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Abstract 
This paper explores location-based product authentication in a situation where only the past 
locations of products that flow in a supply chain are known. We transform location-based 
authentication into a pattern recognition problem and investigate different solutions based on 
machine-learning techniques. The proposed solutions are studied with computer simulations 
that model the flow of genuine and counterfeit products in a generic pharmaceutical supply 
chain. The results suggest that machine-learning techniques could be used to automatically 
identify suspicious products from the incomplete location information. 

This paper is published in the proceedings of first International Workshop on Security for 
Spontaneous Interaction, IWSSI 2007, organized in the 9th International Conference on 
Ubiquitous Computing, Austria, September 2007. 

1. Introduction 
Ubiquitous computing technologies such as Radio Frequency IDentification (RFID), but also 
GPS and GSM, increase the location-awareness of products and other physical objects. 
Location-awareness allows for new applications and services1, including location-based 
authentication. For example, if track and trace data tells that product P is in warehouse x, 
one can conclude that a product that claims to be P but is not in warehouse x is in fact not P 
but a cloned one. In many cases, however, one only knows where a product has been, but 
not where it currently is. It means that the location of a product is known only at discrete 
points of time and the track and trace data tells, for example, that product P was observed at 
location x at time t. This case calls for different authentication methods. 

Product authentication is needed to distinguish counterfeit products from genuine ones in licit 
supply chains. Legislation in several states in the U.S. [18] as well as in Italy [4] requires that 
all pharmaceutical products are equipped with a unique pedigree record for authentication 
purposes, showing the need for technical countermeasures. This paper explores how the 
incomplete location information can be used to authenticate products that flow in a supply 
chain. We investigate the case where only a part of the supply-chain players share the 
location information of the products with a product authentication system. In this case, one 
can only know where a given product has been but not where it currently is. If all the 
custodians shared the location information, the product authentication system would have 
complete visibility and detecting clones would be straightforward. However, it is unlikely that 
the complete visibility will be always available since companies are careful what information 
they disclose.  

                                                 
1 For what comes to mobile phones, these are normaly referred to as Location Based Services (LBS) 
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We study machine-learning techniques that can be used to automatically train the decision 
rules for clone detection. Without an automated way to generate the detection rules and 
apply them to large amounts of data, the solution won't scale to large and complex supply 
chains. Moreover, our goal is not to find a solution that provides the best possible results for 
a given problem, but to study how the location information should be used to detect clones in 
different cases.  

This paper is organized as follows. Section 2 reviews the related work. Section 3 presents 
how we apply machine-learning techniques to location-based authentication. Section 4 
describes our simulator study and the findings are presented in Section 5. Section 6 
discusses the findings and we finish with conclusions and future work. 

2. Related work 
Product authentication is most often addressed in the related literature in terms of RFID-
based approaches. RFID allows for different ways to authenticate products, including track 
and trace based plausibility check (e.g., [4]), cryptographic tag authentication (e.g., [2]), and 
the use of object-specific security features that link the RFID tag to a unique product (e.g., 
[11]). Different plausibility checks include verification that the product under study has a valid 
ID number, verification that the product under study has a valid trace (data on tag), and 
verification that the product under study is not a cloned one (data on network). The cloned 
products are detected by knowing where the product should be based on complete visibility 
in the chain of custody, and the case where the location information is incomplete, to our best 
knowledge, is not formally addressed in the related literature. Juels [2] has acknowledged, 
however, that already the unique numbering of objects, even in the absence of resistance to 
RFID tag cloning, can be a powerful anti-counterfeiting tool, in terms of clone prevention and 
clone detection.  

Finding cloned products from the track and trace data can be seen as intrusion detection. 
Intrusion detection means the process of identifying and responding to malicious activity 
targeted at computing and networking resources [16]. Intrusion detection techniques are 
traditionally classified as anomaly- or signature- based. Signature-based systems act similar 
to virus scanners and look for known, suspicious patterns in their input data. Anomaly-based 
systems watch for deviations of actual from expected behavior and classify all "abnormal" 
activities as malicious. Intrusion detection techniques have been applied to RFID data, 
though so far not in supply chain applications. Mirowski [5] applied intrusion detection 
techniques to detect cloned RFID access cards, but the method is prone to false alarms. 

Also credit card fraud detection deals with similar problems than location-based 
authentication. There the problem is to detect fraudulent transactions, which corresponds to 
detection of copied credit cards, by looking for specific transaction patters in a large amount 
of data. Data mining techniques such as pattern recognition and classification have been 
successfully applied to detect fraudulent transactions (e.g., [6],[7]), and fraud-detection 
systems are currently in use to protect credit card companies and their customers. It is not 
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sure, however, which of these existing methods can be successfully applied to the domain of 
RFID. 

The concept of location based authentication relates also the location based services (LBS) 
of mobile phones, where so called speed trapps are applied to find cloned PIN cards. The 
underlying reasoning is that a mobile device cannot travel at excessive speed, for example 
faster than a commercial airplane, and so if two calls are made from a single account within a 
small time interval over two distant locations, the system can conclude that the PIN card of 
the respective account is copied. 

3. Location-based product authentication 
In this section, we describe two approaches how we apply machine-learning techniques to 
location-based product authentication. 

 

Fig 1. An illustration of location-based product authentication approach based on 
estimating the transition probabilities between the observations. 

 

 

Fig. 2 Illustration how a copied product corrupts the trace of a genuine product (G), 
creating a virtual path for the genuine product that is seen from the trace (t1 < t2 < t3 < 
t4). 
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3.1. Defining the machine-learning problems 

We assume that a product authentication system is secure if it can detect cloned products. In 
this paper, a cloned product means a counterfeit product that carries an ID number of a 
genuine product. As mentioned earlier, detection of cloned products is easy if the locations of 
the genuine products are known; for instance, if the track and trace data says that the 
genuine product is in Switzerland while a product in Japan claims to be the genuine one, the 
system can conclude that the product in Japan is a cloned one. 

However, if the track and trace data says that the genuine product was observed in 
Switzerland one week ago but makes no statement of where it is now, the abovementioned 
situation becomes complicated. We argue that the location information can still be used in 
authentication, though the authentication results become inheritably less certain in the 
absence of complete location information. As a solution, we propose that the product 
authentication system estimates the transition probability that the genuine product has 
moved from Switzerland to Japan between the two observations. This location-based 
authentication method is illustrated in Fig. 1. If the transition probability is low, for example 
because the product should have moved faster than any commercial airplane, the observed 
product in Japan is likely to be a cloned one. When we denote the previous observed 
location of a subject with Si and the current location with Sj the observation times with ti and 
tj, respectively, this location-based authentication method can be formalized as follows. 
Subject is authentic, if: 

 

ε>),,( iijj tStSP        (1) 

 

We study also another method for location-based authentication. When a genuine product 
(G) and a copied product (C) flow in a supply chain where location information is (partially) 
shared with a product authentication system, the events generated by G and C are appended 
to a single trace. In other words, the trace of G is corrupted by events that origin from C. This 
is illustrated in Fig. 2. In this way, location-based product authentication can be presented as 
a classification problem where the traces of products are classified into traces that are 
generated by only one, genuine product, and traces that are generated by genuine and (one 
or more) copied products. 

Dividing the time axis into equally-spaced discrete steps allows us to formulate observation 
vector v whose elements tell the last observed location of a product for a given time step. 
Hence, the observation vector effectively presents the known trace of a product. When there 
are no copied products in the supply chain, v is generated by a single product G that moves 
in the supply chain. When there are copied products in the supply chain, v is generated by 
multiple products, G and (one or several) C. Using two models, M1 and M2, that represent 
uncorrupted and corrupted traces, respectively, we formulate the location-based 
authentication as follows. Subject is authentic, if: 
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3.2. Stochastic supply chain model approach 

To estimate the probability in equation 1, we build a discrete-time stochastic supply chain 
model (SSCM) that has N distinct states, S1, S2,..., SN. N corresponds to the number of 
players in the supply chain who capture and share the location information, and therefore N 
is smaller or equal to the total number of supply chain players. When a product enters a state 
in the model, it will generate an observation that is analogous to sending a notification of 
receiving the product to the product authentication system. This is also when the authenticity 
check is performed. The time, measured in number of steps, that a product waits in a state is 
given by a probability density function (PDF) specific to each state. For state i, this PDF is 
denoted as  p(ΔTi)2 After time ΔT the product will enter a new state according to a set of 
state transition probabilities. The state transition probabilities are time independent and 
denoted as Pij = P(qt = Si | qt-1 = Sj), where qt is the state of the product at time t. The state 
transition probabilities have the following properties: 

N

                                                

 

∑
=

=
j

ijP
1

1 ,        (3) 0≥ijP

 

It should be noted that the state transition probabilities of SSCM do not correspond precicely 
the real location transitions in the supply chain, but only the transitions between observed 
locations, that is locations that capture and share the transaction events. 

In our model, the state transition probabilities from a state to itself (Pii) are not defined 
because the time a product spends in a state depends on the state's waiting time distribution 
(cf. Fig. 3). When S = {S1,..., S1}  is the set of states where the product has been observed, 
we consider the set of state transition probabilities, L = {P(S2 | S1),..., P(Sn | Sn-1)}, and the set 
of probabilities of waiting times between the observations, T = {P(ΔT1),..., P(ΔTn-1)}. We study 
two different confidence values that estimate the transition probability in equation 1. When Φ 
stands for some subset of probabilities L and T, these confidence values are: 

 

          (4) ∏
∈∀

=Φ
SP

i
i

Pc )(1

 

        (5) )(min)(2 iSP Pc
i∈∀=Φ

 

It is worth nothing that if we would use state transition probabilities from a state to itself 
instead of the waiting time distributions, our model would be a time-independent first-order 

 
2 We use upper case P(.) to denote a probability mass function and lowercase p(.) for a probability density 
function 
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discrete time Markov chain (DTMC). However, we have opted for defining the waiting time 
distribution because it allows for more flexible modeling. 

 

 

Fig. 3 Our stochastic supply chain model that is used to estimate the transition 
probabilities between observations. 

 

We study the performance of all six different confidence values that can be derived from the 
SSCM, i.e., ci(Φ) with i = 1 or 2 and Φ = L or T or (L U T). Using these confidence values, 
equation 1 is transformed to following form3. Subject is authentic, if: 

 

ε>Φ)(ic , }2,1{∈i       (6) 

 

The SSCM can be seen as a generalized speed trap used in authentication of mobile 
devices (Section 2). 

3.3. Hidden Markov model approach 

To estimate the probabilities in equation 2, we train a hidden Markov model (HMM) classifier 
(cf. Fig. 4). The HMM is a very powerful statistical method of characterizing observed data 
samples of a discrete-time series and it has been successfully applied in many classification 
problems such as keyword spotting [12]. The underlying assumption of the HMM is that the 
data samples can be well characterized as a parametric stochastic process, and the 
parameters of the stochastic process can be estimated in a precise and well-defined 
framework [8].  

A Markov chain can be extended to a HMM by introducing a non-deterministic process for 
each state for generating the output observations [8]. We build the classifier by training two 

                                                 
3 When using c1, the threshold ε is normalized with the number of terms in the multiplication n to ε^n.  
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models, M1 and M2, that represent the cases where there are one or, respectively, multiple 
products in the supply chain. Both models have five states, Q1, ..., Q5, and they are trained 
using the standard Baum-Welch expectation-maximization algorithm (e.g., [1]). As features of 
these models we use observation vectors v that are cut after first element of the last 
observed location. Sensitivity of the classifier is managed by a threshold ε as defined in 
Equation 2. 

 

Fig. 4 An example (left-to-right) hidden Markov model. 

4. Simulation settings 
We study the proposed authentication approaches by simulating flow of products in a generic 
pharmaceutical supply chain in a discrete event environment. Our pharmaceutical supply 
chain starts from the manufacturing level and ends to the patient who gets the drug product 
from retail level which consists of pharmacies and hospitals. Between these levels there are 
wholesalers who buy and sell drug products and can repackage them. Pharmaceutical 
supply chains are complex and the products can change hands up to half a dozen times [13], 
opening many opportunities to introduce counterfeits. 
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Fig. 5 The simulated pharmaceutical supply chain: nodes 1-2 represent the 
manufacturing level, 3-10 the wholesale level, 11-16 the retail level, and 17 the patient. 
The percentages represent reading rates in corresponding nodes. 

 

Our simulated supply chain is presented at Fig. 5. Node 1 presents the production line where 
the products obtain unique ID numbers and node 2 the manufacturer's warehouse. Nodes 3-
10 present the wholesale level, including repackaging (node 6). We consider two levels of 
pharmaceutical wholesalers, central warehouse level (nodes 3-5) and regional warehouse 
level (nodes 7-10) [14]. Arrows in Fig. 5 indicate the possible ways how products can flow 
among the different players. When a product enters a node, it waits a random time between 
minimum and maximum waiting times that are specific to each node, and moves to a new 
node according to the node's state transition probabilities. The average lead time from 
manufacturer to patient in our model is one and a half months. We assume that the 
manufacturer and half of the supply chain partners share the location information with the 
product authentication system. In reality this can be done, e.g., by reading the products' 
RFID tags and by sharing the data in EPC network [15]. Since in reality not all the products 
are always read (though that is the goal), the probability that an observation is generated 
when a product enters a data sharing node is set to 98%. In addition, we assume that 50% of 
products that enter the final node are observed, corresponding capturing and sharing the 
point-of-sales and point-of-use data. 
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We run simulations during a four month period (120 days), one time-step corresponding to 
one day. The manufacturer produces 30,000 genuine products during month two, 1000 
products a day. We inject 300 copied products randomly in the wholesale level during month 
1 (Lot A), month 2 (Lot B), and month 3 (Lot C). All 900 copied products have different 
identities, copied from the genuine products. In about 10% of the cases, a genuine product 
and its clone are observed in two different locations during one time step. Though in these 
cases the clones could be detected by defining that a product cannot be in two locations 
during one day, these collided products are omitted from the results.  

We train our models by data simulated by the same supply chain model that is used in 
testing phase. The parameters of the SSCM are trained from 300 products. As seven nodes 
in our simulated pharmaceutical supply chain do not share location information, the 
corresponding nodes (and parameters) do not exist in the SSCM. The state transition 
probabilities are estimated by a priori state transition probabilities of the training data, and the 
waiting time distributions of each node are estimated by uniform distributions matched 
between the smallest and largest observed waiting times. A very small probability is given to 
state transitions and waiting times that are not observed in the training data. The HMM 
classifier is trained from 600 traces, including 300 uncorrupted traces (M1) and 300 traces 
(M2) corrupted by clones injected before, simultaneously, and after the production of the 
genuine products. 40% of the training data of HMM classifier is used in validation to find the 
optimal amount of training iterations [1]. The results are averaged from 10 Monte-Carlo 
iterations that include training the models. The results are presented as the hit-rate (ratio of 
corrupted traces detected) versus the false-alarm rate (ratio of uncorrupted traces classified 
as corrupted). The simulator is implemented in Matlab using the HMM toolbox4. 

 

Table 1. Hit-rates for different lots of counterfeit products (genuine products are 
produced during month 2; false-alarm rate = 1%; results are averaged from 10 Monte-
Carlo simulations) 

 

                                                 
4 Kevin Murphy. Hidden Markov Model (HMM) Toolbox for Matlab. 
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html 
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Fig. 6 Hit-rate (ratio of corrupted traces detected) versus false-alarm rate (ratio of 
uncorrupted traces classified as corrupted) for the studied product authentication 
methods. The results are averaged from 10 Monte-Carlo simulations. 

5. Findings 
The results of the simulator study are presented in Table 1 and Fig. 6. They show that the 
proposed methods can detect cloned products from incomplete location information, when 
the underlying process that generates the observations is modelled. In the SSCM approach, 
the confidence value that uses the minimum of the set of state transition and waiting time 
probabilities (equation 5) performed better than the confidence value that chains these 
probabilities (equation 4). This indicates that it's better to search for cloned products by 
looking for single suspicious observations than multiple unlikely observations. Moreover, 
looking for single unlikely state transitions, c2(L), was the best way to detect clones in the 
simulations. Combining location and time information to estimate the transition probabilities 
yielded somewhat better results with the chained confidence value than using only one 
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location or time, but overall it appears that the optimal way to combine the complementary 
location and time information was not found in this study. 

In average, the HMM classifier performed as well as SSCM with c2(T) and c2(L U T). Table 1 
reveals, however, that the relative good average performance of the HMM classifier was 
given mostly by its capability to distinguish the cases where a cloned product enters the 
wholesale level of the supply chain before the genuine product was manufacturer (Lot A). 
Therefore, given the complexity and excessive training data of the HMM classifier, the 
performance was not satisfactory.  

The studied methods are somewhat prone to false alarms; achieving very high hit-rates 
appears to be possible only through high false-alarm rates. This result is in concordance with 
how intrusion detection techniques perform in RFID access control application [5]. Table 1 
shows that up to 47% hit-rate can be achieved with a small, only 1% false-alarm rate. 
Overall, detection of clones that are injected in the supply chain before the genuine products 
(Lot A) seems to be somewhat easier than of those that are injected simultaneously (Lot B) 
or after (Lot C) the genuine ones. The probable reason for this is that when the first 
observation for a product is not at the manufacturing level but at the wholesale or retail level, 
the models can easily classify the trace as abnormal. It is worth noting that the case where a 
cloned product is injected in the supply chain before the genuine product can be effectively 
solved by defining that all instances of a product are clones until it is first observed by the 
manufacturer. The case where a clone is injected after the genuine product has reached the 
patient can be solved in a similar way. Doing this restricts the problem to cases where the 
genuine product and the copied product flow simultaneously in the supply chain. 

6. Discussion 
The level of security of the studied methods in terms of probability to detect the cloned 
products is relatively low, but still has a big impact on the counterfeiter's expected return from 
repeated criminal activities because the repeated use of copied ID numbers is made 
infeasible. In the case of static, cloning resistant security labels like holograms and 
cryptographic RFID tags, a counterfeiter needs to break the security label only once - which 
should be hard - but can then copy it to virtually unlimited number of counterfeit products. In 
the case when copied products can be detected, however, counterfeiter has to forge a large 
number of ID numbers so as to inject a large number of counterfeit products.  

An important advantage of location-based product authentication in supply chains is low 
variable cost to secure one product - only a unique identifier (e.g. basic RFID tag or a 2D 
barcode label) is needed, assuming that the data capturing and sharing infrastructure is in 
place. This is cheaper than protecting products using cryptographic RFID tags, for example, 
that provide resistance against cloning. Location history also allows for pinpointing the illicit 
players who inject counterfeits to the licit supply chain. Disadvantage of location-based 
product authentication is that it requires custodians to capture and share the location 
information to be effective and secure. 
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Our assumption that business partners across the supply chain share the item-level data with 
a product authentication system is rather strong because today companies disclose such 
data only rarely. However, we can assume that sensing technologies will increase the 
location-awareness of products, and therefore it is important to know what the value of this 
information in different applications is. As already mentioned, if all the supply chain players 
would agree to share the location information with the product authentication system, 
detection of clones would become substantially easier. However, every time when the 
location information is incomplete, the traces of genuine products can be corrupted by cloned 
products and detection of cloned tags is needed. 

Our simulated pharmaceutical supply chain is a heuristic model. Accordingly, many real world 
phenomena that beyond anti-counterfeiting also affect the results, e.g., erroneous shipments, 
shrinkage, recalls, and changes in demand need to be studied in future. In addition, our 
simulated supply chain doesn't change in time, though in reality the day of the week and 
season, for instance, affect the conditions, and also the supply chain partners can change. 
Therefore, a practical solution should also address these changes. Overall, accurate 
modelling of supply chains as presented in [10], for instance, is not addressed. Therefore the 
results of the simulation study need to be validated using more realistic data. We 
acknowledge that especially real corrupted traces might be hard to obtain in practice, so it is 
likely that they need to be at least partially simulated. 

6.1. Future work 

Regarding application of machine-learning techniques in location-based product 
authentication, there remain numerous techniques that are not yet applied in this specific 
domain and that could potentially provide interesting results. Example techniques include 
Bayesian networks, neural networks and novel, so called pheromone spreading techniques 
[19]. In addition, we believe that the studied methods have potential for refinements and 
tuning for example through careful analysis of false alarms and misses that was not part of 
this work. The future work includes finding optimal ways to combine this information, as well 
as validating the concepts with realistic data. Also the assumptions regarding data sharing 
among the supply chain partners need to be verified to identify prominent real-life cases for 
the studied methods. In addition, the studied methods potential in enabling other location-
based services, for example for mobile phones, needs to be addressed. 

7. Conclusions 
This study suggests that machine-learning techniques can be used in location-based product 
authentication in supply chain applications when sufficient visibility can be provided.  The 
studied methods are somewhat prone to false alarms and therefore serve best as identifying 
suspicious products. Our study shows that both time and location of observations carry 
information that can be used in authentication. Overall, we believe that the studied methods 

 14



 

have potential for refinements and tuning. In addition to products in a supply chain, the 
presented methods can be applied to authenticate subjects also in other cases where the 
underlying process that generates the location observations is not completely random but 
respects some parametric model, e.g., vehicles, access cards, credit cards and other 
payment cards, mobile computing devices, and luggage. 
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