML to .pro conversion Ought Yes

Pseudo-XQL Dynamic Ought Yes

PML information Should Partial

Exception Handling Should Partial

Timestamp Information Could No

PML ServerCould Could No

timebox 3: sophisticated aim result

Multiple File Access Must Yes

Multiple Client Access Ought Yes

Single Database for Clients Ought Yes

Interactivity btwn Client Global Ought Partial

PML using ONS Should No

XQL Should No

Exhibit 26: PH & XCHANGE
IntegrationResult as compared
with intended MOSCOW.

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 25

6.2.4. Future Development for XCHANGE
There is a difference between a Global and Local PML file. A Global PML server could be accessed
anywhere in the world using TCP/IP or other communication protocols. A Local PML file is stored locally
within the XCHANGE server. A Local PML file might contain sensitive information such as production
recipe, and hence for security and redundancy reason will not be appropriate to store in the Global
PML server. The integration so far only involves the Local PML file. Hence, the ability to communicate
with the PML Server should be the next most important development, as shown in Exhibit 28.

Future development should also include the ability to integrate the XCHANGE straight into the HMS.
Hence, the PH will be able to communicate with the PML Server directly instead of via the XCHANGE.

Exhibit 27: Auto-ID Center Database.

tag reader .pro recipe

97 bit tag

f

communication with the pml server

pml 2

global

pml 1

local
local access

using xml

parser

xchange

tcp/ip

hms

ph

f

f

f

f

f

f

f pml server

f

ff

f

f

f

Exhibit 28

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 26

6.3. The CRMInterface Integration with the XCHANGE

The aim of this integration is to provide a mean for customers to interact with the HMS to obtain
production transparency and control over their products to be manufactured.

In this architecture design (Exhibit 29), the CRMInterface will not communicate directly with the HMS.
However, communication will be indirect via the XCHANGE. This is possible using a common database
of PML files that the CRMInterface and the HMS will use via the XCHANGE.

The aims of the CRMInterface are to:
– Establish communication and data transfer with XCHANGE
– Enable customers to manage individual product according to

manufacturing requirements
– Provide HMS production transparency to customers

Establishing communication and data transfer with XCHANGE.
CRMInterface will use the existing TCP/IP communication layers to establish basic communication
with XCHANGE. Once that is established, communication protocols (Refer Section 6.4) will enable data
transfer to and from XCHANGE.

Enabling customers to manage individual product according to manufacturing requirements.
Using CRMInterface, customers will have the ability to choose the exact unique product (as identified
by EPC) and customize according to requirements. In this implementation, customers could choose to
produce Part AB or Part ABC.

Providing the HMS production transparency to customers.
With this feature, customers could keep track of the product as it is produced in the factory. Status of
product could include location and time it is at the location (timestamp16), physical make of product
and other relevant information. In this implementation, customers will be able to get the status
production of “Not in production”, “Part AB Completed” and “Part ABC completed” as updated by HMS.
With this transparency, customer could “add on” Part C when Part AB is completed or if product is not
in production.

Exhibit 29

16 Date and time a product is at
certain location.

tag reader .pro recipe

97 bit tag

f

architecture design

pml 1

local

tcp/ip

hms

ph

f

f

f

f

f

f

f
f

f

f

f

f

f virtual link

tcp/ip

xchange crminterface

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 27

6.3.1. Implementation Approach
As in Section 5.2.1, the TimeBoxes for this software delpoment are as shown in Exhibit 30.

The aims of these timeboxes are somewhat similar to PH & XCHANGE integration. The main difference is
in TimeBox 3, where CRMInterface will have the capability to enable customers to choose whether they
would like to manufacture Part AC or Part ABC. However, once Part AC and Part ABC are made, the manu-
facturing process cannot be reversed, ie. Part B cannot be removed from Part ABC to produce part AC.

6.3.2. Development Results
The development results are as shown in Exhibit 31.

The exception handlings are partially handled. Unambiguous commands will not be executed, but there
is no fault correction logic built into it. For example, once Part AC and Part ABC are made, the manu-
facturing process cannot be reversed, ie. Part C cannot be removed from Part ABC to produce part AC.
If for instance, Part AC is requested after Part ABC is made, HMS will still execute the production for Part
AC if the product is detected on the conveyor belt. Therefore the CRMInterface should be used with great
care at this stage, and user should not blindly request for production without using the Production
Status as a guide.

timebox 1: basic aim

Communication Protocols MUST

Read Capability MUST

Read Production Status MUST

Single File Access MUST

Single Client Access MUST

EPC and PML standard Ought

Activity History Ought

timebox 2: advanced aim

Write Capability MUST

Pseudo-XQL Ought

Same database as HMS Ought

Dynamic PML information Should

Exception Handling Should

timebox 3: sophisticated aim

Multiple File Access Must

Make AB Ought

Make ABC Ought

Cancel production Should

Multiple client access Ought

Interactivity with HMS Ought

Exhibit 30: MOSCOW Prioritisation
for CRMInterface & XCHANGE Integration

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

6.3.3. Look and Feel
The user interface for CRMInterface was developed to be as user-friendly as possible. As shown
in Exhibit 32, the user has to key in the IP address and socket number of XCHANGE and press the
“Connect” button to establish TCP/IP communication with XCHANGE.

timebox 1: basic aim result

Communication Protocols MUST Yes

Read Capability MUST Yes

Read Production Status MUST Yes

Single File Access MUST Yes

Single Client Access MUST Yes

EPC and PML standard Ought Partial

Activity History Ought Yes

timebox 2: advanced aim result

Write Capability MUST Yes

Pseudo-XQL Ought Yes

Same database as HMS Ought Yes

Dynamic PML information Should Partial

Exception Handling Should Partial

timebox 3: sophisticated aim result

Multiple File Access Must Yes

Make AB Ought Yes

Make ABC Ought Yes

Cancel production Should No

Multiple client access Ought Yes

Interactivity with HMS Ought Partial

Exhibit 31: CRMInterface & XCHANGE
IntegrationResult as compared
with intended MOSCOW.

Exhibit 32

CAM-AUTOID-WH-001 ©2001 Copyright 28

CAM-AUTOID-WH-001 ©2001 Copyright 29

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

Once the communication is established, Customer A and Customer B can “Get Status of Production”
near real-time. The status will be displayed in the “Activity History”. Customers can then choose to
make the appropriate product and “Update PML” to execute production.

6.3.4. Future Development for CRMInterface
One of the most important future developments for CRMInterface is a “fool-proof” user interface. This
means that customers are restricted to making certain blatantly impossible requests such as making
Product AC although that particular product is already made into Product ABC. This will increase safety
and security of the programme.

6.4. Summary of Communication Protocols

The flow diagram below shows the communication protocols and procedure after the basic TCP/IP com-
munication has been established. Any client that needs to initiate communication with XCHANGE will
need to send a string of commands containing EPC identification number and the service number in the
following format: EPC,Service_Number,Mode

Exhibit 33
communication protocols and procedure

EPC, Requests by Client Response by XCHANGE Server
Service_Number,
Mode

EPC,1 PH requests for Sends recipe17 from EPC.xml
Production Info

EPC,2,0 PH updates status: Updates <ProductionStatus>
Not in Production in ‘EPC.xml’ to Not in Production.

Sends ‘ACK’ for acknowledgement.

EPC,2,1 and Status PH updates status: Updates <ProductionStatus> in ‘EPC.xml’ to Part AB
of product is “Not Part AB Manufactured completed. Also replaces <ProductionInfo> node with
Manufactured” Manufactured.xml. Sends ‘ACK’ for acknowledgement.

EPC,2,1 and Status PH updates status: Updates <ProductionStatus> in ‘EPC.xml’ to Part ABC
of product is “Part Part ABC Manufactured completed. Also replaces <ProductionInfo> node with
AB Manufactured” Manufactured.xml. Sends ‘ACK’ for acknowledgement.

EPC,3,MakeAB CRMInterface18 Updates <ProductionInfo> node in ‘EPC.xml’ with
requests for Part AB MakeAB.xml. Sends ‘PML Updated’.
to be produced.

EPC,3,MakeABC CRMInterface requests Updates <ProductionInfo> node in ‘EPC.xml’ with
for Part ABC MakeABC.xml. Sends ‘PML Updated’.
to be produced.

EPC,4 CRMInterface requests Sends <ProductionStatus> value from EPC.xml.
for Production Status.

18 Each customer has a CRMInterface.
XCHANGE supports multi-customers
at the same time.

17 Example of format of recipe:
14,Table1,0,Robot1,1,Table1,1, Flipper1,0

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 30

The EPC number is the product identification number and this number is used by XCHANGE to search
the database for ‘EPC.xml’ PML file in the local drive. The EPC number in this case is 123456789012
for Customer A and 098765432109 for Customer B. Once the file is loaded, XCHANGE will use the
Service_Number to decide what to do with the data and how to respond to the client. Exhibit 33 shows
the summary of request and response.

7. conclusion and recommendations

The integration of Auto-ID tagging system with the HMS is feasible. Both systems has similar and
consistent philosophy, and together, they have the potential to revolutionize the manufacturing industry,
as well as push their boundaries for the realisation of e-Manufacturing 19.

It is recommended that more advanced manufacturing scenarios to be scoped in terms of business
feasibility and developed technically into a full-fledged working software.

The possible scenarios are as follow:
– Customer rush order prioritisation, delaying current WIP execution
– Automated renegotiation with clients and suppliers sourcing based on inventory constraint
– WIP product customisation redefinition by customers enabling direct production execution

changes during assembly process
– WIP reidentification to retrieve information about the product assembly stage

19 As defined by C.Y.Wong,
M.H.Kuok, M.Dunne in
E-Manufacturing: The Benefits
of its Adoption, Manufacturing
Engineering Department.

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 31

8. appendix

8.1. Machine Cell Start-Up Procedure

– Switch on Pneumatic Air
– Power up PLC
– Switch on Extension Lead Socket
– Power up Conveyor Belt
– Power up Cell (Key in lock position, Press green switch for more than 5 seconds)
– Switch Hirata to Auto Mode. Load Syswin 3.3 and download Hirata programme.
– Power up Fanuc (three power switches, starting with the higher levels).
– Power up PC One: Load BBS, MB, Flipper, Table, Hirata.
– Power up PC Two: Load Robot Console and other product holons. For each product holons,
– Change Blackboard, Change Broker and Register.
– Test each product holon independently. (In this case, run Table programme

number 1 only).

8.2. Machine Cells Programming Number

Flipper
0 – Reverse flip-over unit for use by agent
1 – Release control of flip-over unit
2 – Flip parts

Table
0 – Use jig at position 0 (near Fanuc)
2 – Use jig at position 2 (near Hirata)
4 – Unclamp, leave & relinquish control of jig
5 – Release hold on table movement
6 – Clamp jig
7 – Unclamp jig

Hirata
0 – Screw Part B to Part A (one screw)
1 – Screw Part AB to Part C (two screws)

Fanuc

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 32

8.3. .PRO file for MakeAC for Customer A (Output A)

10 ‘Number of Operations = 10 20

Table 1 ‘Machine Name with associated programme number as follow (Reserve Table)
0
Robot 1 ‘Pick Part A from conveyor to jig
0
Table 1 ‘Clamp Part A
6
Robot1 ‘Pick Part C from conveyor to jig
1
Table1 ‘Rotate Table 180 degrees (Absolute Position Near Hirata)
2
Hirata1 ‘Fasten one screw on Part AC
0
Table1 ‘Rotate Table 180 degrees (Absolute Position Near Fanuc)
0
Table1 ‘Unclamp both Part AC
7
Robot1 ‘Pick both part to Output A
3
Table1 ‘Release table resource
4

20 Note that this is just a statement
explaining the operations. It can
be in the .PRO file and it can also
be left out.

programming numbers filename descriptionA

0 A_CJ Pick Part A from Conveyor to Jig

1 C_CJ Pick Part C from Conveyor to Jig

2 B_CJ Pick Part B from Conveyor to Jig

3 AC_JOa Pick Part AC from Jig to Output A

4 AC_JOb Pick Part AC from Jig to Output B

5 AC_JF Pick Part AC from Jig to Flipper

6 AC_FJ Pick Part AC from Flipper to Jig

7 ABC_JOa Pick Part ABC from Jig to Output A

8 ABC_JOb Pick Part ABC from Jig to Output B

9 AC_JOa Pick Part AC from Jig to Output A

10 AC_JOb Pick Part AC from Jig to Output B

11 AC_CF Pick Part AC from Conveyor to Flipper

12 ABC_JF Pick Part ABC from Jig to Flipper

13 ABC_FOa Pick Part ABC from Flipper to Output A

14 ABC_FOb Pick Part ABC from Flipper to Output B

15 AC_COa Pick Part AC from Conveyor to Output A

16 AC_COb Pick Part AC from Conveyor to Output B

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 33

8.4. .PRO file to produce ABC for Customer A (Output A) with the condition
that Part AC is on conveyor

14 ‘Number of Operations = 14
Flipper 1 ‘Reserve Flipper
0
Robot 1 ‘Pick Part AC from conveyor to jig (Need to clamp?)
11
Flipper 1 ‘Flip Part AC
2
Table 1 ‘Reserve Table
0
Robot 1 ‘Pick Part B from conveyor to jig
2
Robot 1 ‘Pick Part AC from flipper to jig
6
Flipper 1 ‘Release Flipper Resource
1
Table 1 ‘Clamp Part ABC
6
Table 1 ‘Rotate Table 180 degrees
2
Hirata1 ‘Fasten two screws on Part ABC
1
Table 1 ‘Rotate Table 180 degrees
0
Table 1 ‘Unclamp Part ABC
7
Robot 1 ‘Pick Part A from jig to Output A
7
Table 1 ‘Release table resource
4

8.5. .PRO files for to move Part AC back to Output A if Part ABC is
not required to be manufactured

1 ‘Number of Operations = 1
Robot1 ‘Pick up Part AC from Conveyor to Output A
15

8.6. .PRO files for to move Part AC back to Output B if Part ABC is
not required to be manufactured

1 ‘Number of Operations = 1
Robot1 ‘Pick up Part AC from Conveyor to Output B
16

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 34

8.7. PML FILE: 0123456789012.xml

<?xml version="1.0"?>

<NODE LABEL="Meter Box" EPC="123456789012">

<!-- Most up-to-date product location at particular time

Dates measured from January 1, 2000 00:00:00 Greenwich Mean Time

-->

<TIMESTAMP>

<DATE>1213898989</DATE>

<LOCATION LABEL="Reader A">

</LOCATION>

<DESC>Factory B, East Wing, Cell 20, Conveyor 2</DESC>

</TIMESTAMP>

<!-- Current Production Status of the product. Elements for INFO

could be Not Manufactured or Part AB Manufactured or Part ABC

Manufactured. -->

<PRODUCTIONSTATUS>

<INFO>Not manufactured</INFO>

</PRODUCTIONSTATUS>

<!-- Known information about the future of the product -->

<FUTUREINFO>

<NEXTOWNER>Customer A</NEXTOWNER>

<DUEDATE>12345679999</DUEDATE>

</FUTUREINFO>

<!-- Production information about the product -->

<PRODUCTIONINFO>

<MACHINEOPERATIONS>10</MACHINEOPERATIONS>

<OPERATION>

<OPERATIONNUMBER>1</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>0</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>2</OPERATIONNUMBER>

<MACHINE>Robot1</MACHINE>

<PROGRAMNUMBER>0</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>3</OPERATIONNUMBER>

<MACHINE>Robot1</MACHINE>

<PROGRAMNUMBER>1</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>4</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>6</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>5</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>2</PROGRAMNUMBER>

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 35

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>6</OPERATIONNUMBER>

<MACHINE>Hirata1</MACHINE>

<PROGRAMNUMBER>0</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>7</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>0</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>8</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>7</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>9</OPERATIONNUMBER>

<MACHINE>Robot1</MACHINE>

<PROGRAMNUMBER>3</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>10</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>4</PROGRAMNUMBER>

</OPERATION>

</PRODUCTIONINFO>

<!-- Product History -->

<HISTORY>

<OWNER NAME="Moulding Inc">

<DESC>Supplier</DESC>

<ACQUIRE_DATE>1235687999</ACQUIRE_DATE>

<RELEASE_DATE>1235688023</RELEASE_DATE>

</OWNER>

</HISTORY>

</NODE>

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 36

8.8. PML FILE: 0123456789012.xml

<?xml version="1.0"?>

<NODE LABEL="Meter Box" EPC="098765432109">

<!-- Most up-to-date product location at particular time

Dates measured from January 1, 2000 00:00:00 Greenwich Mean Time

-->

<TIMESTAMP>

<DATE>1213898989</DATE>

<LOCATION LABEL="Reader A">

</LOCATION>

<DESC>Factory B, East Wing, Cell 20, Conveyor 2</DESC>

</TIMESTAMP>

<!-- Current Production Status of the product. Elements for

INFO could be Not Manufactured or Part AB Manufactured or Part ABC

Manufactured. -->

<PRODUCTIONSTATUS>

<INFO>Not manufactured</INFO>

</PRODUCTIONSTATUS>

<!-- Known information about the future of the product -->

<FUTUREINFO>

<NEXTOWNER>Customer B</NEXTOWNER>

<DUEDATE>12345679999</DUEDATE>

</FUTUREINFO>

<!-- Production information about the product -->

<PRODUCTIONINFO>

<MACHINEOPERATIONS>10</MACHINEOPERATIONS>

<OPERATION>

<OPERATIONNUMBER>1</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>0</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>2</OPERATIONNUMBER>

<MACHINE>Robot1</MACHINE>

<PROGRAMNUMBER>0</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>3</OPERATIONNUMBER>

<MACHINE>Robot1</MACHINE>

<PROGRAMNUMBER>1</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>4</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>6</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>5</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>2</PROGRAMNUMBER>

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 37

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>6</OPERATIONNUMBER>

<MACHINE>Hirata1</MACHINE>

<PROGRAMNUMBER>0</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>7</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>0</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>8</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>7</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>9</OPERATIONNUMBER>

<MACHINE>Robot1</MACHINE>

<PROGRAMNUMBER>4</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>10</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>4</PROGRAMNUMBER>

</OPERATION>

</PRODUCTIONINFO>

<!-- Product History -->

<HISTORY>

<OWNER NAME="Moulding Inc">

<DESC>Supplier</DESC>

<ACQUIRE_DATE>1235687999</ACQUIRE_DATE>

<RELEASE_DATE>1235688023</RELEASE_DATE>

</OWNER>

</HISTORY>

</NODE>

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 38

8.9. PML FILE: MakeAC.xml

<PRODUCTIONINFO>

<MACHINEOPERATIONS>10</MACHINEOPERATIONS>

<OPERATION>

<OPERATIONNUMBER>1</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>0</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>2</OPERATIONNUMBER>

<MACHINE>Robot1</MACHINE>

<PROGRAMNUMBER>0</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>3</OPERATIONNUMBER>

<MACHINE>Robot1</MACHINE>

<PROGRAMNUMBER>1</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>4</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>6</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>5</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>2</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>6</OPERATIONNUMBER>

<MACHINE>Hirata1</MACHINE>

<PROGRAMNUMBER>0</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>7</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>0</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>8</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>7</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>9</OPERATIONNUMBER>

<MACHINE>Robot1</MACHINE>

<PROGRAMNUMBER>3</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>10</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>4</PROGRAMNUMBER>

</OPERATION>

</PRODUCTIONINFO>

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 39

8.10. PML FILE: MakeABC.xml (With Part AC on Conveyor)

<PRODUCTIONINFO>

<MACHINEOPERATIONS>14</MACHINEOPERATIONS>

<OPERATION>

<OPERATIONNUMBER>1</OPERATIONNUMBER>

<MACHINE>Flipper1</MACHINE>

<PROGRAMNUMBER>0</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>2</OPERATIONNUMBER>

<MACHINE>Robot1</MACHINE>

<PROGRAMNUMBER>11</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>3</OPERATIONNUMBER>

<MACHINE>Flipper1</MACHINE>

<PROGRAMNUMBER>2</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>4</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>0</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>5</OPERATIONNUMBER>

<MACHINE>Robot1</MACHINE>

<PROGRAMNUMBER>2</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>6</OPERATIONNUMBER>

<MACHINE>Robot1</MACHINE>

<PROGRAMNUMBER>6</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>7</OPERATIONNUMBER>

<MACHINE>Flipper1</MACHINE>

<PROGRAMNUMBER>1</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>8</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>6</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>9</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>2</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>10</OPERATIONNUMBER>

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 40

<MACHINE>Hirata1</MACHINE>

<PROGRAMNUMBER>1</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>11</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>0</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>12</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>7</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>13</OPERATIONNUMBER>

<MACHINE>Robot1</MACHINE>

<PROGRAMNUMBER>7</PROGRAMNUMBER>

</OPERATION>

<OPERATION>

<OPERATIONNUMBER>14</OPERATIONNUMBER>

<MACHINE>Table1</MACHINE>

<PROGRAMNUMBER>4</PROGRAMNUMBER>

</OPERATION>

</PRODUCTIONINFO>

8.11. PML File: PartManufacturedOutputA.xml

<PRODUCTIONINFO>

<MACHINEOPERATIONS>1</MACHINEOPERATIONS>

<OPERATION>

<OPERATIONNUMBER>1</OPERATIONNUMBER>

<MACHINE>Robot1</MACHINE>

<PROGRAMNUMBER>15</PROGRAMNUMBER>

</OPERATION>

</PRODUCTIONINFO>

8.12. PML File: PartManufacturedOutputB.xml

<PRODUCTIONINFO>

<MACHINEOPERATIONS>1</MACHINEOPERATIONS>

<OPERATION>

<OPERATIONNUMBER>1</OPERATIONNUMBER>

<MACHINE>Robot1</MACHINE>

<PROGRAMNUMBER>16</PROGRAMNUMBER>

</OPERATION>

</PRODUCTIONINFO>

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 41

8.13. Source Code: XCHANGE

unit XCHANGE;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, ExtCtrls, ScktComp, OleServer,

MSXML_TLB, ComCtrls, ComObj, SelectDir;

type

TForm1 = class(TForm)

Memo1: TMemo;

GroupBox1: TGroupBox;

ServerSocket1: TServerSocket;

Memo2: TMemo;

GroupBox2: TGroupBox;

TreeView1: TTreeView;

XMLDocument1: TXMLDocument;

Edit1: TEdit;

Button1: TButton;

procedure GetFileAndRespond (Str:String; sn: integer;

info: String; Socket: TCustomWinSocket);

procedure ServerSocket1ClientRead(Sender: TObject;

Socket: TCustomWinSocket);

procedure FormCreate(Sender: TObject);

procedure ServerSocket1Accept(Sender: TObject;

Socket: TCustomWinSocket);

procedure Button1Click(Sender: TObject);

procedure WriteToPML(filename: string; mlist, list:

IXMLDOMNodelist; Part : String);

procedure WriteToPML2(filename: string; mlist, list:

IXMLDOMNodelist; Part : String);

procedure UpdatePML(filename: string; mlist, list:

IXMLDOMNodeList; Part : String; NewText:String; Tag1:String;

Tag2:String);

procedure ProductionStatus(list: IXMLDOMNodelist; Part : String);

private

{ Private declarations }

public

XMLDir: String;

DataList: TStringlist;

doc: IXMLDOMDocument;

sdoc: IXMLDOMDocument;

root, child, child1: IXMLDomElement;

text1, text2: IXMLDOMText;

nlist: IXMLDOMNodelist;

procedure GetChildrenNodes(list:IXMLDOMNodelist; node:TTreeNode);

end;

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 42

var

Form1: TForm1;

implementation

{$R *.DFM}

// Main Programme

procedure TForm1.FormCreate(Sender: TObject);

begin

doc := CreateOleObject('Microsoft.XMLDOM') as IXMLDomDocument;

sdoc := CreateOleObject('Microsoft.XMLDOM') as IXMLDomDocument;

//Start Server

ServerSocket1.Active := TRUE;

//Clear Memos

Memo1.Lines.Clear;

Memo2.Lines.Clear;

XMLDir := 'C:\MIT Auto-ID\Database';

end;

// Upon Client's Request, get EPC string and service number

procedure TForm1.ServerSocket1ClientRead(Sender: TObject; Socket:

TCustomWinSocket);

var

GivenString : String;

EPC, mode2 : String;

index, mode: Integer;

begin

GivenString := Socket.ReceiveText;

// Look for , position within the GivenString

index := Pos(',',GivenString);

if index <> 0 then

begin

// Get EPC string

EPC := Copy(GivenString, 1, index-1);

// Get Service Number

mode := StrToInt(Copy(GivenString,index+1, 1));

mode2 := Copy(GivenString,index+3,Length(GivenString));

// Activate History

Memo2.Lines.Append(Format('Client %s [Port : %d]:

Getting %s.xml',

[Socket.RemoteHost, Socket.RemotePort, EPC]));

// Use EPC string and Service number to extract from PML files

GetFileAndRespond(EPC, mode, mode2, Socket);

end;

end;

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 43

// Load XML Document, respond to Service_no and get Children Nodes

procedure TForm1.GetFileAndRespond(Str:String; sn:integer; info:

String; Socket: TCustomWinSocket);

var

//Temp : TStrings;

Node: TTreeNode;

slist: IXMLDOMNodelist;

NewText1, Tag1, Tag2 : string;

begin

//Temp := TStrings.Create;

try

//Load File into XML Document

//Temp.LoadFromFile(XMLDir + '\' + Str + '.xml');

Memo1.Lines.LoadFromFile(XMLDir + '\' + Str + '.xml');

doc.loadXML(Memo1.Text);

Memo1.Clear;

// Displaying XML Root in Tree

nlist := doc.Get_childNodes;

TreeView1.Items.Clear;

Node := TreeView1.Items.Add(NIL, 'XML ROOT');

// Responding to different service_no

If (sn = 1) then // PH Ask for recipe

begin

Memo1.Clear;

GetChildrenNodes(nlist, Node);

Socket.SendText(Memo1.Text); // Send Recipe

end

else if (sn = 2) then // PH Update Status

begin

Memo1.Clear;

// Update PML!!

// Memo1.Lines.LoadFromFile(XMLDir + '\' + str + '.xml');

// sdoc.loadXML(Memo1.Text);

ProductionStatus(nlist,''); // Get Production Status

// Socket.SendText(Memo1.Text);

If (info = '0') then // Not in production

begin

Memo1.Clear;

Memo1.Lines.LoadFromFile(XMLDir + '\' + str + '.xml');

sdoc.loadXML(Memo1.Text);

NewText1 := 'Not manufactured';

Tag1 := 'PRODUCTIONSTATUS';

Tag2 := 'INFO';

UpdatePML(str, nlist, slist, info, NewText1,Tag1, Tag2);

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 44

end

else if (memo1.text = 'Not manufactured') then // not

manufactured to Part AC

begin

Memo1.Lines.LoadFromFile(XMLDir + '\' + str + '.xml');

sdoc.loadXML(Memo1.Text);

NewText1 := 'Part AC Manufactured';

Tag1 := 'PRODUCTIONSTATUS';

Tag2 := 'INFO';

//Update <ProductionStatus>

UpdatePML(str, nlist, slist, info, NewText1,Tag1, Tag2);

//Update Recipe to PartManufactured.xml

Memo1.Clear;

If (str='123456789012') then

Memo1.Lines.LoadFromFile(XMLDir + '\' +

'PartManufacturedOutputA.xml')

else

Memo1.Lines.LoadFromFile(XMLDir + '\' +

'PartManufacturedOutputB.xml');

sdoc.loadXML(Memo1.Text);

slist := sdoc.getElementsByTagName('PRODUCTIONINFO');

WriteToPML2(str, nlist, slist, info);

end

else if (memo1.text = 'Part AC Manufactured') then //

Part ABC Produced

begin

Memo1.Lines.LoadFromFile(XMLDir + '\' + str + '.xml');

sdoc.loadXML(Memo1.Text);

NewText1 := 'Part ABC Manufactured';

Tag1 := 'PRODUCTIONSTATUS';

Tag2 := 'INFO';

//Update <ProductionStatus>

UpdatePML(str, nlist, slist, info, NewText1, Tag1, Tag2);

//Update Recipe to PartManufactured.xml

Memo1.Clear;

If (str='123456789012') then

Memo1.Lines.LoadFromFile(XMLDir + '\' +

'PartManufacturedOutputA.xml')

else

Memo1.Lines.LoadFromFile(XMLDir + '\' +

'PartManufacturedOutputB.xml');

sdoc.loadXML(Memo1.Text);

slist := sdoc.getElementsByTagName('PRODUCTIONINFO');

WriteToPML2(str, nlist, slist, info);

end;

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 45

Socket.SendText('ACK'); // Acknowledgement

Memo2.Lines.Append(Format('%s [Port : %d]: %s',

[Socket.RemoteHost, Socket.RemotePort, 'Acknowledged']));

end

else if (sn = 3) then // CRMInterface wants to update PML

begin

Memo1.Clear;

Memo1.Lines.LoadFromFile(XMLDir + '\' + info + '.xml');

sdoc.loadXML(Memo1.Text);

slist := sdoc.getElementsByTagName('PRODUCTIONINFO');

WriteToPML(str, nlist, slist, info);

Socket.SendText(Format('PML Updated : %s', [info]));

Memo2.Lines.Append(Format('%s [Port : %d]: %s for request: %s',

[Socket.RemoteHost, Socket.RemotePort, 'PML Updated', info]));

end

else if (sn = 4) then // CRMInterface needs

production status

begin

ProductionStatus(nlist,'');

Socket.SendText(Memo1.Text);

end

except

on e:Exception do

//No advanced exception handlings

Showmessage(e.message);

end;

end;

// Parse XML and extract required information for use with TreeView

procedure TForm1.GetChildrenNodes(list: IXMLDOMNodelist; node:

TTreeNode);

var

i : integer;

Name : String;

ChildList : IXMLDOMNodeList;

PNode, XMLNode : IXMLDOMNode;

ChildNode : TTreeNode;

value : String;

begin

for i:=0 to list.Get_length-1 do

begin

XMLNode := list.Get_item(i);

Name := XMLNode.nodename;

if (XMLNode.Get_nodeType = 3) then

begin

value := XMLNode.Get_nodeValue;

ChildNode := TreeView1.Items.AddChild(node, Value);

PNode := XMLNode.Get_parentNode;

if (Uppercase(PNode.Get_nodeName) = 'MACHINEOPERATIONS') then

Memo1.text := Memo1.text + Value + ','

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 46

else if (Uppercase(PNode.Get_nodeName) = 'MACHINE') then

Memo1.text := Memo1.text + Value + ','

else if (Uppercase(PNode.Get_nodeName) = 'PROGRAMNUMBER') then

Memo1.text := Memo1.text + Value + ',';

end

else

ChildNode := TreeView1.Items.AddChild(node, Name);

ChildList := XMLNode.Get_childNodes;

GetChildrenNodes(childlist, childnode);

end;

end;

// Write into PML for PH (Service_no = 2)

procedure TForm1.WriteToPML(filename: string; mlist, list:

IXMLDOMNodeList; Part : String);

var

XNodeList: IXMLDOMNodeList;

NewMNode, MNode, PNode, SNode : IXMLDOMNode;

begin

XNodeList := doc.getElementsByTagName('NODE');

MNode := XNOdeList.item[0];

SNode := list.Get_item(0);

XNodeList := doc.getElementsByTagName('PRODUCTIONINFO');

PNode := XNodeList.item[0];

NewMNode := MNode;

NewMNode.replaceChild(SNode, PNode);

doc.save(XMLDir + '\' + filename + '.xml');

end;

// Write into PML for CRMInterface (Service_no = 3)

procedure TForm1.WriteToPML2(filename: string; mlist, list:

IXMLDOMNodeList; Part : String);

var

XNodeList: IXMLDOMNodeList;

NewMNode, MNode, PNode, SNode : IXMLDOMNode;

begin

XNodeList := doc.getElementsByTagName('NODE');

MNode := XNOdeList.item[0];

SNode := list.Get_item(0);

XNodeList := doc.getElementsByTagName('PRODUCTIONINFO');

PNode := XNodeList.item[0];

NewMNode := MNode;

NewMNode.replaceChild(SNode, PNode);

doc.save(XMLDir + '\' + filename + '.xml');

end;

// Update PML

procedure TForm1.UpdatePML(filename: string; mlist, list:

IXMLDOMNodeList; Part : String; NewText:String; Tag1:String;

Tag2:String);

var

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 47

slist, XNodeList: IXMLDOMNodeList;

NewMNode, MNode, PNode, SNode : IXMLDOMNode;

sChildNode, mChildNode, pChildNode :IXMLDOMNode;

begin

XNodeList := doc.getElementsByTagName(Tag1);

MNode := XNOdeList.item[0];

mChildNode := MNode.Get_firstChild;

slist := sdoc.getElementsByTagName(Tag2);

sNode := slist.Get_item(0);

sChildNode := sNode.Get_firstChild;

sChildnode.Set_text(NewText);

XNodeList := doc.getElementsByTagName(Tag2);

PNode := XNodeList.item[0];

pChildNode := PNode.Get_firstChild;

NewMNode := MNode;

NewMNode.replaceChild(sNode, pNode);

doc.save(XMLDir + '\' + filename + '.xml');

end;

// Extract Production Status

procedure TForm1.ProductionStatus(list: IXMLDOMNodelist; Part :

String);

var

i : integer;

Name : String;

ChildList : IXMLDOMNodeList;

PNode, XMLNode : IXMLDOMNode;

value : String;

begin

for i:=0 to list.Get_length-1 do

begin

XMLNode := list.Get_item(i);

Name := XMLNode.nodename;

if (XMLNode.Get_nodeType = 3) then

begin

value := XMLNode.Get_nodeValue;

PNode := XMLNode.Get_parentNode;

if (Uppercase(PNode.Get_nodeName) = 'INFO') then

Memo1.Text := Memo1.Text + Value;

end;

ChildList := XMLNode.Get_childNodes;

ProductionStatus(childlist,'');

end;

end;

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 48

// Display connection in Activity History

procedure TForm1.ServerSocket1Accept(Sender: TObject;

begin

Memo2.Lines.Append(Format('Client Accepted from %s [Port : %d]',

[Socket.RemoteHost, Socket.RemotePort]));

end;

// Get Directory for XML Files

procedure TForm1.Button1Click(Sender: TObject);

var

Frm : TDirForm;

begin

Frm := TDirForm.Create(Self);

Frm.ShowModal;

edit1.Text := Frm.DirectoryListBox1.Directory;

XMLdir := edit1.Text;

Frm.Destroy;

end;

end.

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 49

8.13. Source Code: CRMInterface

unit CRM;

interface

uses

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

Dialogs,

StdCtrls, ScktComp;

type

TCRMInterface = class(TForm)

ListBox1: TListBox;

EPC: TLabel;

Customer: TLabel;

GroupBox1: TGroupBox;

Button3: TButton;

ListBox2: TListBox;

Button4: TButton;

Edit1: TEdit;

ClientSocket1: TClientSocket;

GroupBox2: TGroupBox;

GroupBox3: TGroupBox;

Edit3: TEdit;

Edit4: TEdit;

Label3: TLabel;

Label4: TLabel;

Button6: TButton;

memo1: TMemo;

Button7: TButton;

ListBox3: TListBox;

procedure ListBox1Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure Button3Click(Sender: TObject);

procedure Button5Click(Sender: TObject);

procedure ClientSocket1read(Sender: TObject; Socket:

TCustomWin Socket);

procedure Button6Click(Sender: TObject);

procedure Button7Click(Sender: TObject);

procedure Button4Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

EPCs : array [0..1] of array [0..1] of String;

Customers : array [0..1] of String;

Requests : array [0..2] of String;

end;

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 50

var

CRMInterface: TCRMInterface;

implementation

{$R *.DFM}

procedure TCRMInterface.FormCreate(Sender: TObject);

begin

// Clear Activity History

memo1.clear;

// Data

Customers[0] := 'Customer A';

Customers[1] := 'Customer B';

EPCs[0][0] := '123456789012';

EPCs[0][1] := 'N/A';

EPCs[1][0] := '098765432109';

EPCs[1][1] := 'N/A';

Requests[0] := 'MakeAC';

Requests[1] := 'MakeABC';

Requests[2] := 'Cancel Operation';

ListBox1.Items.Add(Customers[0]);

ListBox1.Items.Add(Customers[1]);

ListBox1.ItemIndex := 0;

ListBox1Click(Self);

ListBox3.Items.Add(Requests[0]);

ListBox3.Items.Add(Requests[1]);

ListBox3.Items.Add(Requests[2]);

end;

procedure TCRMInterface.ListBox1Click(Sender: TObject);

var

i : Integer;

begin

i := ListBox1.ItemIndex;

ListBox2.Items.Clear;

ListBox2.Items.Add(EPCs[i][0]);

ListBox2.Items.Add(EPCs[i][1]);

ListBox2.ItemIndex := 0;

end;

procedure TCRMInterface.Button3Click(Sender: TObject);

var

i,j, k : Integer;

begin

i := ListBox1.ItemIndex;

j := ListBox2.ItemIndex;

k := ListBox3.ItemIndex;

if (i < 0) or (j < 0) or (k < 0) then Exit;

Edit1.Text := Format('%s : %s : %s',[Customers[i], EPCs[i][j],

Requests[k]]);

end;

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 51

procedure TCRMInterface.Button5Click(Sender: TObject);

begin

edit1.Clear;

end;

procedure TCRMInterface.ClientSocket1read(Sender: TObject;

Socket: TCustomWinSocket);

var

str : String;

begin

str := Socket.ReceiveText;

memo1.Lines.Append(str);

end;

procedure TCRMInterface.Button6Click(Sender: TObject);

var

Sock : Integer;

begin

// Connect to Server

ClientSocket1.Host := Edit3.Text;

Sock := StrtoInt(Edit4.Text);

ClientSocket1.Port := Sock;

ClientSocket1.Active := TRUE;

// ClientSocket1.Socket.SendText(Memo1.Text);

// memo1.clear;

Memo1.Lines.Append(Format('Server Connected at %s [Port : %d]',

[ClientSocket1.Host, ClientSocket1.Port]));

end;

procedure TCRMInterface.Button4Click(Sender: TObject);

Var

i,j, k : Integer;

Result : Word;

begin

i := ListBox1.ItemIndex;

j := ListBox2.ItemIndex;

k := ListBox3.ItemIndex;

If (k = 2) or (i = 1) then

begin

Edit1.Clear;

Edit1.Text := 'Feature not yet available';

end

Else

Result := messagedlg('ARE YOU SURE?', mtConfirmation, [mbYes,

mbNo], 0);

If (Result = mrYes) then

ClientSocket1.Socket.SendText(EPCs[i][j] + ',3,'+ Requests[k])

Else

exit;

end;

Published September 1, 2001. Distribution restricted to sponsors until December 1, 2001.

CAM-AUTOID-WH-001 ©2001 Copyright 52

procedure TCRMInterface.Button7Click(Sender: TObject);

Var

i,j : Integer;

begin

i := ListBox1.ItemIndex;

j := ListBox2.ItemIndex;

ClientSocket1.Socket.SendText(EPCs[i][j] + ',4');

end;

end.

