

IoT-A (257521)

Internet of Things - Architecture © - 1 -

Internet of Things - Architecture

IoT-A

Deliverable D1.3 –
Updated reference model for IoT v1.5

Project acronym: IoT-A

Project full title: The Internet of Things - Architecture

Grant agreement no.: 257521

Doc. Ref.: D1.3

Responsible Beneficiary : FhG IML

Editor(s): Andreas Nettsträter (FhG IML)

List of contributors: Martin Bauer (NEC), Mathieu Boussard (ALBLF), Nicola Bui
(CFR), Francois Carrez (UniS), Pierpaolo Giacomin (HEU),
Stephan Haller (SAP), Edward Ho (HSG), Christine Jardak
(SIEMENS), Jourik De Loof (ALUBE), Carsten Magerkurth
(SAP), Stefan Meissner (UniS), Andreas Nettsträter (FhG IML),
Alexis Olivereau (CEA), Alexandru Serbanati (CATTID), Matthias
Thoma (SAP), Joachim W. Walewski (SIEMENS)

Reviewer(s): Alessandro Bassi (HEU), Pierpaolo Giacomin (HEU)

Contractual Delivery Date: 30.06.2012

Actual Delivery Date: 16.07.2012

Status: Final

Version and date Changes Reviewers / Editors

V1, 2012-07-16 Version 1: D1.3 Andreas Nettsträter (FhG IML)

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

PU
PP
RE
CO

Dissemination level

Public
Restricted to other programme participants (including the Commission Services)
Restricted to a group specified by the Consortium (including the Commission Services)
Confidential, only for members of the Consortium (including the Commission Services)

PU

IoT-A (257521)

Internet of Things - Architecture © - 2 -

IoT-A (257521)

Internet of Things - Architecture © - 3 -

Overview of the IoT-A project partners

Acronym Full name Country

ALBLF Alcatel-Lucent Bell Labs France FR

ALU BE Alcatel-Lucent Bell N.V. BE

CATTID Università Sapienza di Roma IT

CEA Commissariat à l'Energie Atomique FR

CFR Consorzio Ferrara Ricerche IT

CSE Creative Systems Engineering GR

FhG IML Fraunhofer Institute for Materialflow and Logistics DE

HEU Hitachi Europe Ltd. GB

HSG University of St. Gallen CH

IBM IBM Research GmbH CH

NEC NEC Europe Ltd. GB

NXP BE NXP Semiconductors Belgium N.V. BE

NXP DE NXP Semiconductors Germany GmbH DE

SAP SAP AG DE

SIEMENS Siemens AG DE

TID Telefonica Investigacion y Desarrollo SA Unipersonal ES

UniP Universita degli studi di Padova IT

UniS University of Surrey GB

UniWue University of Wuerzburg DE

VDI/VDE-IT VDI/VDE Innovation + Technik GmbH DE

http://www.iot-a.eu/partners/telefonica
http://www.iot-a.eu/partners/telefonica

IoT-A (257521)

Internet of Things - Architecture © - 4 -

IoT-A (257521)

Internet of Things - Architecture © - 5 -

Table of content

Overview of the IoT-A project partners ... - 3 -

Table of content .. - 5 -

List of abbreviations ... - 9 -

Table of figures ... - 11 -

1 Executive Summary ... - 15 -

1.1 Objectives .. - 17 -

1.2 Document structure .. - 17 -

1.3 Project-internal inputs .. - 18 -

2 Introduction .. - 19 -

2.1 Usage of architectural reference models ... - 21 -

2.1.1 Cognitive aid .. - 21 -

2.1.2 IoT-A Reference Model as a common grounding ... - 22 -

2.1.3 Generation of architectures ... - 22 -

2.1.4 Identifying differences.. - 22 -

2.1.5 Benchmarking .. - 22 -

2.2 Process and Methodology ... - 22 -

2.2.1 Introduction .. - 22 -

2.2.2 Reference model and reference architecture .. - 23 -

2.2.3 Actions and inputs ... - 24 -

2.2.4 Overall process .. - 25 -

2.3 Business Scenarios .. - 31 -

2.3.1 Rationale and Introduction .. - 31 -

2.3.2 Fields of Application .. - 33 -

2.3.3 Business Case Methodology ... - 36 -

2.3.4 Retail Business Case .. - 37 -

3 Reference model .. - 41 -

3.1 Interaction of all sub-models ... - 41 -

3.2 Domain Model ... - 42 -

IoT-A (257521)

Internet of Things - Architecture © - 6 -

3.2.1 Definition and Purpose .. - 42 -

3.2.2 Main abstractions and relationships .. - 42 -

3.2.3 Detailed explanations and related concepts ... - 46 -

3.3 Information model ... - 49 -

3.3.1 Relation of Information Model to Domain Model ... - 51 -

3.3.2 Data in IoT systems ... - 53 -

3.3.3 Other information-related models in IoT-A .. - 53 -

3.4 Functional model .. - 53 -

3.4.1 Functional decomposition .. - 53 -

3.4.2 Functional Model Diagram .. - 54 -

3.5 Communication model ... - 59 -

3.5.1 Communication stack .. - 59 -

3.5.2 Actors in IoT communication ... - 61 -

3.5.3 Channel model for IoT communication .. - 61 -

3.5.4 IoT Communication model as seen from the application level - 63 -

3.6 Trust, Security and Privacy ... - 65 -

3.6.1 Trust... - 66 -

3.6.2 Security .. - 68 -

4 Reference architecture ... - 71 -

4.1 Short definition of views and perspectives.. - 71 -

4.2 Views .. - 71 -

4.2.1 Usage for the IoT-A Reference Architecture ... - 72 -

4.2.2 Functional .. - 72 -

4.2.3 Information ... - 90 -

4.2.4 Deployment & Operation ... - 93 -

4.3 Perspectives .. - 96 -

4.3.1 Evolution and interoperability .. - 97 -

4.3.2 Performance and scalability .. - 97 -

4.3.3 Trust, Security and privacy .. - 98 -

4.3.4 Availability and resilience .. - 101 -

IoT-A (257521)

Internet of Things - Architecture © - 7 -

5 Best practices ... - 103 -

5.1 Overview .. - 103 -

5.2 Usage of the IoT Reference Model .. - 103 -

5.2.1 Guidelines for using the IoT Domain Model .. - 103 -

5.2.2 Examples for IoT Domain Model objects .. - 113 -

5.3 Usage of the IoT Reference Architecture ... - 117 -

5.3.1 Design choices .. - 117 -

5.3.2 Risk analysis .. - 132 -

6 Conclusions and Outlook .. - 143 -

References .. - 145 -

Appendix ... - 151 -

A Terminology .. - 151 -

B Requirements ... - 161 -

B.1 Requirements Gathering Methodology .. - 161 -

B.1.1 Gathering external requirements from stakeholders ... - 161 -

B.1.2 Gathering internal requirements .. - 163 -

B.1.3 Unification process .. - 163 -

B.2 Unified requirements list .. - 163 -

C Use cases, sequence charts and interfaces ... - 197 -

C.1 IoT Business Process Management and Service Organisation - 197 -

C.1.1 IoT Business Process Management .. - 197 -

C.1.2 Service Organisation ... - 199 -

C.2 IoT Services ... - 203 -

C.2.1 IoT Service Resolution functional component ... - 203 -

C.3 Virtual Entity (VE) .. - 223 -

C.3.1 Virtual Entity Resolution functional component ... - 223 -

C.3.2 Virtual Entity and IoT Service Monitoring functional component - 239 -

C.4 Security .. - 247 -

C.4.1 IoT Service Resolution functional component ... - 247 -

IoT-A (257521)

Internet of Things - Architecture © - 8 -

IoT-A (257521)

Internet of Things - Architecture © - 9 -

List of abbreviations

a.k.a. Also Known as
API Application-programming interface
ARM Architectural Reference Model
AuthN Authentication
AuthS Authorisation
BC Business Case
BPM Business Process Management
BSN Body Sensor Network
CA Certification Authority
CCTV Closed-Circuit TeleVision
CD Constrained Device
CFG Communication Functionality Group
CIM Common Information Model
CO Carbone monoxide
CP Control Point
Dn.m IoT-A deliverable n.m
DNS Domain Name System
DoS Denial of Service
DP Data Processor
DS Data Sink
EMR Electronic Medical Record
EPC Electronic Product Code
EPCIS Electronic Product Code Information Services
ERP Enterprise Resource Planning
FC Functional Component
FG Functionality Group
GPS Global Positioning System
GW Gateway
ICT Information and Communication Technology
ID Identity
IoT Internet of Things
IoT-A Internet of Things - Architecture
ISO International Organization for Standardization
IT Information Technology
KEM Key Exchange and key Management
LED Light-Emitting Diode
M2M Machine-to-Machine
MDA Model Driven Architecture
MDE Model Driven Engineering

IoT-A (257521)

Internet of Things - Architecture © - 10 -

NFC Near Field Communication
NTC Constrained network
NTU Unconstrained network
OASIS Organization for the Advancement of Structured Information Standards
OMG Object Management Group
OPEX OPerational EXpenditure
ONS Object Naming Service
OS Operating System
OSI Open System Interconnection
OWL Web Ontology Language
PE Physical Entity
QoS Quality of Service
QR Quick Response
R&D Research and Development
RDF Resource Description Framework
RDFa RDF-in-attributes
RF Radio Frequency
RFID Radio-Frequency IDentification
RS Resolution Server
S&AN Sensor and Actuator Networks
SO Service Organisation
SWn Stakeholder workshop n
TRA Trust and reputation
UNI.n UNIfied requirement, number n
USDL Unified Service Description Language
VE Virtual Entity
VE-ID Virtual Entity IDentifier
WP Work Package
WSN Wireless Sensor Network
WS&AN Wireless Sensor & Actuator Network

IoT-A (257521)

Internet of Things - Architecture © - 11 -

Table of figures

Figure 1: IoT-A architectural reference model building blocks. ... - 16 -

Figure 2: The IoT-A Tree ... - 20 -

Figure 3: Relationship between a reference architecture, architectures, and actual systems
(adapted from Mueller [1]). .. - 24 -

Figure 4: Relation of an architectural reference model, best practice, and concrete architectures.
 ... - 24 -

Figure 5: High-level taxonomy of the IoT-Reference-Model and IoT-Reference-Architecture
dependencies and model influences. .. - 25 -

Figure 6: Dynamic view of the IoT-A ARM process. ... - 26 -

Figure 7: Process for the generation of concrete architectures. ... - 28 -

Figure 8: Generalised architecture approach according to the Model-Driven-Architecture
methodology, a.k.a. Model-Driven Engineering [2]. .. - 29 -

Figure 9: Relation of the Best-Practice-driven derivation of concrete architectures from an
architectural reference model and the derivation of implementations from said concrete
architecture. This Figure is a composite of Figure 4 and Figure 8. ... - 29 -

Figure 10: Interaction of all sub-models .. - 41 -

Figure 11: Basic abstraction of an IoT interaction. .. - 43 -

Figure 12: The IoT Domain Model... - 46 -

Figure 13: Information Model .. - 50 -

Figure 14: Relation between Domain Model and Information Model - 52 -

Figure15: Functional Model ... - 55 -

Figure 16: IoT Service and Virtual Entity abstraction levels .. - 58 -

Figure 17: IoT communication stack. .. - 60 -

Figure 18: Schematic diagram of a general communication system. - 61 -

Figure 19: Channel model for the current Internet. ... - 62 -

Figure 20: IoT channel for a single constrained network. ... - 62 -

Figure 21: IoT channel for communication over two constrained networks. - 62 -

Figure 22: IoT channel for communication constrained to unconstrained networks. - 63 -

Figure 23: IoT channel for communication over two constrained networks intermediated by the
Internet. ... - 63 -

Figure 24: Communications in the IoT domain model from an application point of view.
AppNode: application node; GW: gateway; CP: control point; DS: data sink. - 64 -

IoT-A (257521)

Internet of Things - Architecture © - 12 -

Figure 25: Security features and general layering. Some architectures can exhibit a slightly
different approach, depending on the actual implementation. For example, some optional
components might not have been implemented while some features could have been
implemented in a cross-layered approach. ... - 68 -

Figure 26: Providing the best security features for the lower layers in each IoT domain by
introducing Gateways with adaptive functions aimed to provide scalability functions (including
security scalability). NTC: Constrained Device Network; NTU: Unconstrained Device Network.
CDSecFeat: implementation of security feature for the constrained device leverages the
extension of the functionalities of gateway devices. ... - 69 -

Figure 27: Functional view process ... - 72 -

Figure 28: Functional View .. - 74 -

Figure 29: Example for flat entity type model .. - 90 -

Figure 30: Example for hierarchical entity type model .. - 91 -

Figure 31 Domain model groups ... - 93 -

Figure 32: Various deployment configurations of devices, resources, and services. - 104 -

Figure 33: Data-base pattern as an example for an Augmented Entity. - 106 -

Figure 34: Smart-object pattern. UAV: unmanned aerial vehicle. ... - 107 -

Figure 35: Multiple Virtual Entities (data-base entries) for a single car................................. - 108 -

Figure 36: Exemplary modelling of a smart phone that is used as tracking device. - 109 -

Figure 37: Domain model instantiation for a M2M communication scenario - 110 -

Figure 38: M2M communication. ... - 111 -

Figure 39: Shipping box containing multiple packets. The VE-to-PE mapping is exemplified by
paper tags. ... - 112 -

Figure 40: Domain modelling of a typical EPC-based RFID scenario (pallet containing cases). .. -
112 -

Figure 41: Growth fruit sensor [3]. ... - 114 -

Figure 42: Interacting services for a home-patient monitoring scenario. - 116 -

Figure 43: Telos ultra-low power wireless module. ... - 117 -

Figure 44: Evolution of requirements lists towards unified requirements list in D1.3 - 161 -

Figure 45: Development process for Requirements.. - 162 -

Figure 46: Further development of requirements and validation approach - 162 -

Figure 47: Business Process Execution. ... - 199 -

Figure 48: Service Organization. ... - 201 -

Figure 49: Orchestrate Service. .. - 202 -

IoT-A (257521)

Internet of Things - Architecture © - 13 -

Figure 50: Decompose Composite Service. .. - 203 -

Figure 51: Use case IoT Service Resolution. .. - 207 -

Figure 52: Resolve Service Identifier to URL. ... - 208 -

Figure 53: Subscribe Resolution of Service Identifier to URL ... - 209 -

Figure 54: Lookup Service Description based on Service Identifier. - 210 -

Figure 55 Subscribe Look-up of Service Description based on Service Identifier - 211 -

Figure 56: Discover Service based on Service Specification. ... - 212 -

Figure 57 Subscribe Discovery of Service Descriptions based on Service Specification - 213 -

Figure 58: Insert Service Description. ... - 214 -

Figure 59: Update Service Description. .. - 214 -

Figure 60: Delete Service Description. .. - 215 -

Figure 61: Virtual Entity Resolution. .. - 226 -

Figure 62: Look up Associations based on VE-ID and VEServiceSpecification. - 227 -

Figure 63 Subscribe Look-up of Associations for VE Identifier and VE Service Specification- 228
-

Figure 64: Discover Associations based on VE Specifications and VEServiceSpecifications. -
229 -

Figure 65 Subscribe Discovery of Associations based on VE Specification and VE Service
Specification .. - 230 -

Figure 66: Insert Association. .. - 231 -

Figure 67: Update Associations. ... - 232 -

Figure 68: Delete Association. .. - 233 -

Figure 69: Virtual Entity & IoT Service Monitoring. ... - 240 -

Figure 70: Assert Static VE-IoT Service Association. ... - 241 -

Figure 71: Discover Dynamic Associations between VEs and Services............................... - 242 -

Figure 72: Monitor and Update Existing Dynamic Associations. .. - 243 -

Figure 73: Monitor and Delete Existing Dynamic Associations. .. - 244 -

Figure 74: Secure discovery of IoT services. .. - 248 -

Figure 75: Secure Direct Discovery of IoT Services. .. - 249 -

Figure 76: Restricted discovery. .. - 251 -

Figure 77: Restricted Lookup. ... - 252 -

IoT-A (257521)

Internet of Things - Architecture © - 14 -

IoT-A (257521)

Internet of Things - Architecture © - 15 -

1 Executive Summary
Today, "Internet of Things" (IoT) is used as a catchphrase by many sources. This expression
encompasses a galaxy of solutions somehow related to the world of intercommunicating and
smart objects. These solutions show little or no interoperability capabilities as usually they are
developed for specific challenges in mind, following specific requirements. Moreover, as the IoT
umbrella covers totally different application fields, development cycles and technologies used
vary enormously, thus implementing vertical solutions that can be labelled as "INTRAnet of
Things", rather than "INTERnet of Things". For instance, in some fields such as manufacturing
and logistics, communication and tagging solutions are well established as they provide a clear
business benefit in terms of asset tracking and supply-chain management. However, the same
solutions do not apply for other fields such as domestics, where business synergies could
provide services with clear added-value benefits.

While quite logical at this point, on the long run we believe that this situation is unsustainable.
As in the networking field, where several solutions emerged at his infancy to leave place to a
common model, the TCP/IP protocol suite, the emergence of a common reference model for the
IoT domain and the identification of reference architectures can lead to a faster, more focused
development and an exponential increase of IoT-related solutions. These solutions can provide
a strategic advantage to mature economies, as new business models can leverage those
technological solutions providing room for economic development.

Leaving aside business considerations, and considering only the technical point of view, the
existing solutions do not address the scalability requirements of a future IoT, both in terms of
communication between and the manageability of devices. Additionally, as the IoT domain
comprises several different governance models, which are often incompatible. This leads to a
situation where privacy and security are treated on a per-case and per-legislation basis, retro-
fitting solutions to existing designs, and this severely hampers portability, interoperability and
deployment.

In our vision of the Internet of Things, the interoperability of solutions at the communication
level, as well as at the service level, has to be ensured across various platforms.

This motivates, first, the creation of a Reference Model for the IoT domain in order to promote
a common understanding.

Second, businesses that want to create their own compliant IoT solutions should be supported
by a Reference Architecture that describes essential building blocks as well as design choices
to deal with conflicting requirements regarding functionality, performance, deployment and
security. Interfaces should be standardised, best practices in terms of functionality and
information usage need to be provided.

The central choice of the IoT-A project was to base its work on the current state of the art,
rather than using a clean-slate approach. Due to this choice, common traits are derived to form
the base line of the Architectural Reference Model (ARM). This has the major advantage of
ensuring backward-compatibility of the model and also the adoption of established, working
solutions to various aspects of the IoT. With the help of end users, organised into a
stakeholders group, new requirements for IoT have been collected and introduced in the main
model building process. This work was conducted according to established architecture
methodology. defined in Section 2.2.

Figure 1 shows an overview of the process we used for defining the different parts that
constitute the IoT Architectural Reference Model (ARM). Notice that definitions of terms such as
reference architecture, etc. can be found in an external glossary [4] Starting with existing
architectures and solutions, generic baseline requirements can be extracted and used as an
input to the design. The IoT-A ARM consists of four parts:

IoT-A (257521)

Internet of Things - Architecture © - 16 -

• The vision summarises the rationale for providing an architectural reference model for
the IoT. At the same time it discusses underlying assumptions, such as motivations. It
also discusses how the architectural reference model can be used, the methodology
applied to the architecture modelling, and the business scenarios and stakeholders
addressed. The vision is described in Section 1.

• Business scenarios & stakeholders are the drivers of the architecture work. With the
knowledge of businesses aspirations, a holistic view of IoT architectures can be
derived. Furthermore, a concrete instance of the reference architecture can be validated
against selected business scenarios. A stakeholder analysis contributes to
understanding which aspects of the architectural reference model need to be described
for the different stakeholders and their concerns. More information on the Business
Scenarios & Stakeholders is provided in Section 2.2. According to common usage, this
part constitutes a subset of the vision [5]

• The IoT Reference Model provides the highest abstraction level for the definition of the
IoT-A Architectural Reference Model. It promotes a common understanding of the IoT
domain. The description of the IoT Reference Model includes a general discourse on
the IoT domain, an IoT Domain Model as a top-level description, an IoT Information
Model explaining how IoT knowledge is going to be modelled, and an IoT
Communication Model in order to understand specifics about communication between
many heterogeneous IoT devices and the Internet as a whole. The definition of the IoT
Reference Model is conforming to the OASIS reference model definition [6]. A detailed
description of the IoT Reference Model is provided in Section 2.

• The IoT Reference Architecture is the reference for building compliant IoT
architectures. As such, it provides views and perspectives on different architectural
aspects that are of concern to stakeholders of the IoT. The terms view and perspectives
are used according to the general literature and standards [7],[8]. Definitions of these
terms are also provided in Section 0. The creation of the IoT Reference Architecture
focuses on abstract sets of mechanisms rather than concrete application architectures.

Figure 1: IoT-A architectural reference model building blocks.

IoT-A Architectural Reference Model

Vision

Multiple
Organisations

Compliant
(New) IoT

Architectures

IoT Reference
Architecture

IoT Reference
Model

Business
Scenarios &
Stakeholders

SOTA Existing
architectures
& solutions

Implementation

IoT-A (257521)

Internet of Things - Architecture © - 17 -

To organisations, an important aspect is the compliance of their technologies with standards
and best practices, so that interoperability across organisations is ensured. If such compliance
is given, an ecosystem forms, in which every stakeholder can create new businesses that
“interoperate” with already existing businesses. The IoT-A ARM provides best practices to the
organisations so that they can create compliant IoT architectures in different application
domains. Those IoT architectures are instances from the Reference Architectures with some
architectural choices (called later on Design Choices) like considering strong Real/Time or
choosing strong security features, etc. They consist of special “flavours” of the IoT Reference
Architecture. Where application domains are overlapping, the compliance to the IoT Reference
Architecture ensures the interoperability of solutions and allows the formation of new synergies
across those domains.

The rest of this section organises as follows. In Section 1.1 we remind shortly the objectives of
D1.3, emphasising on the improvements it brings to D1.2 Then in Section 1.2 we outline the
structure of the document. Finally Section 1.3 gives some hints about the various project input
documents used for writing this deliverable.

1.1 Objectives
D1.3 is the Second public version of the Architectural Reference Model. It leverages on D1.2
and an intermediary internal report IR1.4 release internally earlier this year.

While the general objective of D1.3 is strictly the same than D1.2 i.e. describing thoroughly an
Architectural Reference Model for IoT, this version of the ARM brings to the audience critical
improvements to its previous version, as it is summarised below:

• All feedback received internally from IoT-A and externally from the Stakeholders was taken
into account in order to improve the document and in order to make sure that the IoT-A
architecture work will eventually meet expectations from the external users;

• Introduction of news views and perspectives as only the Functional Decomposition view and
Security Perspective were touched in D1.2. D1.3 comes with the Deployment & Operation
and Information views and with the Evolution & Interoperability, Performance & Scalability
and Availability & Resilience perspectives. It will be shown in the document how the Design
Choices applied at the view levels impact the various quality properties attached to the
system architecture materialised by the four perspectives introduced above;

• First version of Best Practices and associated Design Choices which are a first step
towards an aided architecture design for concrete system architects;

• Improvement of the soundness of the whole ARM approach, emphasizing the logical links
existing between the various models of the Reference models and the views and
perspectives of the Reference Architecture.

1.2 Document structure
The table of content of D1.3 does not strictly follows the one of D1.2 as we can see below:

Section 1 gives a short and general introduction to the document and shows how it positions it-
self with regards to D1.2.

Section 2 gives a more complete introduction to the IOT-A vision and philosophy. It provides the
reader with some elements of discourse and general concerns about what is the ARM, how it
was elaborated (elements of methodology), how it can be used (usage, benefits of using it) and
where it potentially can apply (business scenarios, field of application) and envisioned impacts.

IoT-A (257521)

Internet of Things - Architecture © - 18 -

Section 3 gives the full detail about the updated Reference Model, starting with an informal
discourse about the IOT domain, emphasising specific challenges coming with the IOT field and
giving explanations about how the sub-models interact. Then this section introduces the Domain
model. The rest of section is dedicated to the Communication model, Information model,
Functional model and model relating to Trust, Security and Privacy.

Section 4 is dedicated to the Reference Architecture (which found its grounding in Section 3).
Following the element of methodology explained in Section 2 and 3.1, this section provides a
set of Views (functional decomposition, Information, Deployment & Operation) and Perspectives
(Security & Privacy, Evolution & Interoperability, Performance & Scalability and Availability &
Resilience).

Section 5 is dedicated to Best Practices and Design Choices and can be considered as a
Cookbook for the IOT application architects to use. It gives indications and modelling rules on
how to use the IoT-A RM, all illustrated with concrete examples (Sub-section 5.2). Then this
section explains how to use the IoT-A Reference Architecture. For that purpose it provides the
architects with a large number of Design Choices that can be used by an architects to build up a
concrete architecture, depending on various aspects and properties of the targeted system
(Sub-section 5.3.1). This sections also provides a Risk Analysis that guides the architects in
making their IOT-system secured.

Then follow some appendixes; Appendix A gives a glossary of terms along with their definitions.
Appendix B is about Requirements (Requirement Methodology (B1) and list of unified
requirements (B2)); Appendix C gives Use cases with associated sequences diagrams and
interfaces that correspond to the functional groups identified in Section 4.

1.3 Project-internal inputs
This document draws heavily on the following public IoT-A deliverables and internal reports:

• D6.1, which contains a summary of the IoT-A requirements-engineering process and a
first list of requirements inferred from stakeholder aspirations provided during the first
IoT-A stakeholder workshop in Paris in October 2010 [9]. This requirements list was
analysed and views and perspectives were assigned to all requirements. The list of
unified requirements can be found in Appendix B.

• D1.1, which contains a summary of the state of the art of IoT-related architectures,
service interfaces, communication layers, resolution infrastructures, and hardware [10].
Each of the aforementioned topics is divided into input gathered from standardisation,
commercial applications, and EU and other research projects. This document was used
for the inference of technical requirements pertaining to the IoT architectural reference
model.

• IR1.4 (Confidential and Internal): builds upon D1.2 taking into account all feedback
received internally from the WPs and externally during the Stakeholders workshops.

• IR2.1, IR3.1, IR4.1: which contain the detailed feedback from those work package w.r.t.
the first IOT Reference Architecture document D1.2.

• IR6.1: which contains the feedback collected during the second stakeholder workshop
in Barcelona (during the IoT Week’2011)

Furthermore, as already mentioned, IoT-A provides a web page on which all the IoT terminology
(see Appendix A) that is used in this deliverable (and will be used in forthcoming IoT-A
deliverables) is listed [4].

IoT-A (257521)

Internet of Things - Architecture © - 19 -

2 Introduction
A commonly observed trend in the Internet of Things (IoT) domain is the emergence of a variety
of communication solutions targeted at specific application domains. Many popular “umbrella”
topics like Smart Cities pull a large number of specific domains of applications like
Transportation, Energy, Environment, Assisted Living, most of time pre-fixed with “Smart” in
order to emphasise the fact they embed a sort of intelligence and global awareness… This new
breed of application exploits the full potential of IoT related technologies, however unfortunately,
the resulting applications appear as vertical silos only, meaning specific applications with
specific architectures, with little place left for inter-system communication and inter-operation.
Actually that is where the real issue stands: the smartness of those new applications can only
reach its pinnacle whenever full collaboration between those vertical silos can be achieved.

If we consider also the fact that IoT related technologies come with a high level of
heterogeneity, with specific protocols developed with specific applications in mind, it results that
the IoT landscape nowadays appears as highly fragmented. Many IoT-enabled solutions exist
with recognised benefits in terms of business and social impact, however they form what we
could call a set of Intranets of things, not an Internet of things!

In the vision of the Internet of things IoT-A wants to promote, high level of interoperability needs
to be reached at the communication level as well as at the service and even knowledge levels
across different platforms established on a common grounding. The IoT-A project reckons that
achieving those goals comes in two steps, first of all in establishing a common understanding of
the IoT domain (hereafter called Reference Model), and second in providing to IoT system
developers a common foundation for establishing the IoT system architecture (hereafter called
Reference Architecture).

While existing literature like [11], [12] and [13] (to name just a few) provide methodologies for
dealing with system architectures (hereafter called Concrete Architectures) based on Views and
Perspectives for instance (those concepts are developed in further sections of this document),
establishing a reference architecture is a totally different business, at least as far as describing
Views and Perspectives is concerned as we will see in the rest of this document.

A Reference Architecture (RA) can be visualised therefore as the matrix that eventually gives
birth ideally to all concrete architectures. For establishing such a matrix, based on a strong and
exhaustive analysis of the State of the Art, we need to envisage the super-set of all possible
functionalities, mechanisms and protocols that can be used for building such concrete
architecture and to show how interconnections could take place between selected ones (as no
concrete system is likely about to use all of the functional possibilities). Giving such a foundation
along with a set of design-choices, based on the characterisation of the targeted system w.r.t.
various dimensions (like distribution, security, real-time, semantics,…) it becomes possible for a
system architect to select the protocols, functional components, architectural options, needed to
build their IoT systems. The main aim of IoT-A can be explained using the pictorial
representation shown in Figure 2 below.

IoT-A (257521)

Internet of Things - Architecture © - 20 -

Figure 2: The IOT-A Tree

As in any metaphoric representation, this tree does not claim to be fully consistent in its
depiction it should therefore not be taken too strictly: on the one hand, the roots of this tree are
spanning across a selected set of communication protocols (6lowpan, Zigbee, IPv6,…) and
device technologies (sensors, actuators, tags,..) while on the other hand the flowers/leaves of
the tree represents the whole set of IoT applications that can be built from the sap
(information/knowledge) coming from the roots. The trunk of the tree is of the utmost importance
here, beyond the fact it represents the IoT-A project. This trunk represent the Architectural
Reference Model (which means here Reference Model + Reference Architecture a.k.a. ARM),
the set of models, guidelines, best practices, views and perspectives that can be used for
building fully interoperable IoT Concrete architecture (and therefore systems). In this tree, we
aim at selecting a minimal set of interoperable technologies (the roots) and proposing the
potentially necessarily set of enablers or building blocks etc…(the trunk) that enable the
creation of a maximal set of interoperable IoT systems (the leaves).

IoT-A (257521)

Internet of Things - Architecture © - 21 -

The deliverable D1.2, which was released one year ago approximately, was presented to a
large audience during the IoT week’2011 in Barcelona. As a result we received a large number
of comments, the majority of them being taken into account already in this new version of the
ARM. D1.3 also adds critical improvements to D1.2 within the various models of the Reference
Model as well as at the Reference Architecture level, adding more views, identifying and
describing Best Practice and Design Choices and their potential impacts on quality properties of
the targeted system (perspectives).

The ultimate aim of the Reference Architecture work is to make sure that concrete system
designers will eventually use it. High attention is therefore paid to ensuring the soundness of our
work. In particular this version of the ARM aims at making more explicit the various links existing
between the various models, views and perspectives, so that the final users finds a logic in the
process of using the ARM.

The rest of these sections give more details on the architectural process and methodology. In
Section 2.1 different benefits of having an ARM are explained. Some possible usages that can
be made of this model and reference architecture are also introduced. Section 2.2 gives some
explanations about the methodology used for building ARM. Finally, Section 2.2 introduces the
relevant business scenarios and stakeholders and gives a hint at the fields of application where
IOT technologies potentially apply.

The content of the document then reads as follows: Section 3 and 4 are respectively presenting
the updated Reference Model and Reference Architecture; Section 5 is dedicated to Best
Practice and Design Choices that helps a system designer to select the necessary components
needed for their concrete architectures. Section 6 finally draws conclusions and further steps
leading to the next release of the IoT-A ARM. The annexes give respectively an update of the
terminology, an update of requirements used to drive the ARM work and also a set of Use
Cases/Sequence Charts and Interfaces relating directly to the RA.

2.1 Usage of architectural reference models
This section provides a non-exclusive list of the beneficial uses of the IoT-A ARM.

2.1.1 Cognitive aid
When it comes to product development and other activities, an architectural reference model is
of fourfold use.

First, it aids in guiding discussions, since it provides a language everyone involved can use, and
which is intimately linked to the architecture, the system, the usage domain, etc.

Second, the high-level view provided in such a model is of high educational value, since it
provides an abstract but also rich view of the domain. Such a view can help people new to the
field with understanding the particularities and intricacies of IoT.

Third, the ARM can assist IoT project leaders in planning the work at hand and the teams
needed. For instance, the Functionality Groups identified in the Functional View of the IoT
system can also be understood as a list of independent teams working on an IoT system
implementation.

Fourth, the ARM aids in identifying independent building blocks for IoT systems. This
constitutes very valuable information when dealing with questions like system modularity,
processor architectures, third-vendor options, re-use of already developed components, etc.

IoT-A (257521)

Internet of Things - Architecture © - 22 -

2.1.2 IoT-A Reference Model as a common grounding
Establishing a common grounding for a field is not an easy task. In order to be effective, such a
grounding has to capture as many pertinent vantage points as possible. Establishing the
common grounding encompasses the definition of IoT entities and describing their basic
interactions and relationships with each other. The Architecture Reference Model is providing
exactly such a common grounding for the IoT field. Any party envisaging to develop an IoT
system that is IoT-A compatible must build on the common concepts provided in the IoT
Reference Model.

2.1.3 Generation of architectures
Another benefit is the use of the IoT ARM for the generations of compliant architectures for
specific systems. This is done by providing best practices for the translation of the ARM into
concrete architectures. The benefit of such a generation scheme for IoT architectures is not only
the automatism of this process, and thus the saved R&D efforts, but that the generated
architecture will intrinsically provide interoperability of the derived IoT systems [14], [15].

2.1.4 Identifying differences
When using the aforementioned system-generation tools, which are based on the IoT-A ARM,
any differences in the derived architectures can be attributed to the particularities of the
pertinent use case [14]. When applying the IoT ARM, predictions of system complexity, etc. are
available for the system parts to be implemented. That makes judging the overall
implementation effort for use case implementation easier, and some projects that might not
have been realised due to uncertainties in the project plan might become possible. The overall
implementation effort is most certainly less than developing an architecture without the help of
an architectural reference model.

2.1.5 Benchmarking
Another important use is benchmarking. For example, NASA used a reference architecture of its
new exploration vehicle for better benchmarking tenders it was going to receive during a public
bidding process [16]. While the reference model prescribes the language to be used in the
systems/architectures to be assessed, the reference architecture states the minimum
(functional) requirement on the systems/architectures. By standardising the description and also
the ordering and delineation of system components and aspects, it also provides a high level of
transparency and inherent comparability to the benchmarking process.

2.2 Process and Methodology

2.2.1 Introduction
This section provides a meta-perspective of IoT-A process, i.e. a look at how the IoT ARM
model was derived. First, we need to understand why the derived reference architecture needs
to be accompanied by a reference model, before we discuss how the parts of the IoT ARM have
been developed.

Through the development of an architecture, a solution to a pre-defined goal is found. The
development and description of architectures in turn is a modelling exercise. It is important to
point out that the modelling itself does not happen in a vacuum, but rests on a thorough
understanding of the domain modelled. In other words, any architecture development is
contingent on one’s understanding of the domain in question. The same is true for a
generalisation of this process, i.e. the derivation of reference architectures. Thus, reference
architectures, as the one presented in this deliverable, also have to be based on a detailed
understanding of the domain in question. This understanding is commonly provided in the form
of a reference model.

IoT-A (257521)

Internet of Things - Architecture © - 23 -

The above discourse motivates why the reference architecture presented in this deliverable is
preceded by a thorough discussion of the IoT domain in the form of a reference model.
However, this high-level view does not explain how one derives either. What is needed here are
both a process and a methodology for deriving the parts of the ARM. The process describes
what steps need to be undertaken during the derivation of the architectural reference model,
and the methodology describes how these steps are achieved. In other words, the methodology
describes, how to identify the tasks attached to each development step, and how and in which
order to conduct these steps. Both the process and the methodology description are provided in
this section.

The remainder of the text in this section is organised as follows. To start with, we provide a
short discussion of the particularities of reference architectures and how they relate to concrete
architectures, and also how they relate to reference models. This information enables us to
discuss what high-level actions and input is needed for the derivation of an ARM, and what
input is needed in order to guide the transformation of the reference architecture into use-case-
and application-specific architectures, also called concrete architectures in the following. With
this knowledge at hand, we dive into the details of the development process. First, we restate
the goals of IoT-A and how we translated them into a step-by-step process. Next, we discuss
the methodologies available for conducting each step. As it turns out, there is no standardised
methodology for the derivation of ARMs. In order to overcome this lack of ARM methodology,
we assessed the well-equipped toolboxes for the development of use-case- and application-
specific architectures instead. Since these methods intrinsically rely on the specifity of the
pertinent use cases and application scenarios, it is found that the method considered, for
instance model-driven engineering, cannot always be applied one to one. This section
concludes with a detailed discussion of our requirements process, which is at the heart of our
entire architecture process.

2.2.2 Reference model and reference architecture
Reference models and reference architectures provide a description of greater abstraction than
what is inherent to actual systems and applications. They are more abstract than system
architectures that have been designed for a particular application with particular constraints and
choices. From the literature, we can extrapolate the dependencies of reference architecture,
architectures, and actual systems (see Figure 3) [1]. Architectures do help in designing,
engineering, building, and testing actual systems. At the same time, understanding system
constraints better can provide input to the architecture design, and in turn this allows identifying
future opportunities. The structure of the architecture can be made explicit through an
architecture description, or it is implicit through the system itself. By extracting essentials of
existing architectures, like mechanisms or usage of standards, a reference architecture can be
defined. Guidance in form of best practices can be associated to a reference architecture in
order to derive use-case-specific architectures from the reference architecture (see Figure 4).
Such guidance can, for instance, make new architectures and systems compliant to each other.
These general architecture dependencies apply to the modelling of the IoT domain as well.

IoT-A (257521)

Internet of Things - Architecture © - 24 -

Figure 3: Relationship between a reference architecture, architectures, and actual systems
(adapted from Mueller [1]).

Figure 4: Relation of an architectural reference model, best practice, and concrete architectures.

While the model presented in Figure 3 stops at the reference architecture, the IoT-A
architectural reference model goes one step beyond and also defines a reference model. As
already discussed earlier, a reference model provides the grounding for a common
understanding of the IoT domain by modelling its concepts and their relationships. A detailed
description of the IoT Reference Model can be found in Section 2.

2.2.3 Actions and inputs
In the previous section we discussed how reference architectures relate to architectures and
real systems. In order to derive such a reference architecture and the reference model upon
which the reference architecture builds, one needs to understand better how they relate to each
other and to external input.

A high-level taxonomy of how we understand the reference architecture process is depicted in
Figure 5. Such a taxonomy already provides us with a high-level perspective of actions and
inputs needed for developing an ARM for IoT. As discussed earlier, the IoT Reference Model
provides guidance for the description of the IoT Reference Architecture. The Best Practice
guides the derivation of IoT-A-compliant domain-specific concrete architectures from the
reference architecture.

Essential inputs for the definition of the IoT Reference Model are stakeholder concerns,
business scenarios, and existing architectures. It is important to create a common
understanding of the IoT domain from the different inputs. This is mainly a modelling exercise,
during which experts have to work together and extract the main concepts and their relations of
the IoT domain from available knowledge.

Reference
Architecture Architectures Actual

Systems

extracting essentials

architect

constraints, opportunities and feedback

design, engineer, build, test

Architectural
Reference

Model

Concrete
Architecture

Best Practice

IoT-A (257521)

Internet of Things - Architecture © - 25 -

Furthermore, business scenarios, existing architectures, and stakeholder concerns can be
transformed into application-specific requirements. When extrapolated, these requirements lead
to a set of unified requirements. Unified requirements in turn steer the definition of the IoT
Reference Architecture.

Within the ARM, the IoT Reference Model guides the definition of the IoT Reference
Architecture, creating dependencies between the Reference Architecture and the Reference
Model; once a change is proposed in the Reference Model a clear chain of dependencies can
be followed and lead to subsequent changes within the Reference Architecture. By so doing, an
overall consistency of the IoT-A ARM is maintained.

Figure 5: High-level taxonomy of the IoT-Reference-Model and IoT-Reference-Architecture
dependencies and model influences.

As one can see, this high-level taxonomy already identifies high-level actions for the derivation
of the ARM and for domain-specific architectures (“understand”, “define”, etc.). However this
view is still too abstract for being of use in the day-to-day development work of the project. What
is needed is a detailed architecture process that identifies individual tasks within the
development process, that provides insight in the dependencies of said tasks, and that provides
a dynamic model of the development process itself (viz. what step follows after the next).

2.2.4 Overall process

2.2.4.1 ARM development
A process-based view of the ARM derivation is shown in Figure 6.

IoT Reference
Model

IoT Reference
Architecture

Application-
Specific

Requirements

Unified
Requirements

extrapolate

Compliant
Domain-Specific

Architectures

Business
Scenarios, Existing

Architectures &
Stakeholders

guides

define

steer

define

guides with
Best Practices

understand

IoT-A (257521)

Internet of Things - Architecture © - 26 -

Figure 6: Dynamic view of the IoT-A ARM process.

The ARM development process consists of one main process, which is the ARM derivation.
Within the ARM derivation two actions are worth mentioning, viz. the domain modelling, which
results in the IoT Reference Model, and the functional modelling, which is the main contributor
to the IoT Reference Architecture. This process receives input from the requirement-collection
process, which in turn receives input from external stakeholders and the state-of-the-art surveys
conducted during the early stages of IoT-A.

For a thorough explanation of the requirement-collection process we direct the reader to Annex
B.

The work in the ARM-derivation process is described in our ARM drafts, viz. D1.2, D1.3, and
D1.4. The final Version will be D1.5, while the D1.2 contained the initial ARM draft..

The ARM draft guides the set-up of the public use-case demonstrations as well as the work of
the technical work packages within IoT-A (“technical analysis”).

The ARM draft is reviewed by the project’s external stakeholders, the demonstration activity, as
well as the technical work packages. This review serves as input for a revision of the ARM. In
other words, the IoT-A project follows the well-established spiral design and prototyping model
[17]. The result from the first iteration of this development cycle is the current document, viz.

ARM development

ARM deriv ation

«resource»
ARM draft

Requirement collection

Technical analysis

Stakeholders

«information»
State of the art

Demonstrator
implementation

Best practice

Domain modelling

Functional modelling

ARM rev iew

Technical workpackage
Demonstration
workpackage

«guides»

<<guides>>

«input»

«input»

«input»

«input»

«output»

«input»

«input»

«input»

«input»

«input»

«input»

«achieve» «achieve»

IoT-A (257521)

Internet of Things - Architecture © - 27 -

D1.3. Before the conclusion of the project two more iterations are planned, resulting in D1.4 and
D1.5, respectively.

As discussed in Section 2.2.3, besides the architecture and domain analysis, we also provide
the user of the ARM with best practices for deriving use-case- and application-specific
architectures (see Figure 5). Besides being of benefit for the user of the ARM, this process has
the side benefit of providing valuable feedback to the ARM derivation itself. When devising
guidelines for translating the ARM into a specific architecture, potential gaps and
inconsistencies are revealed. Also, the best practice exercise deepens our understanding of the
IoT domain, and provides additional guidance on what aspects of the ARM need further
enhancement. Last, but not least, studying the translation of ARM into specific architectures and
vice versa provides a compelling validation of the usefulness of the ARM.

The spiral-model approach inherent in the ARM development process was chosen for the
following virtues. First, each iteration increases the stability of the ARM. Second, due to its
multi-step nature, the dissemination of the (embryonic) ARM starts early within the project.
Thanks to early publication, corrective impulses from peers and external stakeholders are
received early on in the development process and can thus positively influence both the
applicability of the ARM as well as its acceptance. Third, this approach formalises and
coordinates the interaction of the architecture activity within IoT-A with that of the other activities
(technical analysis and demonstrator set up), which is expected to enhance the efficacy of this
exchange.

2.2.4.2 Generation of architectures
So far we have only described the genesis of the IoT-A ARM, but not how its use for the
generation of specific architectures actually works. While Figure 4 explains that the Best
Practice also provided in this and the forthcoming documents accomplishes the transformation
from the IoT ARM to a concrete architecture, the picture is actually more complicated than that.

When applying the ARM in the design of systems, it is likely that different architectures will
result subject to the desired properties of the system. So, while one gets the impression from
Figure 4 that the translation of the reference architecture into a concrete architecture is
independent of the use case itself this is, in reality, not the case. Rather, Best Practice together
with relies on a use-case description and requirements. This fact is reflected in Figure 7. The
role of the ARM is to guide the architect through design choices at hand, and to provide her with
best practices (sic!) and design patterns for those different choices. The ARM is not operating in
a design vacuum but should be applied together with proven design-process practices.

IoT-A (257521)

Internet of Things - Architecture © - 28 -

Figure 7: Process for the generation of concrete architectures.

In Section 0 we describe how both the IoT Reference Model as well as the IoT Reference
Architecture can be used in this design process. Even though we describe it here in a linear
fashion, one needs to keep in mind that in practice it will not always be the case. Depending on
the engineering strategies used, some of the steps can be done in parallel or even have to be
reiterated due to additional understanding gained during the process, or due to changes in the
requirements.

2.2.4.3 Choice of design and development methodology
The choice of a design and development methodology can be understood in two ways: first, a
methodology for the ARM development and second, a methodology for the generation of
specific concrete architectures. We have so far only provided high-level views of either case. In
reality, one needs more guidance, viz. a recipe on how to derive all aspect of the ARM model as
well as how to derive the best practices. Simply dissecting them into design steps and
processes, as has been done so far, is not enough; one needs to know how to achieve each
step.

In the case of the ARM there are, to our knowledge, no standardised approaches for developing
such a model. Furthermore, the IoT usage domain is, compared to typical reference-
architecture domains, extremely wide and varied, and common denominators are thus rather
few and abstract. For examples of reference architectures and models the reader is directed to
the literature [18], [6], [1], [19], [14], [16], [15]. This high level of abstraction in terms of the
domain to be modelled stands in contrast to input needed for established and standardised
methodologies such as, for instance, Aspect-Oriented Programming, Model-Driven Engineering,
Pattern-Based Design, and SysML. All these methodologies were designed for very concrete
use cases and application scenarios. Unfortunately, this high degree of specificity is even
defining their inner workings. In other words, if one applies them to generalised use cases one
does often not get generalised models on the abstract level of an ARM, but one does actually
not yield anything, since the processes of which said methodologies are constituted, do not
work for generalised use cases.

System Design

«resource»
IoT Architectural
Reference Model

«resource»
Engineering Strategies

«information»
Use Cases &
Requirements

«resource»
Concrete

Architecture«output»«input»

«guides»

«guides via Best
Practice»

IoT-A (257521)

Internet of Things - Architecture © - 29 -

We illustrate the above issue with two examples, Model-Driven Engineering and Pattern-Based
Design. In the first case, the methodology is not directly applicable, while, in the second case,
the methodology can potentially be generalised for deriving the best-practice transformation
shown in Figure 9.

Model-Driven Engineering for the generation of Model-Driven Architectures is standardised by
the Object Management Group (OMG) [2]. Its application area is the development of software
systems. It provides an approach in four steps:

1. Specify a system independently from the platform;

2. Specify platforms;

3. Choose a particular platform for the system;

4. Transform the system specification into that of the particular platform.

The goals behind this approach are portability, interoperability, and reusability through the
architectural separation of concerns [20]. So, on the face of it, all this sounds very similar to the
goals of our ARM development process.

In Figure 8, the main idea of model-driven architecture is shown. A platform-independent model,
viz. an architecture, is to be transformed into a platform-specific model, viz. an implementation.
An example for the former is a GUI user interface described in UML, and the latter is an
implementation of said interface in a cell-phone model featuring a particular operation system.

Figure 8: Generalised architecture approach according to the Model-Driven-Architecture
methodology, a.k.a. Model-Driven Engineering [2].

While this sounds very much like the Best-Practice transformation depicted in Figure 4, it is not
the same. This becomes clearer in Figure 9.

Figure 9: Relation of the Best-Practice-driven derivation of concrete architectures from an
architectural reference model and the derivation of implementations from said concrete

architecture. This Figure is a composite of Figure 4 and Figure 8.

Platform-
Independent

Model

Platform-
Specific
Model

Transform
ation

Application-
Independent

Model

Platform-
Independent

Model

Architectural
Reference Model

Concrete
Architecture

Platform-
Specific
Model

Implementation

Transform
ation

Best
Practice

Transform
ation

IoT-A (257521)

Internet of Things - Architecture © - 30 -

Figure 9 is pieced together from Figure 4 (ARM) and Figure 8 (Model-Driven Engineering). As
one can see, both the ARM and the Model-Driven-Engineering approach are linked to each
other through platform-independent models, but they reside on different levels of abstraction.
While the general idea of a model transformation, as promoted by MDE, resonates with our
ARM approach (see Figure 4), the methodology developed for the derivation of transformations
between platform-independent and platform-specific models can, upon a thorough analysis, not
be transferred and adapted for the derivation of Best-Practice transformations.

Pattern-Based Design is a technique that reuses repeatable solutions to solve commonly
occurring problems. This design was first introduced by Gamma et al. in the context of reusing
elements in object-oriented software [21]. In this design method one records how object-
oriented designers identify recurring design problems. The corresponding solutions are then
documented, and a reuse of the solutions is strived for. Consequently, the design process
becomes increasingly flexible, elegant, and, most important, reusable. The solutions are divided
into solutions, where “A design pattern identifies the participating classes and instances, their
roles and collaborations, and the distribution of responsibilities. Each design pattern focuses on
a particular object-oriented design problem or issue” [21]. From this short discussion it becomes
clear that (a) Pattern-Based Design was developed for implementation processes, viz. the
transformation to the right in Figure 9, and that (b) the only way this method can be applied for
the derivation of the best-practice transformation in the same Figure would be by trying to
translate the ARM into a particular architecture and to see whether the “book-keeping” approach
prescribed by Pattern-Based Design yields valuable insight. At the current stage we do not
know whether this is possible and aim at finding out during out ongoing best-practice
development, which, among others, encompasses the derivation of a concrete architecture.

Table 1 we summarise how we use ideas lent from standardised architecture methodologies for
our work on the higher abstract level of an ARM.

Methodology Aspect adopted in our work

Aspect-Oriented
Programming

Delineation of functionalities by aspects. This is embodied in the concept of
Functionality Groups (see Section 4.2.2).

Model-Driven
Engineering

General concept of transformation from a generic to a more specific model.
We use this concept for describing and developing our Best Practice.

Pattern-Based
Design

As discussed earlier, pattern-based design is a method for documenting and
classifying implementation solutions, and it can therefore not be readily
applied to our ARM work. However, it might be valuable for the
documentation of solutions devised during the translation of the ARM into a
concrete architecture. The goal would be to feed back patterns discerned
and lessons learned into the Best-Practice part of this document. We are
planning such a translation of D1.5 and will revisit the applicability of
Pattern-Based Design during this exercise.

Views and
Perspectives

We adopt the concept of views and perspectives for the derivation of the IoT
Reference Architecture, viz. we arrange all aspects of our reference
architecture according to views and perspectives (see Section 0). The same
is done for the unified requirements (see Appendix B).

Table 1: Usage of standardised architecture methodologies for the development of the IoT
ARM.

IoT-A (257521)

Internet of Things - Architecture © - 31 -

2.2.4.4 Requirements process
The IoT Reference Model by itself does not specify the technical particularities of an IoT
system. For example, how are things identified and addressed in an IoT context? Or: how are
these things associated with services? Such particularities are addressed in the IoT Reference
Architecture. In order to build such a reference architecture, we not only need the IoT Reference
Model and the methodology to do so, but also technical requirements that can be used for
inferring particularities of the architecture. This is reflected in Figure 5.

In this section we explain how the requirements for the IoT ARM have been inferred. The
collection of requirements was done in a three-pronged process:

1. The rich experience and knowledge of the project partners guided the derivation of a
minimum-requirement list, which also had a major influence in drafting the IoT
Reference Model. The state of the art concerning thing-centric communication and
Internet technologies was considered, and a list of internal requirements was inferred.
The state of the art was collected in Deliverable D1.1 [10].

2. A group of external IoT stakeholders was established and queried for their use cases
and their expectations toward IoT. They were also asked for their objectives, concerns,
and business goals. As far as feasible, these overarching aspirations were broken down
into requirements.

Usually, such stakeholder aspirations are not made as system requirements, rather as use-case
specific goals. Therefore, each stakeholder aspiration was thoroughly analysed, and suitable
translations into requirements were sought. Stakeholder aspirations can be rather general
(strategic objectives, concerns, or business goals) or they can be very specific, i.e., a
stakeholder spells out what kind of functionality or performance she/he needs. An example for
the former is the functionality of the IoT systems. For instance, ETSI raised the following
concern: “Today, due to sub-optimal processes, a lot of time and money is wasted. This
situation could be improved a lot by tracking all the items/things, providing context data on them
at any time and location, allowing for automated evaluation of the collected data and reacting
immediately on a dangerous situation to protect against the break down of items.” [9] This
addresses the functional view, but it does not clearly address what functionalities are needed in
order to meet this aspiration. In our requirement-engineering process (see [9]), we broke this
concern down into two distinct functional requirements.

• “The system shall enable centralized or decentralized automated activities (control
loops).” (UNI.31)

• “The system shall enable the planning of automated tasks.” (UNI.32)

The above example was provided in order to briefly illustrate our requirement process. The
unabridged list of requirements is provided in Annex B. The functional view is a recurring item in
the list of unified requirements. This view is represented as a block-diagram of the reference
architecture, which in itself constitutes a central result of the IoT-A project and an indispensable
input for the development of a compliant IoT system. The IoT-A Functional View is addressed in
detail in Section 4.2.2.

2.3 Business Scenarios

2.3.1 Rationale and Introduction
As discussed in the previous section about the IoT Reference Architecture dependencies and
model influences, business scenarios play an important role in the external validation of the

IoT-A (257521)

Internet of Things - Architecture © - 32 -

architectural reference model (ARM). Business scenarios help defining application-specific
requirements, i.e. they are one source of input regarding what potential systems and
applications need to implement and deliver, if they are to realise certain business scenarios. At
the same time, business scenarios help understanding the IoT Reference Model as such, as the
domain components described in the reference model are reflected in the respective business
scenarios, i.e. the reference model provides a formalised and abstracted model of the entities
and their relationships that are brought to life within the different business scenarios.

The primary aim of business scenarios is to provide an external validation of the ARM in
economic terms, i.e. business scenarios should demonstrate that concrete systems built utilising
ARM-compliant concrete architectures are economically viable and beneficial, so that it makes
sense for business stakeholders to develop business scenarios based on IoT-A models and
best practices. Ideally, business scenarios should cover a diverse set of relevant application
fields in order to demonstrate the broad applicability of IoT-A, especially since one of the
primary goals of IoT-A is to develop an IoT Reference Architecture that transforms the isolated
island solutions of the “intranets of things” as we know them today into a domain-spanning
interoperable infrastructure of IoT platforms. This infrastructure should be viable from an
economic point of view and should facilitate novel business opportunities. Within this section of
the deliverable, we will only briefly discuss the application fields for which viable business
scenarios compliant to IoT-A can be developed, but instead focus only on central application
fields in the focus of the project. As IoT-A work package 7 explicitly focuses on health and retail
as the primary application fields for which technical demonstrators are to be developed and
validated both in terms of being relevant for the application fields as such (the stakeholder
group was selected partly based on the industry or domain the stakeholders are experts in) and
in terms of technical and economic viability, it makes sense to concentrate on these use cases
for a more in-depth analysis of business cases. In that respect, we do provide a certain level of
width by briefly outlining various application fields as well as a certain level of depth by
exemplarily examining selected business cases.

The narrowed focus of the use cases comes from the fact the stakeholder group of the IoT-A
project focuses mostly on selected application fields. Within these fields, stakeholder aspirations
can of course be diverse, because of differences in their background and differences in their
business views. Nevertheless, there are some common themes in stakeholder aspirations that
make us confident that there is some potential for generalizing business scenarios.

o Many stakeholders see IoT as a means of improving their current business. IoT will thus
serve various business goals and strategic objectives, such as future-proofness,
lowered costs, etc.

o Other stakeholders see IoT as a disruptive technology, which will aid them in creating
new applications and thus new business opportunities (selling access to sensor data,
etc.).

o In order to achieve a maximum of flexibility of IoT technology and its use, short product-
development cycles and a maximum leverage of existing and new solutions to common
problems is needed. For that reason, many stakeholders advocate open IoT platforms
and frameworks. The underlying business goal for this advocacy is to lower costs in
product development. Strategic objectives are to enhance product interoperability and
to shorten the development cycles. The latter is important for responding to customers’
emerging needs in an agile manner.

o Since active supervision of IoT interactions is even more elusive than monitoring
today’s Internet traffic, security and privacy have, as expected, been identified as a core
topic. Privacy is strongly related to the overall acceptance of IoT. If individuals and other
users cannot experience a sufficient level of privacy when utilising IoT technology, this

IoT-A (257521)

Internet of Things - Architecture © - 33 -

will critically challenge the acceptance of this novel technology. Security equates of
course not only to privacy, but also to the protection of the IoT against interferences,
such as service attacks, Trojans, viruses, etc.

For our business case evaluation within the context of this deliverable, we will focus on a single
use case from work package 7 based on certain common stakeholder aspirations that comes
from the retail domain. Correspondingly, within the next deliverable D1.4 we will provide a
similar examination for a central use case from the health domain, so that both of the central
application fields of IoT-A are reflected appropriately.

Within the next two sections we will outline both the relevant application fields, building upon the
work performed in our “sister project” IoT-i, as well as a business case evaluation of a retail use
case that is based upon a business case methodology developed in a preceding IoT project
called SemProM (Semantic Product Memories, http://www.semprom.de/semprom_engl/).

2.3.2 Fields of Application
In order to maximise the impact of our architectural reference model, we have to identify those
scenarios where IoT technologies have a special relevance, taking into account that these
scenarios frequently share the same applications, sensors, stakeholders and, of course, users.
We will base this identification on scenarios that have been kindly provided by the IoT-I CSA
[40].

Field of
application Impacts

Transportation/
Logistics

In transport logistics, IoT improves not only material flow systems, but also
global positioning and auto identification of freights. Additionally, it
increases energy efficiency and thus decreases energy consumption. In
conclusion, IoT is expected to bring profound changes to the global supply
chain via intelligent cargo movement. This will be achieved by means of
continuous synchronisation of supply-chain information, and seamless real-
time tracking and tracing of objects. It will provide the supply chain a
transparent, visible and controllable nature, enabling intelligent
communication between people and cargo.

Smart home Future smart homes will be conscious about what happens inside a
building, mainly impacting three aspects: resource usage (water
conservation and energy consumption), security, and comfort. The goal
with all this is to achieve better levels of comfort while cutting overall
expenditure. Moreover, smart homes also address security issues by
means of complex security systems to detect theft, fire or unauthorized
entries. The stakeholders involved in this scenario constitute a very
heterogeneous group. There are different actors that will cooperate in the
user’s home, such as Internet companies, device manufacturers,
telecommunications operators, media-service providers, security
companies, electric-utility companies, etc.

IoT-A (257521)

Internet of Things - Architecture © - 34 -

Field of
application Impacts

Smart city While the term smart city is still a fuzzy concept, there is a general
agreement that it is an urban area which creates sustainable development
and high quality of life. Giffinger et al.’s model elucidates the characteristics
of a smart city, encompassing economy, people, governance, mobility,
environment and living [22]. Outperforming in these key areas can be done
through strong human or social capital and/or ICT infrastructure. For the
latter, a first business analysis concludes that several sectors/industries will
benefit from more digitalised and intelligent cities (examples for a city of 1
million people [23]):

• Smart metering, 600.000 meters, US $ 120 million opportunity

• Infrastructure for charging electric vehicles, 45.000 electric
vehicles, US $ 225 million opportunity

• Remote patient monitoring (diabetes), 70.000 people, US $ 14
million opportunity

• Smart retail, 4.000 stores, US $ 200 million opportunity

• Smart-bank branches, 3.200 PTMs, US $ 160 million opportunity

Smart factory Companies will be able to track all their products by means of RFID tags by
means of a global supply chain; as a consequence, companies will reduce
their OPEX and improve their productivity due to a tighter integration with
ERP and other systems. Generally, IoT will provide automatic procedures
that imply a drastic transformation of employees towards higher level
activities, as workers will be replaced by bar-code scanners, readers,
sensors and actuators, and in the end by complex robots, as efficient as a
human. Without any doubt, these technologies will bring opportunities for
white-collar workers and a big number of technicians will be necessary to
program and repair these machines. This is synonymous to a transfer to
maintenance jobs, but it also constitutes a new challenge for providing all
blue-collar workers with an opportunity to move toward these types of jobs
and to avoid unemployment.

Retail IoT realises both customer needs and business needs. Price comparison of
a product; or looking for other products of the same quality at lower prices,
or with shop promotions gives not only information to customers but also to
shops and business. Having this information in real time helps enterprises
to improve their business and to satisfy customer needs.

Obviously, big retail chains will take advantage of their dominant position in
order to enforce the future IoT retail market, as it happened with RFID
adoption, which was enforced by WalMart in 2004 [24]. Particularly,
companies with controlling positions, such as WalMart, Carrefour, Metro
AG, etc. are able to push the adoption of IoT technology due to their sizable
market shares.

IoT-A (257521)

Internet of Things - Architecture © - 35 -

Field of
application Impacts

e-Health Controlling and preventing is one of the main goals of future health care.
Already today, people have the possibility of being remotely tracked and
monitored by specialists. Tracing peoples’ health history is another aspect
that makes IoT-Assisted eHealth very versatile. Business applications could
offer the possibility of medical service not only to patients but also to
specialists, who need information to proceed in their medical evaluation. In
this domain, IoT makes human interaction much more efficient because it
not only permits localization, but also tracking and monitoring of patients.
The most important stakeholders in this scenario will be public and private
hospitals and institutes such as, e.g., the Institute of Applied eHealth at
Edinburgh Napier University, which partook in the first stakeholder session
of IoT-A. It is worth mentioning that telecommunications operators are quite
active in e-health (for instance, O2 UK).

Energy From the aforementioned application we infer that environment has many
overlaps with other scenarios, such as smart home and smart city. One key
issue in these scenarios is to detect means that help to save energy. We
are basically referring to what is known as Smart Grid. Concerning this
application area one needs to highlight initiatives that imply a more
distributed energy production, since many houses have a solar panel today.

As a vital part, smart metering is considered as a pre-condition for enabling
intelligent monitoring, control, and communication in grid applications. The
use of IoT platforms in Smart Metering will provide the following benefits:

• An efficient network of smart meters allows for faster outage
detection and restoration of service. Such capabilities redound to
the benefit of customers

• Provides customers with greater control over their energy or water
consumption, providing them more choices for managing their bills.

• IoT deployment of smart meters is expected to reduce the need to
build power plants. Building power plants that are necessary only
for occasional peak demand is very expensive. A more economical
approach is to enable customers to reduce their demand through
time-based rates or other incentive programs, or to use automatic
recording of consumptions to temporarily turn off devices which are
not in use.

Finally, combining the analysis of supply and demand, energy enterprises
will be able to realize a more efficient demand shaping. They will not just
give incentives to consumers, but actually turn off devices that are not
needed (like the freezer for 20 minutes). Also most of this needs to happen
automatically. Here we again face a heterogeneous scenario, in which
diverse stakeholders are involved. Main actors are of course energy
utilities, but also public entities will be important players.

The application fields outlined above serve as a foundation for describing the business
processes, applications, context in which the applications enable the technology, actors (e.g.,

IoT-A (257521)

Internet of Things - Architecture © - 36 -

people or physical entities) and computing components which are involved in the scenario and
the desired outcome of proper execution.

In order to describe a well-defined business model, it is necessary to define what needs to be
done in the business, which are the metrics for success, which are the problems that must be
solved and the plans that solve these problems. Knowing which part of the problem is possible
to solve, how much time is needed, and which part cannot be solved is an important step that
we must take into account when we develop concrete business cases for some of the
application fields discussed above.

As we can only go into the details of one business case in the context of this document, we will
pick a use case from the application field of retail, as this is a central application field for the
project, and apply an appropriate business case methodology to it. This methodology is outlined
in the next section. The use of a methodology instead of merely calculating “some kind of
business case” enables us to perform comparisons between different application fields, for
instance when we consider e-Health under an economic perspective within the context of the
forthcoming deliverable D1.4.

2.3.3 Business Case Methodology
As the scenarios and use cases developed in work package 7 demonstrate, there is a huge
potential for realising IoT applications in different application fields that are based on
architectural concepts of IoT-A and potentially bring novel business opportunities, for instance
when sensor technology contributes to changing distribution models for perishable goods, so
that e.g. fruits or vegetables can still be sold to the consumer, before their quality deteriorates
and the goods are wasted. However, to make such scenarios possible, large investments are
needed in e.g., hardware, software, installation, configuration, maintenance, business process
reengineering and training of personnel. To justify such investments, a Business Case (BC) is
usually developed, describing the benefits, costs and risks of each investment alternative.

BCs commonly appear as spread-sheets, often accompanied by presentations or explanatory
documents. They may be presented by the project leader (BC ‘owner’ or ‘champion’) to senior
management, which is responsible for prioritizing BCs and making investment decisions. This
way, the BC can be used to decide about investment before project execution (‘ex-ante’), to
evaluate progress during project execution, and to determine to what extent the proposed value
of the investment has been realized after project execution (‘ex-post’). Naturally, the
development of BCs is a complex task. First, collecting, transforming and aggregating the
required information demands interdisciplinary teamwork and expertise in a wide range of fields
such as business strategy, business operations (‘work practice’), information technology,
accounting and project management. Second, BCs are based on assumptions concerning the
future development of certain variables. Predicting those variables requires accurate data and
reliable analysis methods. Third, BCs are subject to a constantly changing business
environment, requiring an agile BC development process to adapt to these changes.

Within the context of IoT-A, BCs should be based on a generic BC process to allow for their
development, use and improvement across different application fields. We therefore base the
BC process on a framework being developed in the IoT project SemProM that proposes a BC
framework which is based on a generic BC process, consisting of six steps: Scope, Processes,
Criteria, Methods, Results, Conclusion. During this process, domain-specific components
consisting of criteria and methods may be reused.

The BC framework provides a set of spread-sheets in Microsoft Excel that accompany the
process proposed. In the following section, we apply this framework to two of the primary retail
use cases developed in work package 7, namely the NFC Based Shopping Assistant (retail
scene 5) in combination with the sensor-based quality control (retail scene 7).

IoT-A (257521)

Internet of Things - Architecture © - 37 -

2.3.4 Retail Business Case
In this section we exemplify a business case from the retail domain that shows the beneficial
effects of the IoT-based use cases investigated in work package 7 of the IoT-A project. The
complete details can be found in D7.1 and D7.2 and the prototypical implementation and
evaluation in the project’s retail living lab is expected for the end of 2012. The use case shows
how IoT technologies like sensor technologies built into consumer electronic devices and NFC
tags coupled with a concrete architecture derived from the Reference Architecture can provide
useful meta-information to the customer to enhance the overall shopping experience and at the
same time significantly reduce the costs for consulting that sales personnel in the retail stores
need to conduct today, as there are no such systems in widespread use. The use case
demonstrates what a direct human-to-machine interaction enabled by IoT-A would be like. As
such, the overlap between the existing Internet and the future Internet of Things is shown. From
a business perspective, the use case is primarily interesting, because the NFC-based product
information has the potential to reduce the consultation time of the sales personnel in the store.

In order to make the business case somewhat more complex, we also integrate the core
functionality of use case scene 7 (sensor based quality control) of D7.2 into the case and
assume that both scenes are interconnected, because they are based on a common
architecture, namely a concrete architecture based on the IoT-A Reference Architecture.

This sensor based quality control scene shows how sensors monitor perishable goods in a
store. Depending on the luminance, humidity, and temperature of the environment, the
estimated future quality of the perishable products is determined and prices are reduced, even
before a perceivable degradation of quality occurs. By applying this sensor based quality control
and combining it with dynamic pricing, it is ensured that the goods are sold before quality
degradation is likely to occur. From a business and industry perspective, the scene
demonstrates two important retail related concepts: dynamic pricing and quality control of
perishable goods. Dynamic pricing as a real-time tool for price optimization strategies has
always been crucial for profit maximization. In contrast to the state of the art, dynamic pricing in
the featured use case is not performed based on static information such as best before end
dates in the transaction data of the backend ERP system, but it is based on real time IoT data
gathered from a sensor infrastructure. As about 20% of perishable goods never reach the
consumer, but are disposed of before, either in the store or in the supply chain, the utilization of
IoT sensors is also an interesting concept to implement quality control of perishables and thus
reduce waste and increase profits at the same time.

As we have stated before, we assume that both the self-contained NFC-based product
information and the sensor based quality control are based on the same technical system
realised in accordance with the IoT-A ARM. Therefore, we calculate their anticipated effects in a
combined business case. The actual Excel sheets are available on the IoT-A website at
http://www.IoT-A.eu/public/public-documents accompanying the deliverable, but in the following
tables we already provide the respective criteria, on which the calculations are based, as well as
instantiations of these criteria calculated for cases, when the IoT-A -based use cases are
realised and when they are not realised (= the baseline).

In our calculations we base our BC on an example case for German Retailers trading fast
moving consumer goods in a higher market segment. The following two tables illustrate some of
the respective parameters used.

IoT-A (257521)

Internet of Things - Architecture © - 38 -

Table 2: Criteria for the Retail Business Case

IoT-A (257521)

Internet of Things - Architecture © - 39 -

Table 3: Sample Instantiations for the Retail Business Case

IoT-A (257521)

Internet of Things - Architecture © - 40 -

The core result of the business case calculation for the retail domain is that, apart from the
reduced waste of perishables due to the sensor based quality control, the consulting time of
sales personnel being reduced significantly, in our case about 30%, so that IoT-based scenarios
indeed appear to have a significant business impact. The business case as we have calculated
it for a retailer from the Fast Moving Consumer Goods (FMCG) field does not yet take into
account the savings and benefits of software systems that are compliant with the IoT Reference
Architecture and that follow the best practices and design choices laid out by the IoT-A project.
While we envision the best practices to be a strong and central contribution of the project, it is
currently difficult to calculate its economic impact. By the next deliverable D1.4 we expect to
have more in-depth implementation design choices and best practices at hand, so that these
effects can be taken into account for the next business case. Apart from the best practices, we
also believe that substantial economic benefits can emerge from the modular and component-
based approach to building IoT systems that are compliant with the IoT-A Reference
Architecture. These additional business effects will also be taken into account for future
business cases.

While we can already state that from an economic perspective the IoT-A approach simply
makes sense, it is also important to note that solid business scenarios are only a precondition to
the application of the ARM. In order to implement Internet of Things use cases based on the
IoT-A Reference Architecture, the project aims at providing much more than just the Reference
Architecture itself and an economic validation: The business cases are just one building block
towards a fully featured “Cook Book” with information on various aspects concerning the
implementation of IoT systems. It will provide best practices for the various modules that the
ARM comprises and will discuss design choices that academics and practitioners alike will be
faced with when implementing concrete systems based on IoT-A.

IoT-A (257521)

Internet of Things - Architecture © - 41 -

3 Reference model

3.1 Interaction of all sub-models
The reference model aims at establishing a common grounding for IoT architectures and IoT
systems. It consists of the sub-models shown Figure 10 that will be explained in the following.

Figure 10: Interaction of all sub-models

The foundation of the Reference Model is the Domain Model that introduces the main concepts
of the Internet of Things and the relations between these concepts. The abstraction level has
been chosen in such a way that the concepts are independent of specific technologies and are
invariant, i.e. are not expected to change over time.

Based on the Domain Model, the Information Model has been developed that defines the
structure (e.g. relations, attributes) of all the information (data) that is handled in an IoT system
on a conceptual level. So the information pertaining to those concepts of the Domain Model is
modelled, which is explicitly gathered, stored and processed in an IoT system.

The Functional Model identifies groups of functionalities that are in most cases centred around
key concepts of the Domain Model. A number of these Functional Groups (FG) build one on top
of the other, following the relations identified in the Domain Model. The Functional Group then
provides the functionalities for interacting with the instances of these concepts or managing the
information related to the concepts. The functionalities managing information use the
Information Model as the basis for structuring their information.

IoT-A (257521)

Internet of Things - Architecture © - 42 -

A key functionality in any distributed computer system is the communication between the
different components. Specific to an IoT system is the heterogeneity of communication
technologies. The Communication Model introduces concepts for handling the complexity of
communication in heterogeneous IoT environments. Communication also constitutes one
Functionality Group in the Functional Model.

Finally, security and privacy are of paramount importance in typical IoT environments.
Therefore, the relevant functionalities and their interdependencies and interactions are
introduced in the Security Model. As in the case of communication, security constitutes one
Functionality Group in the Functional Model.

3.2 Domain Model

3.2.1 Definition and Purpose
The IoT-A project defines a domain model as a description of concepts belonging to a particular
area of interest. The domain model also defines basic attributes of these objects, such as name
and identifier. Furthermore, the domain model defines relationships between objects, for
instance “instruments produce data sets”. Domain models also help to facilitate correlative use
and exchange of data between domains [18]. Besides this official definition, and looking at our
interpretation of it, our domain model also provides a common lexicon and taxonomy [1]. The
terminology definitions of IoT-A are provided online as well as in Annex C.

The domain model is an important part of any reference model because it includes a definition
of the main abstract concepts (abstractions), their responsibilities, and their relationships.
Regarding the level of detail, the domain model should separate out what does not vary much
from what does [25]. For example, in the IoT domain, the device concept will likely stay around,
while the types of devices used will change over time or vary depending on the application
context. For instance, there are many technologies to identify objects –RFID, bar codes, image
recognition etc. But which of these will still be in use 20 years from now? And which is the best-
suited technology for a particular application? For these and related reasons, the domain model
does not include particular technologies, but rather abstractions thereof.

The main purpose of a domain model is to generate a common understanding of the target
domain in question. In our case the question is what does the IoT define?

Such a common understanding is important, not just project-internally, but also for the scientific
discourse. Only with a common understanding of the main concepts it becomes possible to
argue about architectural solutions and to evaluate them. As has been pointed out in literature,
the IoT domain suffers already from an inconsistent usage and understanding of the meaning of
many central terms [26].

3.2.2 Main abstractions and relationships

3.2.2.1 Interpreting the model diagram
This section describes the IoT domain model used in the IoT-A project. It was developed
refining and extending two models found in the literature [26], [27]. It is meant to capture the
main concepts and the relationships that are relevant for stakeholders concerned with the IoT.
For better understanding, this is followed in Section 3.2.3 with more detailed explanations.
Guidelines and best practices on how to use the domain model will be given in Section 5.2.

UML is used to graphically illustrate the model. Generalization is used to depict an “is-a”
relationship and should not be misinterpreted as sub-classing. Only the most important
specialisations are shown, others are possible however. For example, not every Device can be

IoT-A (257521)

Internet of Things - Architecture © - 43 -

characterized as either a Tag, a Sensor, or an Actuator. The specialisations are however
generally disjoint, if not noted otherwise1.

Concepts depicting hardware are shown in blue, software in green, animate beings in yellow,
and concepts that fit into either multiple or no categories in brown.

3.2.2.2 The core IoT Domain Model
The generic IoT scenario can be identified with that of a generic User that needs to interact with
a (possibly remote) Physical Entity (PE) of the physical world (see Figure 11). In this short
description we have already introduced the two key actors of the IoT. The User is a human
person or some kind of a Digital Artefact (e.g., a Service, an application, or a software agent)
that has an interest in interacting with a Physical Entity.

In the physical environment, interactions can happen directly (e.g., by moving a pallet from A to
B manually). In the IoT though, we want to be able to interact indirectly or mediated, i.e., by
calling a service that will either give information about the Physical Entity or actuate on it. When
a Human User is accessing a service, he does so through a service client, i.e., some software
with an accessible user interface. For simplicity reasons, the service client is not shown in
Figure 12. For the scope of the domain model, the interaction is usually characterized by a goal
of the user. The Physical Entity is a discrete, identifiable part of the physical environment which
is of interest to the user for the completion of his goal. Physical Entities can be almost any
object or environment; from humans or animals to cars; from store or logistic chain items to
computers; from electronic appliances to closed or open environments.

Figure 11: Basic abstraction of an IoT interaction.

Physical Entities are represented in the digital world via a Virtual Entity. This term is also
referred to as „virtual counterpart“ in the literature [28], but using the same root term „entity“ in
both concepts clearer shows the relationship of these concepts. There are many kinds of digital
representations of Physical Entities: 3D models, avatars, data-base entries, objects (or
instances of a class in an object-oriented programming language), and even a social-network
account could be viewed as such a representation. However, in the IoT context, Virtual Entities
have two fundamental properties:

• They are Digital Artefacts. Virtual Entities are associated to a single Physical Entity that
they represent. While generally there is only one Physical Entity for each Virtual Entity,
it is possible that the same Physical Entity can be associated to several Virtual Entities,
e.g., a different representation per application domain or per IT system. Each Virtual
Entity must have one and only one ID that identifies it univocally. Virtual Entities are

1 The one exception is the specialisations of the Digital Artefact: All Digital Artefacts can be classified as
either Active or Passive Digital Artefacts. Virtual Entities are also Digital Artefacts that can be either active
or passive.

Physical EntityUser

*

interacts with

*

IoT-A (257521)

Internet of Things - Architecture © - 44 -

Digital Artefacts that can be classified as either active or passive. Active Digital
Artefacts are running software applications, agents or Services that may access other
services or Resources. Passive Digital Artefacts are passive software elements such as
data-base entries or other digital representations of the Physical Entity.

• Ideally, Virtual Entities are synchronised representations of a given set of aspects (or
properties) of the Physical Entity. This means that relevant digital parameters
representing the characteristics of the Physical Entity can be updated upon any change
of the former. In the same way, changes that affect the Virtual Entity could manifest
themselves in the Physical Entity.

At this point it should be noted that while Figure 11 at first sight seems to suggest only a person
interacting with some physical objects, it also covers interaction between two machines: in this
case, the controlling software of the first machine is an Active Digital Artefact and thus a User,
and the second machine – or a Device in the terms of the domain model – can be modelled as
a Physical Entity. See Section 5.2.1.5 for more details on how to model machine-to-machine
(M2M) interactions.

We introduce the concept of an Augmented Entity as the composition of one Virtual Entity and
the Physical Entity it is associated to, in order to highlight the fact that these two concepts
belong together, and also in order to have a name for the composition. The augmented entity is
what actually enables everyday objects to become part of digital processes, thus, the
augmented entity can be regarded as constituting the “thing” in the Internet of Things.

The relationship between Augmented, Physical and Virtual Entities is shown in Figure 12,
together with other terms and concepts that will be introduced in the remainder of this section.

The relation between Virtual and Physical Entity is usually achieved by embedding into, by
attaching to, or by simply placing in close vicinity of the Physical Entity one or more ICT Devices
that provide the technological interface for interacting with or gaining information about the
Physical Entity. By so doing the Device actually enhances the Physical Entity and allows the
latter to be part of the digital world. This can be achieved by using Devices of the same class,
as in the case of body-area network nodes, or by using Devices of different classes, as in the
case of an RFID tag and reader. A Device thus mediates the interactions between Physical
Entities (that have no projections in the digital world) and Virtual Entities (which have no
projections in the physical world), generating a paired couple that can be seen as an extension
of either one. Devices are thus technical artefacts for bridging the real world of Physical Entities
with the digital world of the Internet. This is done by providing monitoring, sensing, actuation,
computation, storage and processing capabilities. It is noteworthy that a Device is also a
Physical Entity and can be regarded as such, especially in the context of certain applications.
An example for such an application is device management, whose main concern is the devices
themselves and not the objects or environments that these devices monitor.

From an IoT point of view, the following three basic types of Devices are of interest:

• Sensors provide information about the Physical Entity they monitor. Information in this
context ranges from the identity of the Physical Entity to measures of the physical state
of the Physical Entity. Like other Devices, they can be attached or otherwise embedded
in the physical structure of the Physical Entity, or be placed in the environment and
indirectly monitor entities. An example for the latter is a face-recognition enabled
camera. Information from sensors can be recorded for later retrieval (e.g., in a storage
type of Resource, see 3.2.3.2).

• Tags are used to identify Physical Entities to which they are usually attached to. The
identification process is called “reading” and it is carried out by specific sensor Devices,
which are usually called readers. The sole purpose of tags is to facilitate and increase

IoT-A (257521)

Internet of Things - Architecture © - 45 -

the accuracy of the identification process. This process can be optical, as in the case of
barcodes and QR code, or it can be RF-based, as in the case of microwave car-plate
recognition systems and RFID. The actual physics of the process as well as the many
types of tags are however irrelevant for the domain model as these technologies vary
and change over time. These are important however when selecting the right
technology when implementing a concrete system.

• Actuators can modify the physical state of a Physical Entity, like changing the state
(translate, rotate, stir, inflate, switch on/off,...) of simple Physical Entities or
activating/deactivating functionalities of more complex ones.

Notice though, that Devices can be an aggregation of several Devices of different types. For
instance, what we call a sensor node often contains both sensors (e.g., movement sensing) as
well as actuators (e.g., wheel engines). In some cases, Virtual Entities that are related to large
Physical Entities might need to rely on several, possibly heterogeneous, Resources and
Devices in order to provide a meaningful representation of the Physical Entity.

Resources are software components that provide information about or enable the actuation on
Physical Entities. Resources typically have native interfaces. There is a distinction between On-
Device Resources and Network Resources. On-Device Resources are hosted on Devices, viz.
software that is deployed locally on the Device that is attached to the Physical Entity. They
include executable code for accessing, processing, and storing sensor information, as well as
code for controlling actuators. On the other hand, Network Resources are Resources available
somewhere in the network, e.g., back-end or cloud-based data bases. A Virtual Entity can also
be related to Resources that enable interaction with the Physical Entity that the Virtual Entity
represents.

In contrast to heterogeneous Resources – implementations of which can be highly dependent
on the underlying hardware of the Device –, a Service provides a well-defined and standardised
interface, offering all necessary functionalities for interacting with Physical Entities and related
processes. Interaction with the service is done via the network. On the lowest level – the one
interfacing with the Resource and closer to the actual device hardware –, services expose the
functionality of a Device through its hosted Resources. Other services may invoke such low-
level services for providing higher-level functionalities, for instance executing an activity of a
specified business process.

Since it is the service that makes a Resource accessible, the above-mentioned relations
between Resources and Virtual Entities are modelled as associations between Virtual Entities
and services. For each Virtual Entity there can be associations with different services that may
provide different functionalities like retrieving information or enabling the execution of actuation
tasks. Services can also be redundant, i.e., the same type of service may be provided by
different instances. In this case, there could be multiple associations of the same kind for the
same Virtual Entity. Associations are important in look-up and discovery processes.

IoT-A (257521)

Internet of Things - Architecture © - 46 -

Figure 12: The IoT Domain Model

3.2.3 Detailed explanations and related concepts
The domain model as explained in the previous section is focusing on the main concepts at a
high level of abstraction, capturing the essence. However, for easier understanding we give
here further explanations for the following purposes:

• Explain some related aspects, e.g., the role of location;

• Show specific model instantiations, e.g., M2M interaction;

• Elaborate on certain concepts like Devices and Resources.

3.2.3.1 Devices and Device capabilities
From a Domain Model point of view, Devices are only technical artefacts meant to provide an
interface between the digital and the physical worlds, i.e. a link between the Virtual Entities and
the Physical Entities. For this reason, Devices must be able to operate both in the physical and

Dev ice

Physical Entity

Human User

Serv ice

On-Dev ice
Resource

SensorActuator

Network Resource

Resource

User

Passiv e Digital
Artefact

Activ e Digital
Artefact

Virtual Entity

Digital Artefact

Augmented Entity

Tag

A Virtual Entity is either an
Active Digital Artefact or a
Passive Digital Artefact.

Animate objects (humans, animals etc.)

Hardware

Software

Not clearly classifiable (e.g., combination)

Colour Scheme

1

1

1..*

invokes / subscribes

1..*

*

interacts with

*

0..*

is associated with

0..*

1..*

relates to 1

0..*
contains

0..1

0..*

contains

0..*

0..* identifies

1
0..*

is associated with

0..*

0..*

hosts
1

0..*
contains

0..1

0..*

contains

0..1

1

1..*

0..*

invokes

0..*

1..*

has Information about / acts on

1..*

0..*

monitors

1..*

1..*

reads

0..*

0..*

acts on

1..*

0..*

is attached to 0..*

1..*

exposes

0..*

IoT-A (257521)

Internet of Things - Architecture © - 47 -

digital world and the domain model only focuses on their capability to provide observation and
modification of the physical environment from the digital environment.

The hardware underlying the Devices is very important though and must have at least some
degree of communication, computation and storage capabilities for the purposes of the IoT.
Moreover, power resources are also very important as they can provide operational autonomy
to the Devices. Many technologies and products are available and their capabilities vary quite a
lot. While these capabilities might not impact directly the domain model, they are very important
during the application design phase.

Communication capabilities are relative to the type of data exchanged with the Device
(identifier, identifier + data, sensor data, or commands) and the communication topology
(network, reader-tag or peer-to-peer). These aspects are very important in the IoT context and
have a large impact on energy consumption, data collection frequency, and the amount of data
transmitted. Security features also impact communication capabilities, because they usually
introduce a consistent communication overhead. Communication capabilities indirectly impact
the location of Resources (on-device or on the network).

Computation capabilities on the other hand have a huge impact on the chosen architecture, the
implementable security features, and power resources of the Devices. They are also relevant
for what concerns the availability of On-Device Resources and their complexity.

The term storage usually refers to the capability of supporting the firmware/software running on
the Device by storing data provided by on-board sensor hardware or gathered from other
services and needed for providing a given Resource. It can range from none as in the case of
RFID technology to kilobytes in the case of typical embedded Devices or even more in case of
unconstrained Devices.

3.2.3.2 Resources
Resources are software components that provide some functionality. They either provide some
information or allow changing some aspects in the digital or physical world pertaining to one or
more Physical Entities. The latter functionality is typically referred to as actuation. Resources
can either run on a Device – hence called On-Device Resources – or they can run somewhere
in the network (Network Resources). On-Device Resources are typically sensor Resources that
provide sensing data or actuator Resources, e.g. a machine controller that effects some
actuation in the physical world. They thus can be seen as a “bridge” between the digital and
physical world. On-Device Resources may also be storage Resources, e.g., store a history of
sensor measurements, but are limited by the storage capacity of the Device.

As Network Resources run on a dedicated server in the network or in the “cloud”, they do not
rely on special hardware that allows a direct connection to the physical world. They rather
provide enhanced services that require more system resources than Devices typical for the IoT
can provide. Such resources can process data, for instance they can take sensor information as
input and producing aggregated or more high-level information as output. Also, Network
Resources can be storage Resources, which typically do not suffer from the limitations of their
on-device counterparts. Storage Resources can store information coming from Resources and
thus provide information about Physical Entities. This may include location and state-tracking
information (history), static data, like product type information, and many other properties. An
example of a storage Resource is an EPCIS repository (Electronic Product Code Information
Services [29]) that aggregates information about a large number of Physical Entities. Note that
also Human Users can update the information in a storage Resource, since not all known
information about an entity is, or even can be, provided by Devices.

IoT-A (257521)

Internet of Things - Architecture © - 48 -

3.2.3.3 Services
Services are a widely used concept in today’s IT systems. According to [6], "services are the
mechanism by which needs and capabilities are brought together". This definition is very broad,
and the service concept in the domain model is covering this broad definition – but restricted to
technical services implemented in software. As such, services provide the link between the IoT
aspects of a system and the general IT issues; IoT-related services and non-IoT services can
be orchestrated together in order to form a complete system.

As it has been pointed out in [30], IoT-related services need to be explained in more detail: IoT
Services provide well-defined and standardised interfaces, hiding the complexity of accessing a
variety of heterogeneous Resources. The interaction with a Physical Entity can be
accomplished via one or more services associated with the corresponding Virtual Entity. This
association becomes important in the process of look-up and discovery. An IoT Service can
thus be defined as a type of service enabling interactions with the real world.

According to [30], IoT Services can be classified according to the level of abstraction:

• Resource-level Services expose the functionality of a Device by accessing its hosted
Resources. These kinds of services refer to a single Resource. In addition to exposing
the Resource’s functionality, they deal with non-functional aspects, such as
dependability, security (e.g., access control), resilience (e.g., availability) and
performance (e.g., scalability, timeliness).

• Virtual Entity-level Services provide access to information on a Virtual Entity level.
They can be services associated to a single Virtual Entity that give access to attributes
for reading attribute information or for updating attributes in order to trigger
associations. An alternative is to provide a common Virtual Entity-level service with an
interface for accessing attributes of different Virtual Entities, e.g. as the NGSI Context
Interface [31] provides for getting attribute information.

• Integrated Services are the result of a service composition of Resource-level and
Virtual Entity-level Services as well as any combinations thereof.

3.2.3.4 Identification of Physical Entities
In order to track and monitor physical identities, they have to be identified. There are basically
two ways how this can be done, as is very well described in [32]: Using either natural feature
identification (classified as “primary identification” in [32]) or using some type of tags or labels
(classified as “secondary identification”) that are attached to the Physical Entity.

Both means of identification are covered in the domain model. Tags are modelled as Devices
that explicitly identify a Physical Entity. Natural feature identification can be modelled for
example using a camera – a kind of Sensor – that monitors the Physical Entity and a specific
Resource that does the natural feature extraction. The result of the natural feature extraction
can then be used as a key to look up the corresponding Virtual Entity.

RFID tags are a prominent example often used in the context of IoT. As they come with their
own electronic circuitry it seems quite natural to classify RFID tags as Devices in terms of the
domain model. The case is less clear-cut regarding the classification of a barcode label
however. As [26] points out, classifying it as a Device seems a little far-fetched; regarding it as a
“natural feature” of the Physical Entity it is attached to seems more appropriate. However, as
with many modelling questions, this is a matter of taste – the domain model is not prescribing
which variant to use.

IoT-A (257521)

Internet of Things - Architecture © - 49 -

3.2.3.5 Context and location
As the Internet of Things pertains to the physical world, the characteristics of the physical world
play an important role. All elements of the physical world are situated within a certain context
and location is an essential aspect of it. All concepts in the domain model that refer to elements
of the physical world, i.e., Physical Entities, Devices, and Human Users inherently have a
location. This location may or may not be known within the IoT system.

The location of a Physical Entity can be modelled as an attribute of a Virtual Entity. This location
could then be provided through Resources. In the case of a stationary Physical Entity, the
Resource providing the location could be storage Resource, in the case of a mobile Physical
Entity the Resource could be a positioning system like GPS or a tracking system like some
existing indoor location systems.

3.3 Information model
The information model defines the structure (e.g. relations, attributes) of all the information
(data) that is handled in a system on a conceptual level. This includes the modelling of the main
concepts for information flow, storage and how they are related. The description of the
representation of the information (e.g. binary, XML, RDF etc.) and concrete implementations are
not part of the information model but can be found in the information view (see Section 3.3) and
the related design choices (see Section 5.3.1.2).

IoT-A (257521)

Internet of Things - Architecture © - 50 -

Figure 13: Information Model

The diagram in Figure 13 shows the structure of the information that is handled and processed
in an IoT System. The main aspects are represented by the elements VirtualEntity,
ServiceDescription and Association. A VirtualEntity models a PhysicalEntity, a
ServiceDescription describes a service that acts as a bridge to the physical world, and finally an
Association models the connection between the two.

Every VirtualEntity has a unique identifier or entityType, defining the type of the entity
representation, e.g. a human, a car or even a temperature sensor. Furthermore, a VirtualEntity
can have zero to n different attributes (Attribute). The entityType may refer to concepts in an
ontology that may define what attributes a VirtualEntity of this type may have (see, for instance,

Attribute

attributeName
attributeType

ValueContainer

MetaData

metadataName
metadataType
metadataValue

VirtualEntity

identifier
entityType

Serv iceDescription

Association

Value

Resource
Description

Dev ice
Description

0..* 1..*

1

0..*

metadata

0..1

0..*

IoT-A (257521)

Internet of Things - Architecture © - 51 -

[33]). Each attribute has a name (attributeName), a type (attributeType), and one to n values
(ValueContainer). This way, one can for instance, model an attribute nearbyDevices, which
itself has several values. Each ValueContainer groups one Value and zero to n metadata
information units (MetaData) belonging to the given Value. The metadata can, for instance, be
used to save the timestamp of the value, or other quality parameters, such as accuracy. The
VirtualEntity is also connected to the ServiceDescription via the ServiceEntityAssociation.

A ServiceDescription describes the relevant aspects of a Service, including its interface. In
addition it may contain one (or more) ResourceDescription describing a Resource whose
functionality is exposed by the Service. The ResourceDescription in turn may contain
information about the Device on which the Resource is hosted.

3.3.1 Relation of Information Model to Domain Model
The Information Model models all the concepts of the Domain Model that are to be explicitly
represented and manipulated in the digital world. In addition the Information Model explicitly
models relations between these concepts. The Information Model is a meta-model that provides
a structure for the information. This structure provides the basis for all aspects of the system
that deal with the representation, gathering, processing, storage and retrieval of information and
as such is used as a basis for defining the functional interfaces of the IoT system.

Figure 14shows the relation between the Domain Model concepts and the Information Model
elements. The main Domain Model concepts that are explicitly represented in an IoT system are
the VirtualEntity and the Service. The latter also comprises aspects of the Resource and the
Device. As the VirtualEntity is the model of the PhysicalEntity in the digital world, there is no
other representation of the PhysicalEntity as part of the information model.

The Information Model especially details the modelling of the VirtualEntity. It has attributes with
a name and a type and one or more values to which meta-information can be associated.
Important meta-information are, for example, at what time a value was measured (i.e.
timestamp), the location where a measurement took place and the quality of the measurement.

Finally, the Association between VirtualEntity and Service is detailed in the sense that is
pertains to a certain Attribute of the VirtualEntity.

IoT-A (257521)

Internet of Things - Architecture © - 52 -

Figure 14: Relation between Domain Model and Information Model

IoT-A (257521)

Internet of Things - Architecture © - 53 -

3.3.2 Data in IoT systems
Since data is a very general term, the following section gives a distinction between different
kinds of data which need to be dealt within IoT applications:

• Real-time data is data reflecting the current status of the system. In IoT, probably, only
the data read directly from the sensor can be considered real-time data.

• Derived data is data that has been created perhaps by summarizing, averaging, or
aggregating the real-time data through some process.

• Inferred data is knowledge that has been inferred by applying logic on facts provided
as given data

• Reconciled data is real-time data that has been cleansed, adjusted, or enhanced to
provide an integrated source of quality data that can be used by data analysts.

3.3.3 Other information-related models in IoT-A
Throughout IoT-A several other information related models exist. Most of them are defined in
the technical work packages WP2 till WP5. More information can be found in the respective
deliverables, references are given below. The next section gives a brief overview of the models
and references to more detailed descriptions.

• Entity model: The Entity Model specifies which attributes and features of real word
objects are represented by the virtual counterpart, i.e. the Virtual Entity of the respective
Physical Entity. For every attribute specified in the entity model, services can be found
that are able to either provide information about the attribute (sensing) or manipulate it,
leading to an effect in the real world (actuating). More information about the entity
model can be found in [34] Section 3.2.1.

• Resource model: The Resource Model contains the information that is essential to
identify Resources by a unique identifier and to classify Resources by their type, like
sensor, actuator, processor or tag. Furthermore the model specifies the geographic
location of the Resource, the Device the Resource is hosted on (if so) as well as the IoT
Services the Resource is exposed through. More information can be found in [30]
Section 3.3.

• Service description model: Services provide access to Resources and are used to
access information or to control Physical Entities. An IoT service accesses IoT
Resources in order to provide information about attributes of entities or manipulates
them leading to an effect in the real world. A service description describes a service,
using for instance a service description language such as USDL [35]. For more
information see [30] Section 4.6.3.

• Event Model: Event representation and processing is not yet specified. The respective
documentation will be provided in the future deliverable D2.6.

3.4 Functional model

3.4.1 Functional decomposition
In the IoT-A project, functional decomposition refers to the process by which the different
Functionality Groups (FG) that make up the IoT-A architectural reference model are identified
and related one to another.

IoT-A (257521)

Internet of Things - Architecture © - 54 -

The main purpose of functional decomposition is to break up the complexity of a system
compliant to the IoT-A ARM in smaller and more manageable parts on the one hand, and to
understand and illustrate their relationship at the other hand.

Additionally, the output of functional decomposition produces a super set of functionalities that
can be used to build any IoT system. The output of functional decomposition is described in this
document at two levels of abstraction:

• The functional model (purpose of this section);

• The functional view (presented in Section 4.2.2).

The definition of the functional model is derived by applying the definition of a reference model
to functional decomposition: “The functional model is an abstract framework for understanding
the main functionality groups of the IoT-A environment and their relationships. This framework
defines the common semantics and will be used for the development of IoT-A compliant
functional views.”

The definition contains the following concepts that need more explanation:

• Abstract: The functional model is not directly tied to a certain technology, application
domain or implementation. It does not explain what the different functional components
are that make up a certain functionality group.

• Functionality groups and their relationships: The functional model contains both the
functionality groups and the relationship between those parts. A list of the functionality
groups alone would not be enough to make up the functional model. Both the
functionality groups and their relationship are mandatory.

• IoT-A environment: The functional model is limited to the IoT environment described
by the domain model of Section 3.2.

• Functional view: The functional view describes the system’s runtime functional
components and their responsibilities, interfaces and primary interactions. Note that
various functional views could be derived from the functional model.

As a side note, in deliverable D1.2, only the functional view was included as part of the
Reference Architecture section.

3.4.2 Functional Model Diagram
The functional model diagram is depicted in Figure15: Functional Model and is derived as
follows:

• From the main abstractions identified in the domain model (Virtual Entities, Devices,
Resources and users) the “Application”, “Virtual Entity”, “IoT Service” and “Device” FGs
are derived.

• With regards to the plethora of communication technologies that the IoT-A ARM needs
to support, the need for a “Communication” FG is identified.

• Requirements expressed by stakeholders regarding the possibility to build services and
applications on top of the IoT are covered by the “IoT Business Process Management”
and “Service Organisation” FGs.

• To address consistently the concern expressed about IoT security and privacy, the
need for a “Security” transversal FG is identified.

IoT-A (257521)

Internet of Things - Architecture © - 55 -

• Finally, the “Management” transversal FG is required for the management and/or
interaction between the different functionality groups.

Figure15: Functional Model

The functional model contains seven longitudinal functionality groups complemented by two
transversal functionality groups (Management and Security). These transversal groups provide
functionalities that are required by each of the previously discussed longitudinal groups. The
policies governing the transversal groups will not only be applied to the groups themselves, but
do also pertain to the longitudinal groups.

As an example: for a security policy to be effective, it must ensure that there is no functionality
provided by a component that would circumvent the policy and provide an unauthorised access.

Next, the relationship between the FGs is defined. As can be seen from Figure15, the functional
model is a layered model and the main communication flows between the FGs are depicted with
arrows. Since the transversal FGs (Management & Security) interface with most of the other
FGs, their relationships are not explicitly depicted.

In the reminder of this section, each of the FGs will now be described in more detail (with
exception of the Application and Device FGs since trying to capture their properties would be so
generic that it does not add any value):

3.4.2.1 IoT Business Process Management
The IoT Business Process Management Functionality Group (BPM FG) relates to the integration
of traditional business process management systems, as they are common in the enterprise
world, with the IoT-A ARM. The overall aim of this FG is to provide the functional concepts and
interfaces necessary to augment traditional business processes with the idiosyncrasies of the

M
an

ag
em

en
t

Se
cu

rit
y

Application

IoT Business Process
Management

Virtual Entity

IoT Service

Communication

Device

Se
rv

ic
e

O
rg

an
is

at
io

n

IoT-A (257521)

Internet of Things - Architecture © - 56 -

IoT world, so that enterprises can effectively utilize IoT subsystems adhering to common
standards and best practices, thus avoiding the overhead and costs of isolated and proprietary
“intranet-of-things” island solutions.

In the IoT-A project, the IoT BPM FG is mapped to WP2 that deals with the integration of IoT
and BPM towards a Future Internet. The IoT BPM FG provides additions and extensions to the
industry standard BPMN 2.0 that include IoT-specific aspects of business processes, such as
the reliability or accountability of sensor data providing information about Virtual Entities or the
required processing capabilities of Devices hosting certain Resources relevant for the real
world. Applications that interact with the IoT BPM FG via IoT-Augmented process models can
effectively be shielded from IoT-specific details of lower layers of the functional model which
greatly reduces integration costs and thus contributes to an increased adoption of IoT-A based
IoT systems.

The IoT BPM FG is conceptually closely related to the Service Organisation Functionality Group
(SO FG) and acts as a façade to applications that need to integrate an IoT-A compliant IoT
system. Applications can utilize the tools and interfaces defined for the FG in order to stay on
the (abstract) conceptual level of a business process while at the same time making use of IoT
related functionality without the necessity of dealing with the complexities of concrete IoT
service. In this respect, it provides interfaces to the IoT-A ARM that are alternatives to the more
concrete VE FG and SO FG interfaces which are on a lower and more detailed level of
abstraction. Naturally, the IoT BPM FG has a dependency on the SO FG, as a central concept
in the execution of business processes is the finding, binding, and invoking of services that are
used for each process step. The IoT BPM FG therefore relies on service organization to map
the abstract process definitions to more concrete service invocations.

3.4.2.2 Service Organisation
The Service Organisation Functionality Group is the central functional group that acts as a
communication hub between several other functional groups. As the primarily concept of
communication within the IoT-A ARM is the notion of a “service”, the service organisation is
used for composing and orchestrating services of different levels of abstraction. Within the
reference architecture, it effectively links the service requests from high level FGs such as the
IoT BPM FG or even external applications to basic services that IoT Resources provide (such
as services hosted on a WSN gateway) and enables the association of entities with these
services utilising the Virtual Entity Functionality Group (VE FG), so that a transformation of high
level requests dealing with properties of entities (e.g. “give me please the temperature in the
room 123”) down to the concrete IoT services that can be invoked to respond to these requests
(e.g. “sensor service XYZ”) can be realised. In order to provide the necessary functionality to
allow for querying Virtual Entities or IoT services that relate to these entities, the SO FG is
comprised of service composition and service orchestration functional components that are
used to resolve IoT services and also deal with the composition of services. Service
composition is a central concept within the architecture, as IoT services are very frequently
capable of rather limited functionality due to the constraints in computing power and battery life
that are typical for WS&ANs or embedded Devices comprising the IoT. Service composition
then helps combining multiple of such basic services in order to answer requests on a higher
level of abstraction (e.g. the combination of a humidity sensing service and a temperature
service could make up for a fire detection service).

As discussed in the previous section about the IoT BPM FG, the SO FG is closely tied to this
FG, as it allows business processes or external applications to find and bind services that can
be used to execute process steps or to be integrated in other ways with external applications.
While the functional model as such does not have a layered structure in the strict sense of the
concept, the relationships of the SO FG to the other FGs follows the layer structure in so far as
the abstract service requirements from the IoT BPM FG are then processed in the VE FG in

IoT-A (257521)

Internet of Things - Architecture © - 57 -

order to manage the associations of IoT services to VEs. The requests coming from the IoT
BPM FG can therefore deal with the abstract concept of entities and are only then translated to
concrete IoT services that are associated with entities in the VE FG and are themselves located
in the lowest FG that is relevant for the SO FG, namely the IoT Service FG. In this respect, the
SO FG mitigates between the three layers of abstraction and serves as a central
communication hub.

3.4.2.3 Virtual Entity & IoT Service
The Virtual Entity and IoT Service Functionality Groups include functions that relate to
interactions on the Virtual Entity and IoT Service abstraction levels respectively. Figure 16
shows how the abstraction levels and how they are related. On the left side of Figure 16 the
physical world is depicted. In the physical world there are a number of sensors and actuators
that respectively capture and allow the change of certain aspects of the physical world. The
Resources associated to the sensors and actuators are exposed as IoT Services on the IoT
Service Level. Example interactions between applications and the IoT system on this
abstraction level are “Give me the value of Sensor 456” or “Set Actuator 867 to On”.
Applications can only interact with these services in a meaningful way, if they already know the
semantics of the values, e.g. if Sensor 456 returns the value 20, the application has to be
programmed or configured in such a way that it knows that this is the indoor temperature of the
room of interest, e.g. Room 1.23. So on this level no semantics is encoded in the information
itself, nor does the IoT system have this information, it has to be a-priori shared between the
sensor and the application.

Whereas interaction on the IoT Service level is useful for a certain set of applications that are
programmed or configured for a specific environment, there is another set of applications that
wants to opportunistically use suitable services in a possibly changing environment. For these
types of applications and especially also the Human Users of such applications, the Virtual
Entity level directly models higher-level aspects of the physical world that can also be used for
discovering service. Examples for interactions between applications and the IoT system on this
abstraction level are “Give me the indoor temperature in Room 1.23” or “Set light level in Room
2.57 to 15”. To support the interactions on the Virtual Entity level, the relation between IoT
Services and Virtual Entities needs to be modelled, which is done in form of associations. For
example, the association will contain the information that the indoor temperature of Room 1.23
is provided by Sensor 456.

IoT-A (257521)

Internet of Things - Architecture © - 58 -

Figure 16: IoT Service and Virtual Entity abstraction levels

Virtual Entity
The VE FG contains functions for interacting with the IoT System on the basis of VEs, as well as
functionalities for discovering and looking up services that can provide information about VEs or
allow the interaction with VEs. Furthermore, it contains all the functionality needed for managing
associations, as well as dynamically finding new associations and monitoring their validity, e.g.
due to the mobility of Virtual Entities or Devices.

IoT Service
The IoT Service functional group contains the IoT Services as well as functionalities for
discovery, look-up and name resolution of IoT services.

3.4.2.4 Communication
The Communication Functionality Group (CFG) aims to tackle all communication needs of IoT-A
compliant systems. Both data plane and control plane are taken into account. The main idea is
to have a slicing in functional components abstracting from the reference model layer itself
being almost orthogonal, since a lot of functionalities can be achieved at different layers. The
best way to understand this functional group is as the sum of his functional components. Hence,
the CFG enables addressing and routes propagation in order to enable various communication
modes and bypassing the limitation of hop-to-hop communication. The CFG ensures as well
reliable communication and flow control, and even expands it to multiple flows, enabling in this
way QoS enforcement. The CFG ensures also energy optimization exposing functions dealing
directly with the radio control but also application level duty cycles. Finally, the CFG enables
bridging among different networks, allowing Devices to perform as a network entry point
implementing forwarding, filtering, connection tracking and packets aggregation functions. All
those functionalities are as well supported by an error detection and correction infrastructure
implemented by this FG.

3.4.2.5 Management
The Management Functionality Group (Management FG) is responsible for the composition and
tracking of actions that involve one or more other FGs. One example for such an action is

IoT-A (257521)

Internet of Things - Architecture © - 59 -

turning the entire IoT system into a sleep mode during an energy-harvesting cycle. Furthermore,
if the interaction of the Application and/or Device FG necessitates the composition and tracking
of at least two FGs, such actions are also candidates for the sphere of responsibility of the
Management FG.

By exclusion, the following management activities are thus out of the scope of the Management
FG. First, activities that only pertain to a single functionality group. An example for this is the
management of authorisations in the Security FG. Second, the management of interactions
between functionality groups that do not require “external” intervention. An example for the latter
are requests between two FGs that can be managed by the requesting functionality group only.

3.4.2.6 Security
The Security Functionality Group (Security FG) is responsible for ensuring the security and
privacy of the IoT-A compliant system. It is in charge of handling the initial registration of a client
to the network in a secure manner. This ensures that only legitimate clients may access
services provided by the IoT infrastructure. The Security FG is also in charge of protecting the
user's private parameters by featuring anonymity (ensuring that the user’s identity remain
confidential when he accesses a Resource or a service) and unlink-ability (ensuring that the
user may make multiple uses of Resources or services without an attacker being able to
establish links between those uses). This privacy support relies on fine-tuned identity
management, able to assign various pseudo-random identifiers to a single user.

The Security FG also ensures that legitimate interaction occurs between peers that are statically
authorized to interact with each other, or that are trusted by each other. This happens through
the use of dedicated authorization functions or through the reliance of a trust and reputation
model, able to identify trustworthy peers in a privacy-capable and highly mutable architecture.

Finally, the Security FG enables secure communications between peers by managing the
establishment of integrity and confidentiality features between two entities lacking initial
knowledge of each other.

3.5 Communication model
The communication model aims at defining the main communication paradigms for connecting
entities, as defined in the domain model. We provide a reference communication stack, together
with insights about the main interactions among the actors in the domain model. We developed
propose a communication stack similar to the ISO OSI 7-layer model for networks, mapping the
needed features of the domain model onto communication paradigms. We also describe how
communication schemes can be applied to different types of networks in IoT.

3.5.1 Communication stack
This model aims at mimicking the ISO/OSI stack, but it puts the focus on IoT systems
requirements and characteristics.

IoT-A (257521)

Internet of Things - Architecture © - 60 -

Figure 17: IoT communication stack.

The model, as depicted in Figure 17stresses the relevance of the layers above the link layer. In
fact, the main strength of this communication model is the interoperability between
heterogeneous networks.

In the following, details of the different layers are provided; viz. how each of them is designed to
satisfy one or more particular requirements of the reference model.

Physical layer: The physical layer remains unchanged from the OSI definition. This is
necessary in order to neither exclude any available technology, nor to prevent emerging
solutions from being integrated into the reference model. The convergence of the different
solutions taking part in the communication stack will be managed in the upper layer.

Link layer: In order to address the heterogeneousness of networking technologies represented
in the IoT field, the link layer requires special attention. In fact, most networks implement similar,
but customised communication schemes and security solutions. In order for IoT systems to
achieve full interoperability, as well as the support of heterogeneous technologies and a
comprehensive security framework, this layer must allow for diversity. But, at the same time, it
needs to provide upper layers with uniform capabilities and interfaces (init, send packet, input
packet, on, off, check interval?).

Network layer: Here, again, the layer provides the same functionalities as the correspondent
OSI stack. However, in order to support global manageability, interoperability, and scalability,
this layer needs to provide a common communication paradigm for every possible networking
solution.

ID layer: The Virtual-Entity IDentifier (VE-ID), split from the locator, is the centre of the first
convergence point in the communication stack, i.e. the ID layer. Leveraging on uniform
interfaces provided by the link layers, the ID Layer allows for a common resolution framework
for the IoT. Also, security, authentication, and high-end services will exploit this layer for
providing uniform addressing to the many different devices and technologies in IoT networks.

End-to-end layer: This layer takes care of translation functionalities, proxies/gateways support
and of tuning configuration parameters when the communication crosses different networking
environments. By building on top of the ID and the network layers, the end-to-end layer provides
the final building block for achieving a global M2M communication model.

IoT-A (257521)

Internet of Things - Architecture © - 61 -

Data layer: at the top of the communication stack, the entry point is the data layer. A high-level
description of the data pertinent to IoT is provided by the information model (see Section 3.3).

3.5.2 Actors in IoT communication
For the communication model of IoT systems, it is important to identify the communicating
system elements and/or the communicating users. One, if not the main peculiarity of the IoT is
that users can belong to many disjoint categories: human or services; virtual, digital or Physical
Entities. While the same picture is emerging in today’s Internet use, the percentage of human-
invoked communication will be even lower in the IoT. Moreover, entities can be physical, digital,
or virtual. While a Physical Entity cannot directly take part to communication, it can towards its
virtual counterpart.

The communication between these users needs to support different paradigms: unicast is the
mandatory solution for one-to-one connectivity. However, multicast and anycast are needed for
fulfilling many other IoT-Application requirements, such as data collection and information
dissemination, etc.

Although the actual communication interaction is performed between two or more Devices, it is
important for the communication model to track the differences between communication
pertaining to human interaction, and those that only happen between services and other non-
human entities. In the former case, viz. human interaction, it is important to address the quality
of the communication, both in terms of quality of service and quality of data. Hereby, the degree
of quality is judged by humans (human-centred QoS and quality of experience). In the latter
case, M2M communication requirements do not involve quality-of-experience but QoS
requirements.

3.5.3 Channel model for IoT communication
This model aims to detail and model the content of the “channel box” in the Shannon-Weaver
model in the context of the IoT domain.

Figure 18: Schematic diagram of a general communication system.

Figure 18 depicts end-to-end abstraction of a packet delivery between distant Devices. The pair
“information source” and “transmitter” is embodied by the digital entity, and the pair “receiver”
and “destination” is embodied by a user, which could be a service, a human or, a distinct digital
entity, or vice-versa.

Following this abstraction, and pushing it forward, here we will focus on the channel modelling.
In the IoT context the channel can assume a multiplicity of forms. The channel is generally
formed by a series of network Devices coupled with software.

IoT-A (257521)

Internet of Things - Architecture © - 62 -

It is important to point out that there is a distinction between the channel model in the current
Internet and that of the IoT. The former is depicted in Figure 19, where the Internet provides an
almost transparent “glue” between two gateways.

Figure 19: Channel model for the current Internet.

To proceed in modelling the channel in IoT it is important to give a definition of what we call
constrained and unconstrained networks.

Unconstrained networks are characterized by high speed communication links (e.g., offering
transfer rates in the Mbit/s range or higher) as the wired Internet of today. Link level transfer
latencies are also short and mainly impacted by possible congestion events in the network
rather than by the physical transmission technology.

Constrained networks are characterized by relatively low transfer rates, typically smaller than
1 Mbit/s, as offered by, e.g., IEEE 802.15.4. These networks are also characterized by long
latencies and this is due to several factors including: 1) the involved low rate physical layer
technology and 2) the power saving policy of the terminals populating these networks, which
may imply the periodic power off of their radios for energy efficiency purposes.

The picture is much different in the IoT. In the simplest IoT case, namely a WSN island, the
channel consists of a single constrained network, as depicted in Figure 20.

Figure 20: IoT channel for a single constrained network.

n a slightly more complicated case, the IoT channel can consist of several constrained
networks, which can rely on different network technologies (see Figure 21).

Figure 21: IoT channel for communication over two constrained networks.

A different case consists of a channel embodied by a constrained network and an
unconstrained one (see Figure 22).

IoT-A (257521)

Internet of Things - Architecture © - 63 -

Figure 22: IoT channel for communication constrained to unconstrained networks.

An additional case consists of a channel formed by two constrained networks intermediated by
an unconstrained one, of which, one common implementation is the case we consider the most
important in the IoT: the one involving two constrained networks linked by the Internet (see
Figure 23).

Figure 23: IoT channel for communication over two constrained networks intermediated by the
Internet.

What makes IoT very peculiar is the nature of the constrained networks it relies on. Such
networks are formed by constrained Devices, and the communication between the Devices can:

1. Be based on different protocols;

2. Require additional processing in the gateways.

It is important to point out that the characteristics of each network can have a noticeable impact
on the overall end-to-end communication.

3.5.4 IoT Communication model as seen from the application level
Complex IoT applications will typically encompass the orchestration of a number of digital
entities. Due to the highly distributed nature of the IoT, we can assume that the orchestration
will too happen in a distributed way. An application-centred diagram of IoT communication can
is provided in Figure 24, where we outline which components can initiate communication with
other components. A digital entity itself can, without introducing any lack of generality, be seen
as a group of conceptual distributed components.

IoT-A (257521)

Internet of Things - Architecture © - 64 -

Figure 24: Communications in the IoT domain model from an application point of view.
AppNode: application node; GW: gateway; CP: control point; DS: data sink.

In this section we attempt to outline the interactions between atomic “conceptual components”
of the IoT applications. We can imagine a digital entity to be formed by a group of sensors and
actuators. Furthermore, we can imagine a digital entity to consist of a group of data processors,
data sinks, and control points, with at least an AppNode implementing the behaviour of the
digital entity.

Application node (AppNode): An application node is a software agent implementing an
application or part of it. AppNodes orchestrate different digital entities. The application doesn’t
deal directly with sensors and actuators but it requires communication with control points and
data sinks. AppNodes can obviously communicate among themselves, and in this way create a
distributed application.

Control point (CP): A control point is a software agent that controls actuators and sensors, and
sends related messages to sensors and actuators. A CP will communicate with sensors,
actuators, and data processors, sending them configuration and control messages. A CP can
handle bidirectional communication with an AppNode. The CP is usually called by AppNodes,
but it is also enabled to call AppNodes after certain events, for instance an error. Control points
don't process, store or forward data themselves, but orchestrate other software agents doing it.

IoT-A (257521)

Internet of Things - Architecture © - 65 -

Data end point (DS): A data end point is a software agent that receives data -which it will
consume or store- directly from a sensor or a data processor. This communication is event-
driven and initiated by either the sensor or the data processor. Data end points are controlled by
AppNodes, but they also can initiate communications to the AppNodes on given events, like
crossing a threshold.

Data processor (DP): A data processor is a software agent receiving data directly from sensors
or from other data processors, performing operations like filtering or aggregation, before
sending data to a data sink.

Gateway (GW): While not belonging directly to the data processing architecture it is important
to have this element depicted here because of his, possible, influence in communication. A
Gateway is a forwarding element, enabling various local networks to be connected. In this
model, sensors and actuators cannot communicate directly with a gateway. Therefore, a control
point, a data processor, or a data end point need to be hosted in the same network. A gateway
can obviously communicate with other gateways and forward traffic from control points, data
end points, data processors, and AppNodes.

3.6 Trust, Security and Privacy
This section will describe the high level, abstract concepts related to trust, security and privacy
in the frame of IoT. These qualities of an IoT system are tightly related among themselves and
impact all views. In this section we will only provide abstract introduction to these topics, which
are not specific to any (reference) architecture. A description of the security functional
components, the methodology used to identify them as well as definitions of terms we recall in
this section can be found in [36].

Trust, Security and Privacy are horizontal qualities of an IoT system detailing the interaction
between the two subjects of the Domain Model, the Service and the User, as well as the
relationship with the infrastructural Security and Resolution components. Thus they impact all
views:

• Information view:
o Service descriptions should be extended in order to contain access policies to

that service (and its description itself). Access policies are generally stored on
the Authorization component which acts as a Decision Point. In some cases,
depending on the architecture pattern adopted, it can also act as Enforcement
Point. In order to do so,

 when using Certificate- or Role-Based Access Control, this part of the
Information Model shall also contain the certificates used for validation

 when using Authentication-Based Access Control, the Authorization
component shall contain a set of (subject or group) identities that are
allowed to access the Service after authentication is performed with the
homonymous component

o Information about Resources and services should be hidden or made
anonymous in order to protect the service provider’s privacy. This means that
the information returned to Users of the Resolution Services must be carefully
controlled, in order not to allow the inference of private information by mining
the publicly available Service descriptions.

• Functional view:
o Security related functionalities have been derived from requirements and risk

analysis performed on a series of key use cases
o Functional components (either centralized, federated or decentralized) are

needed to implement and manage the abovementioned functionalities
• Operational and deployment view

IoT-A (257521)

Internet of Things - Architecture © - 66 -

o Specific best practices needed to securely deploy and operate an IoT system
should be followed. Some of them could be found in the Section 0.

3.6.1 Trust
Trust is an essential quality in IoT systems. Our definition, based on [37], is the subjectively
evaluated level of probability with which an IoT system will perform a particular action or exhibit
a given behaviour, both before he can monitor such action (or independently even of his
capacity to be able to monitor it) and in a context in which it is relevant to him. Trust is thus a
complex quality related to the extent to which a user expects an IoT system to be dependable
and includes compliance to the expected functional behaviour and several security aspects.

In the frame of IoT, trust can be addressed at least at two levels: networking and application
levels. Networking trust is related to the integrity of the routing processes, i.e. to the fact that
nodes will route packets in proper way and with an acceptable timing. Generally, this is a
feature that regards peripheral networks and thus it is very specific to the communication
technology adopted. In the last years, with the development of WSNs, a large number of
scientific works have addressed this topic, but generally the proposed solutions lack the
scalability necessary to be used in the IoT context.

This section will focus on the Application-level trust instead. In particular, we base the trust on
the following qualities of an IoT system: information quality, data-source authentication and non
repudiation, confidentiality, privacy policy, information access policy and ability to access
information. These qualities can be evaluated only when the same trust model applies to a
specific couple of subjects (User/Service) and depend on the characteristics of the interaction
and the specific context of interaction.

3.6.1.1 Trust models
IoT trust models shall be designed after the initial requirement and context analysis. They shall
detail how trust is defined in a system (i.e. what is the point of view from which a subject should
be evaluated), how should it be measured and how relationships with other subjects should be
managed based on their trust evaluation. Generally, the system trust models apply to only a
specific set of entities, pertaining to one organization and this set should be well defined during
the later phases of architecture design as well as the software and infrastructure tools to
evaluate the trustworthiness of other subjects.

While describing all the trust models archetypes that could be used in the frame of IoT is out of
the scope of this document, a list of mandatory aspects that need to be taken into account is
provided:

• The trust model domain defines the specific set of subjects to which a trust model
applies. In the frame of IoT, this definition can be based on subscription or by the
physical or network context/domain.

• Trust evaluation mechanisms must be defined in order to define a coherent and safe
method for calculating the degree of trustworthiness of a subject. Evaluation
mechanisms should also define the point of view from which trust should be evaluated
and which aspects should be deemed relevant.

• The behaviour policies must define how subjects that use the model may interact with
other subjects that can be evaluated using the same trust model. Different behaviours
could be defined according to the trustworthiness of the latter. Though it is not
recommended, a trust model could define specific behaviours for interacting with
subjects that cannot be evaluated with that model.

• The trust anchor is a subject trusted by default (possibly after authentication) and used
in the evaluation of third parties’ trustworthiness by all the subjects that will use the
same trust model. In the IoT environment this can be a service running on a node in the

IoT-A (257521)

Internet of Things - Architecture © - 67 -

same peripheral network (e.g. the gateway), a centralized service deployed in the
Internet or the node itself.

• Federation of trust is essential in order to provide interoperability between subjects
which use different trust models. In the IoT scenario where many trust models will
coexist, federation will probably be a relevant phenomenon due to the very large
amount of subjects of the IoT and, thus, trust models should also specify if and how
trust relationships can be established among different systems.

• M2M support will be essential in the frame of IoT where interaction between
autonomous machines, needing to dynamically identify and access Resources will be
common place. Specific steps are thus needed so that machines can autonomously
evaluate the trustworthiness of other machines.

3.6.1.2 Interoperability
These aspects need to be addressed during system design in order to guarantee to the IoT user
as well as the system manager that the behaviour of the system is not altered by interacting
with other systems. It is also worth noting that more than one trust model can apply to a given
subject. For example, a user device must comply with the trust model of the IoT connectivity
provider, with the restrictions set by the owner due to his privacy concerns and with the trust
model that governs the service it wants to access.

Privacy policy strictness: in order to maintain coherency with the internal behaviour, a system
shall not interact with other systems which have laxer privacy policies (e.g. for what concerns
user profiling, data dissemination and data usage purposes).

Security settings: an IoT system cannot interact with other systems with a lower degree of
security and yet provide the same degree of trust. Security should be evaluated against all its
aspects. The following aspects should be taken into account individually: communication
security (most notably confidentiality), user/service authentication, service availability, service
access policy and system integrity and reliability. Note that, in the frame of IoT, the
interoperability between two systems is also a key factor in order to evaluate the availability
aspect.

Reputation: while trust is evaluated before actual interaction with a subject, reputation can be
used in evaluating the trustworthiness of subjects which have already interacted with trusted
referrals. Referrals can either be subjects that have evaluated the trust-related qualities in an
interaction with the subject that needs to be evaluated or reference registries which monitor
subjects (or gather data about their behaviour) specifically for evaluating their trustworthiness.
Moreover, as proposed in [36], reputation metering could also be provided by an infrastructure
component. The advantage of this solution is that

• Each node would have a reference, trusted subject for uploading and retrieving
reputation information in a secure way. There would be no need to discover such a
service and security material for authenticating the Service would already be in place.

• As such, an infrastructure component would be trusted by default
• Evaluation of trust policy integrity in a federated environment is easier and more

reliable.

M2M compatibility: it is essential that in a M2M environment the agents in control of the
machines are able to autonomously

• model the trustworthiness of the other agents they need to interact with;
• authenticate other subjects;

IoT-A (257521)

Internet of Things - Architecture © - 68 -

• determine/retrieve and enforce the access policies which apply to the users requesting
their services (only applies to service subjects).

3.6.2 Security
Security is an essential quality of an IoT system and it is tightly related to specific security
features which are often a basic prerequisite for enabling Trust and Privacy qualities in a
system. This section is an architecture primer for detailing the security features in IoT solutions.

Figure 25: Security features and general layering. Some architectures can exhibit a slightly
different approach, depending on the actual implementation. For example, some optional

components might not have been implemented while some features could have been
implemented in a cross-layered approach.

Figure 25 presents a generic overview2 of the approach to security features and components.
There can be different implementations of each of these layers providing different levels of
security. All of them are optional though recommended. Some of them though come with
requirements on the lower layers (e.g. in some architectures, in order to implement
authorization, authentication is needed first).

Service Security is well described in [36] and thus the topic will not be investigated in this
context. For what concerns Communication Security, the following section will provide an
overview at Reference Model level.

2 As this approach does not cover all possible implementation solutions we avoid using the term “model”
here.

IoT-A (257521)

Internet of Things - Architecture © - 69 -

3.6.2.1 Communication Security
As stated in [38], securing the communication at protocol level is very difficult in the case of IoT,
since device communication and processing capabilities resources are constrained. This
typically entails that bandwidth, power supply, processing capabilities, and security features
have to be balanced.

The model proposed hereafter has been designed under the assumption that the IoT device
space can be divided into two main categories: constrained networks (NTU) and unconstrained
networks (NTC) (See Networks and communication entities, Chapter 2 in [38]). The domain of
constrained devices contains a great heterogeneity of communication technologies (and related
security solutions) and this poses a great problem in designing a model encompassing all of
them. Examples for such communication technologies can be found in the literature [10].

Moreover, there is also the problem of different functional and communication patterns between
connected devices and auto-ID devices, which adds to the complexity of the situation.

One solution can be to provide a security model with a very high degree of abstraction, so that
the above heterogeneities can be mitigated. A very high degree of abstraction is not useful
though, as it doesn’t provide enough constraints for defining a RA. The same issue may arise
again when implementing a concrete architecture. As in the Communication Model (see Section
3.5), we will address the problem by introducing profiles which will group the highly
heterogeneous devices into groups characterized by given specifications. Standard interfaces
will also be provided in the future for making security features interoperable.

Figure 26: Providing the best security features for the lower layers in each IoT domain by
introducing Gateways with adaptive functions aimed to provide scalability functions (including
security scalability). NTC: Constrained Device Network; NTU: Unconstrained Device Network.

CDSecFeat: implementation of security feature for the constrained device leverages the
extension of the functionalities of gateway devices.

IoT-A (257521)

Internet of Things - Architecture © - 70 -

On the edge between the domains of unconstrained and constrained devices, gateways have
the role of adapting communication between the two domains (see Figure 26). This usually
involves the adaptation between different protocol-layer implementations up to the network or ID
layer (see Section 3.5). The fact that gateways are generally unconstrained devices means that
they can also be used for scaling down functionalities (such as security) from the NTC domain
to the NTU domain. They can also be used for managing security settings in peripheral
(constrained-device) networks. Gateways have to provide the following functionalities in order to
hide underlying heterogeneity:

• Protocol adaptation between different networks (by definition).

• Tunnelling between themselves and other nodes of the NTU domain. (Optional; impacts
on trust assessment.)

• Management of security features belonging to the peripheral network. (Optional)

• Description of security options related to traffic originated by a node attached to the
gateway. (Authentication of source node, cryptographic strength, ...)

• Filtering of incoming traffic (i.e. traffic sent to one of the nodes attached to the gateway)
according to network policies, user-defined policies and destination-node preferences.
(Optional)

Gateways are not relevant and thus invisible at the end-to-end layer level. Despite the
availability of end-to-end security features available at ID-layer level, lower layers might need
security features for securing network entry and point-to-point communication which are specific
to the single network sub-domains. The security settings provided by these layers should be
available to the applications that need and manage the communication.

While gateways are the most suited element that could provide information about the security
settings of underlying networks, this solution poses some issues. Thus, other solutions will also
be taken into account and analysed, especially in the way they will interact with existing
standards and protocols. This activity will be carried out during the next phase of the IoT-A
project.

IoT-A (257521)

Internet of Things - Architecture © - 71 -

4 Reference architecture

4.1 Short definition of views and perspectives
A system architecture, and thus by default, a reference architecture, needs to answer a wide
range of questions. Such questions can, for instance, address:

• Functional elements

• Interactions of said elements

• Information management

• Operational features

• Deployment of the system

What the user of an architecture expects is an architectural description, viz. “a set of artifacts
that documents an architecture in way its stakeholders can understand and demonstrates that
the architecture has met their concerns.” [13]. Instead of providing these artifacts as monolithic
description one often chooses to delineate them by so-called views. The idea behind doing so is
to focus on system aspects that can be isolated. Views make both the derivation of the
architecture and its validation easier. The above bullet-point list provides examples of such
views. A more detailed discussion of views and how we adapted them to the reference-
architecture realm is provided in the next section.

In the past it has been found that views are unfortunately not enough for describing system
architectures rather that many stakeholder aspirations are of a qualitative nature [12]. Such
qualitative aspirations cut across more than one view. Such cross-cutting qualitative aspects are
referred to perspectives, of which privacy is one example. A more detailed introduction to
perspectives is provided in Section 4.3.

The joint use of views and perspectives in architecture descriptions is described in more detail
in the pertinent literature [12].

4.2 Views
Views are used during the design and implementation phase of a concrete system architecture
and defined by Rozanski and Woods [12] in the following way:

“A view is a representation of one or more structural aspects of an architecture that illustrates
how the architecture addresses one or more concerns held by one or more of its stakeholders.”

Viewpoints aggregate several concepts to make the work with views more easy. The IEEE
Standard 1471 defines viewpoints as follows:

“A viewpoint is a collection of patterns, templates, and conventions for constructing one type of
view. It defines the stakeholders whose concerns are reflected in the viewpoint and the
guidelines, principles, and template models for constructing its views.“

Some typical examples for viewpoints are Functional, Information, Concurrency, Development,
Deployment and Operational viewpoints.

IoT-A (257521)

Internet of Things - Architecture © - 72 -

4.2.1 Usage for the IoT-A Reference Architecture
The IoT-A Reference Architecture is domain- and application- independent and is therefore not
compatible to the concept of views and viewpoints one-by-one. But the idea behind the concept
is nevertheless helpful and will be adopted for the use within the IoT-A Reference Architecture:

“A view is a representation of one or more structural aspects of an reference architecture that
illustrates how this reference architecture can be adopted to address one or more concerns held
by its stakeholders.”

“A viewpoint is a collection of patterns, templates, and conventions for constructing one type of
view. It defines the stakeholders whose concerns are reflected in the viewpoint and the
guidelines, principles, and template models for constructing its views.“

The views and viewpoints will be complemented with Design choices which will be used to
illustrate one or more different implementation aspects with their advantages, disadvantages
and relations to the perspectives, see Section 5.3.1.

The following sections will therefore address the functional view, information view and the
deployment and operation view.

4.2.2 Functional

4.2.2.1 Functional View Process
The functional view is defined by applying the methodology defined in Section 2.2 to functional
decomposition as can be seen in Figure 27:

Figure 27: Functional view process

In a first step, the unified requirements are mapped to the different functionality groups of the
functional model.

Next, clusters of requirements of similar functionality are formed and a functional component for
these requirements defined.

Finally, the functional components are refined by cross-checking against the Description of
Work and by discussing with the technical work packages.

The viewpoints used for constructing the functional view are hence:

1) The unified requirements;

IoT-A (257521)

Internet of Things - Architecture © - 73 -

2) The Functional Model;

3) The Description of Work.

Once all functional components are defined, system use cases, sequence charts and interface
definitions are made, which can be found back in Annex C.

The functional view diagram is depicted in Figure 28 and shows the 9 functionality groups (FGs)
of the functional model:

• The Application FG and Device FG are out-of-scope of the IoT-A Reference
Architecture and are coloured in yellow.

• Management and Security FG are transversal functionality groups and are coloured
dark blue.

For each of the Functionality Groups, the Functional Components (FC) are depicted.

IoT-A (257521)

Internet of Things - Architecture © - 74 -

Figure 28: Functional View

Se
rv

ic
e

O
rg

an
is

at
io

n

VE ServiceVE & IoT
Service MonitoringVE Resolution

Business Process
Execution

Business Process
Modeling

IoT ServiceIoT Service
Resolution

Se
rv

ic
e

O
rc

he
st

ra
tio

n
Se

rv
ic

e
C

om
po

si
tio

n

QoSEnergy OptimisationRouting &
Addressing

Error Detection &
Correction

Flow Control &
ReliabilityGateway

Management Security

Application

IoT Business Process Management

Virtual Entity

IoT Service

Communication

QoS Manager

Device Manager

Authorisation

Key Exchange &
Management

Trust & Reputation

Identity Management

Authentication

Device

IoT-A (257521)

Internet of Things - Architecture © - 75 -

In the following sub-sections, the FCs will be described in more detail.

4.2.2.2 IoT Business Process Management

Business Process Modelling
Description Provides an environment for the modelling of IoT-Aware business processes

that will be serialised and executed in the process-execution functional
component. The business-process-modelling component is located within the
IoT Business Process Management layer.

Additional
description

The component is described in detail in deliverables D2.2 and in the
upcoming D2.4.

Pertaining
requirements

UNI.031, UNI.032, UNI.211, UNI.212, UNI.213, UNI.214, UNI.215

Technical use
case

C.1.1.1

Default function set
Function name Function description Usage

example

IoT business-
processes
modeler

Provides the tools necessary for modelling business processes
using the standardised notation,3 i.e. using novel modelling
concepts specifically addressing the idiosyncrasies of the IoT
ecosystem.

C.1.1.1

Business Process Execution
Description Executes IoT-Aware business processes that will be modelled in the Business

Process Modelling FC. This execution is achieved by utilising IoT services
that are orchestrated in the Service Organisation layer. The Business Process
Execution component is located within the IoT Business Process
Management layer.

Additional
description

The component is described in detail in deliverables D2.3 and D2.5.

Pertaining UNI.008, UNI.031, UNI.032, UNI.229, UNI.230, UNI.232

3 A such notation is currently been developed as part of the IoT-A project.

IoT-A (257521)

Internet of Things - Architecture © - 76 -

requirements

Technical use
case

C.1.1.1 & C.1.2.1

Default function set
Function name Function description Usage

example

Deploy process
models to execution
environments

Activities of IoT-Aware process models are applied to
appropriate execution environments, which perform the
actual process execution by finding and invoking
appropriate IoT services.

C.1.1.1

Align application
requirements with
service capabilities

For the execution of applications, IoT service requirements
must be resolved before specific services can be invoked.
For this step, the Business Process Execution component
utilises the service organization functionalities.

C.1.1.1

Run application After resolving IoT services, the respective services are
invoked. The invocation of a service leads to a progressive
step forward in the process execution. Thus, the next
adequate process based on the outcome of a service
invocation will be executed.

C.1.1.1

4.2.2.3 Service Organisation

Service Orchestration
Description The Service Orchestration component resolves the IoT Services that are

suitable to fulfil service requests coming from Business Process Execution
component or from IoT-A users. The Service Orchestration component
resides in the Service Organisation layer.

Additional
description

The component is described in detail in deliverables D2.3 and the upcoming
D2.5.

Pertaining
requirements

UNI.008, UNI.043, UNI.096, UNI.230, UNI.232, UNI.234, UNI.235 UNI.244,
UNI.245, UNI.247, UNI.251, UNI.252, UNI.253

Technical use
case

C.1.1.1 & C.1.2.1

Default function set
Function
name

Function description Usage
example

Orchestrate
IoT services

This function resolves the appropriate services that are capable of
handling the IoT-user's request. If needed, temporary resources
will be set up to store intermediate results that feed into service

C.1.2.2

IoT-A (257521)

Internet of Things - Architecture © - 77 -

composition or complex event processing

Service Composition
Description The Service Composition FC resolves services that are composed of IoT

Services and other services in order to create services with extended
functionality. The Service Orchestration component is located within the
Service Organisation layer.

Additional
description

The component is described in detail in deliverables D2.3 and D2.5.

Pertaining
requirements

UNI.043, UNI.096, UNI.234, UNI.235 UNI.244, UNI.245, UNI.247, UNI.251,
UNI.252, UNI.253

Technical use
case

C.1.1.1 & C.1.2.1

Default function set
Function name Function description Usage

example

Support flexible
service
compositions

Provides dynamic resolution of complex services, composed of
other services. These composable services are chosen based
on their availability and the access rights of the requesting
user.

C.1.2.2

Increase quality
of information

This function can be used for increasing quality of information
by combining information from several sources. For example,
an average value –with an intrinsically lower uncertainty- can
be calculated based on the information accessed through
several resources.

C.1.2.2

4.2.2.4 Virtual Entity

Virtual-Entity (VE) Resolution
Description The VE Resolution is the FC which provides the functionalities to the IoT User

to retrieve associations between VEs and IoT Services. The functionalities
needed by the Service Client in brief are:

• Discovery functionality discovers the associations without any prior
knowledge about the VE. The VE specification and the
VEServiceSpecification, which describes the relation between the VE
and the IoT Service, are used as parameters of the query.

• Lookup is a functionality which enables the User to access
Associations between the particular VE and IoT Services fitting the
VEServiceSpecification based on a known VE-ID uniquely identifying
a VE.

IoT-A (257521)

Internet of Things - Architecture © - 78 -

Additional
description

The component is described in detail in deliverable D4.3, Section 2.2.2.

Pertaining
requirements

UNI.016, UNI.030, UNI.036, UNI.095, UNI.098, UNI.099, UNI.401, UNI.402,
UNI.403, UNI.404, UNI.406, UNI.408, UNI.414, UNI.415, UNI.416, UNI.422,
UNI.423, UNI.428, UNI.432, UNI.623

Interface
description

D4.3 2.2.2.1

Technical use
case

C.3.1

Default function set
Function name Function description Usage

example

Discover VE-related services Discovers new (mostly dynamic)
associations between VE and
associated services. For the discovery
qualifiers such as location, proximity,
and other context information can be
considered. If no association exists, it is
created.

C3.1.2

(Un)Subscribe to association
discovery

(Un)Subscribes the User for continuous
notifications about Associations that fit
provided VESpecification and the
VEServiceSpecification, to be sent to a
provided notificationCallback function A
unique SubscriptionID is returned to the
subscribing User that can be used to
match notifications to the subscription
and to unsubscribe.

C3.1.2

Lookup VE-related services Searches for services exposing
resources related to a VE.

C3.1.2

(Un)Subscribe to association look-up

(Un)Subscribes the User for
notifications about Associations based
on the VE-ID and the
VEServiceSpecification, to be sent to
the provided notificationCallback
function. A unique SubscriptionID is
returned to the subscribing User that
can be used to match notifications to
the subscription and to unsubscribe.

C3.1.2

Insert association

Inserts a new association between a VE
and the IoT services that are associated
to this entity.

C3.1.2

IoT-A (257521)

Internet of Things - Architecture © - 79 -

Delete association Deletes an association between a VE
and the IoT services that are associated
to this entity.

C3.1.2

Update association Updates associations between a VE
and the IoT services that are associated
to this entity.

C3.1.2

Virtual-Entity & IoT Service Monitoring
Description The VE & IoT Service Monitoring functional component is responsible for

automatically finding new associations, which are then inserted into the VE
resolution functional component. New associations can be derived based on
existing Associations, service descriptions and information about VEs.

Pertaining
requirements

UNI.016, UNI.418, UNI.419, UNI.420, UNI.421

Interface
description

The component is described in detail in deliverable D4.3, Section 2.2.3.1.

Technical use
case

C.3.2.1

Default function set
Function name Function description Usage

example

Assert static
Association

Creates a new static (i.e. un-monitored) association
between VEs and services described by the provided
Association.

C3.2.2

Discovered dynamic
Association

Creates a new dynamic (i.e. monitored) association
between VEs and services described by the Association

C3.2.2

Association No
Longer Valid

Deletes the Association from the VE Resolution. C3.2.2

Update Association Updates the Association upon changes. C3.2.2

Virtual-Entity Service
Description An Entity service represents an overall access point to a particular entity,

offering means to learn and manipulate the status of the entity. Entity services
provide access to an entity via operations that enable reading and/or updating
the value(s) of the entities’ attributes. The type of access to a particular
attribute depends on the specifics of that attribute (read only / write only or

IoT-A (257521)

Internet of Things - Architecture © - 80 -

both).

A specific VE service can provide VE History storage functionality, to publish
integrated context information (VE context information - dynamic and static),
VE state information, VE capabilities.

Pertaining
requirements

UNI.016, UNI.240, UNI.409, UNI.410

Default function set
Function name Function description

Read Attribute Value Returns the value of attribute parameter for the entity

Set Attribute Value Sets the value of attribute parameter for the entity

4.2.2.5 IoT Service

IoT Service Resolution
Description The IoT Service Resolution provides all the functionalities needed by the User

in order to find and be able to contact IoT Services. The IoT Service
Resolution also gives Services the capability to manage their service
descriptions, so they can be looked up and discovered by the User. The User
can be either a Human User or a software component.

The functionalities needed in brief are:

• Discovery functionality finds the IoT Service without any prior
knowledge about the ServiceID. The functionality is used by providing
a service specification as part of a query.

• Lookup is a functionality which enables the User to access the service
description having prior knowledge regarding the ServiceID.

• Resolution function resolves the ServiceIDs to locators through which
the User can contact the service.

Other functionalities provided by the IoT Service Resolution are the
management of the service descriptions. IoT Services can update, insert or
simply delete the service descriptions from the IoT Service Resolution
component. It is also possible that these functions are called by management
components and not the IoT Services themselves.

Additional
description

The component is described in detail in deliverable D4.3, Section 2.2.1.

Pertaining
requirements

UNI.030, UNI.095, UNI.098, UNI.099, UNI.417, UNI.423, UNI.425, UNI.426,
UNI.427, UNI.429, UNI.601, UNI.614, UNI.623

Interface
description

D4.3 2.2.1.1

Technical use
case

C2.1.1

IoT-A (257521)

Internet of Things - Architecture © - 81 -

Default function set
Function name Function description Usage

example

Resolve Service with ID

Resolves the address of an IoT
service given its ID.

C2.1.2

(Un)Subscribe to Service Resolution
for service with given ID

(Un)Subscribes to the resolution
(based on the ServiceID) to receive
notifications whenever the ServiceURL
changes on the provided callback. The
IoT Service Resolution returns a
SubscriptionID to the User that can be
used to match notifications to the
subscription and to unsubscribe.

C2.1.2

Lookup Service given ID Retrieves the description of an IoT
service given its ServiceID.

C2.1.2

(Un) Subscribe to Service Lookup for
service with given ID

(Un)Subscribes to the resolution
(based on the ServiceID) to receive
notifications whenever service
description changes over or service
becomes unavailable. A unique
SubscriptionID is returned to the
subscribing User that can be used to
match notifications to the subscription
and to unsubscribe.

C2.1.2

Discover Service matching
specification

Retrieves a list of services descriptions
matching a given specification.

C2.1.2

(Un)Subscribe to Service Discovery for
services matching given description

(Un)Subscribes for continuous
notifications about services that fit the
provided Service Specification, to be
sent to the provided callback function.
A unique SubscriptionID is returned to
the subscribing User that can be used
to match notifications to the
subscription and to unsubscribe.

C2.1.2

Update Service with description

Updates service entry with new
service description

C2.1.2

Insert Service with description

Adds new service entry with given
service description

C2.1.2

Delete Service with ID

Removes service given a service ID. C2.1.2

IoT Service
Description Software component exposing a resource through a well-defined interface to

make it accessible to other parts of the IoT system, often via the Internet.
Typically, resource services expose the functionality of a device by accessing

IoT-A (257521)

Internet of Things - Architecture © - 82 -

its hosted resources. These kinds of services refer to a single resource. In
addition to exposing the resource’ functionality, they deal with non-functional
aspects, such as dependability security (e.g. access control), resilience (e.g.
availability) and performance (e.g. scalability, timeliness).

A particular type of IoT Service can be the Resource History Storage that
provides storage capabilities for the measurements generated by resources
(resource history).

Pertaining
requirements

UNI.005, UNI.018, UNI.022, UNI.041, UNI.062, UNI.236, UNI.239, UNI.240,
UNI.241, UNI.429, UNI.607, UNI.610, UNI.613, UNI.614 , UNI.623

4.2.2.6 Communication

Gateway
Description This function component aims to enable bridging among different networks. It

can tackle different network layers. It enables the device implementing it to act
as an entry point to another network. The main duties of this Functional
Component are to keep track and enforce protocol translations and address
translations needed to cross network borders. Such tracking can be stateless
(in case packets contain all needed information to be translated) or stateful.
Additional Gateway functionalities are filtering, buffering and aggregation.

Pertaining
requirements

UNI.048, UNI.095, UNI.096, UNI.506

Default function set
Function name Function description

Forward This function deals only with packet forwarding. That's the basic
function of the gateway.

Connection
Tracking/Aggregation

This function deals with several packets/messages at once,
keeping a state between receptions. Packets are correlated
between them and/or aggregated.

Filter This function filter packets/messages analysing their headers or
contents.

Flow Control & Reliability
Description This Functional Component tackles all the needs for reliability and flow

control. It can be deployed at MAC/point-to-point layer (e.g. a reliable MAC),
at transport protocol level (e.g. TCP), at the application protocol layer (CON
messages in COAP) or even in the application itself. It is important to note that
communication modes different from unicast may need distributed strategies
for both reliability and flow control. In order to implement such strategies
offline messaging or gossip protocols may be required.

IoT-A (257521)

Internet of Things - Architecture © - 83 -

Pertaining
requirements

UNI.508, UNI.610, UNI.615, UNI.618

Default function set
Function
name

Function description

Connect This function couples a destination to a source

I/O Control This function enables exposing options of the channel/socket/connection

Send
message

Confirmable or non-confirmable message, still needs to conform to the flow
control.

TX This function blindly emits the packet/message. Other functions are built on top
of it.

RX This function blindly receives the packet/message. Other functions are built on
top of it.

Routing & Addressing
Description This Functional Component aims to enable new devices to enter a network,

get an address and be reachable.

Coming to functionalities the crucial ones are: assigning addresses,
maintaining routing tables or routing policies, and forwarding data packets.

Resource Directory somewhat transcends from this functionality, but it
probably leverages on it.

A peculiarity of IoT is that in order to optimize traffic or algorithm simplicity
some assumptions on the traffic patterns are useful. A case could be the
"collection pattern", in which all the traffic will be multipoint to point.

Pertaining
requirements

UNI.048, UNI.509, UNI.617

Default function set
Function name Function description

Address Control This function enables Discovery, Offer, Request, Acknowledge of
addresses, according to the selected method.

Routes Control This function enables to Purge, Remove and Add routes.

Neighbor Information
Subscribe

This function enables subscribe or observe of the neighbour routing
information.

Get Graph Get the routing graph, which could be also quite simple, being

IoT-A (257521)

Internet of Things - Architecture © - 84 -

represented only by the given parent.

Routing Information
Control

This function enables the Information Solicitation or a Destination
Advertisement, according the selected methods.

Calculate Rank Calculate Rank of peers. This function enable as well to elect/select the
best parent if the routing algorithm requires that.

Energy Optimization
Description This functional component aims to manage energy consumption while

communicating. It is generally implemented shutting off the radio for a given
time frame. It could be implemented at low layers (e.g. Radio Duty Cycle at
MAC) or even in higher layers, like application protocol (e.g. COAP sleep
option) or even at the application level.

Pertaining
requirements

UNI.100, UNI.101, UNI.505, UNI.508, UNI.512

Default function set
Function
name

Function description

Sleep Inform communication peer that the node is going to sleep in a given time,
optionally informing when he will wake up.

Wake up Inform communication peer that the node wake up, optionally informing when he
will sleep again.

Radio
Control

This function enables to turn the radio ON or OFF, at a given granularity.

Check
Interval

This function enables to check time intervals occurred among communication
related events.

QoS
Description This Functional Component refers only to quality of communication services,

namely fast paths, latency, packets priority, and so on. e.g. RED, SFB. Real
time systems need to interact with QoS, so metrics could be exposed. QoS
manager (in Management FG) doesn't actually enforce QoS, and it seems to
have a broader scope. This FC is crucial to enforce QoS "wishes" from the
QoS manager.

Pertaining
requirements

UNI.026, UNI.028, UNI.060, UNI.614

IoT-A (257521)

Internet of Things - Architecture © - 85 -

Default function set
Function
name

Function description

Traffic
Class
Attach

Attach a communication channel to a given traffic class. E.g. ioctl, qattach,
diffserv.

Reserve This is an alternative (higher level) model for QoS enforcement, in which instead
of attaching the communication channel to an existing traffic class an actual
reservation is made. This function leverage on the Traffic Class Attach function at
local level and on the QoS manager on the remote.

Error Detection & Correction
Description Error detection is deeply present at different layers, e.g. UDP checksum or

ICMP. Error detection can be distributed as well, if taken at higher layers.
Probably, on the other hand, Error correction is not a core functionality for IoT,
but that could be deemed important, to keep coherence of communication and
network topology during transient troubles (attacks or more generally
incidents).

Pertaining
requirements

UNI.012, UNI.020, UNI.021, UNI.066, UNI.089, UNI.608

Default function set
Function name Function description

Compute
Signature

Compute the signature for a given buffer according a given algorithm.
Generally is used to sign a packet, but according the algorithm could be
used to both sign and verify. E.g. UDP checksum.

Verify Signature Verify that the signature present in the packet match with data part. This is
optional in case that signature and algorithm are not symmetrical.

Report Error Report an Error. E.g. ICMP host unreachable, MAC collisions.

Time
Synchronization

This function provides Time Synchronization. The detail of the message
exchange is not detailed here because several protocols exist. E.g. NTP.

4.2.2.7 Security

Authorization (AuthZ)
Description The authorization component is a front end for performing access control

decisions based on access control policies. This access control decision can
be called whenever access to a restricted resource is requested. For example,
this function is called inside the IoT service resolution component, to check if a
user is allowed to perform a lookup on the requested resource. This is an

IoT-A (257521)

Internet of Things - Architecture © - 86 -

important part of the privacy protection mechanisms.

Additional
description

The component is described in detail in deliverable D4.2

Pertaining
requirements

UNI.002, UNI.067, UNI.502, UNI.503, UNI.606, UNI.610, UNI.611, UNI.619,
UNI.623, UNI.626

Technical use
case

C4.1

Default function set
Function
name

Function description Usage
example

Authorize From assertion, service description and action type, determine
whether the action is authorized or not.

C4.1.2

Authentication (AuthN)
Description The Authentication component is involved in user and device authentication. It

checks the credentials provided by a user, and, if valid, it returns an assertion
as result, which is required to use the IoT Service Client. Upon checking the
correctness of the credentials supplied by a newly joining node, it establishes
secured contexts between this node and various entities in its local
environment.

Additional
description

The component is described in detail in deliverable D4.2

Pertaining
requirements

UNI.501, UNI.503, UNI.610, UNI.612, UNI.619, UNI.626

Technical use
case

D1.3 Annex C4.1

Default function set
Function
name

Function description Usage
example

Authenticate Authenticate a user based on provided and credentials, and
return an assertion upon successful authentication

C4.1.2

Verify Verify whether an assertion provided by a user is valid or invalid. C4.1.2

Identity Management (IM)
Description The Identity Management component addresses privacy questions by

IoT-A (257521)

Internet of Things - Architecture © - 87 -

issuing pseudonyms and accessory information to trusted subjects so that
they can operate (use or provide services) anonymously.

Additional
description

The component is described in detail in deliverable D4.2

Pertaining
requirements

UNI.001, UNI.423, UNI.424, UNI.605, UNI.606, UNI.611, UNI.612, UNI.624

Technical use
case

C4.1

Default function set
Function name Function description Usage

example

Create
Pseudonym

Optional feature by which the discovered identifier will be
replaced by a pseudonym and provided to the user

C4.1.2

Key Exchange and Management (KEM)
Description The Key Exchange and Management component is involved to enable secure

communications between two or more IoT-A peers that do not have initial
knowledge of each other or whose interoperability is not guaranteed,
ensuring integrity and confidentiality.

Additional
description

The component is described in detail in deliverable D4.2

Pertaining
requirements

UNI.022, UNI.047, UNI.062, UNI.501, UNI.503, UNI.607, UNI.608, UNI.609

Default function set
Function name Function description

Establish Secure
Connection

Requests the establishment of a given security context between the issuing
node and a remote target. Security parameters, including the type of secure
communications enablement, are provided.

Trust and Reputation Architecture (TRA)
Description The Trust and Reputation Architecture component collects user reputation

scores and calculates service trust levels.

Additional
description

The component is described in detail in deliverable D4.2

Pertaining UNI.062, UNI.610, UNI.613, UNI.619, UNI.622

IoT-A (257521)

Internet of Things - Architecture © - 88 -

requirements

Default function set
Function name Function description

Request
Reputation
Information

This function is invocated at a given remote entity to request reputation
information about another entity. As input parameters, a unique identifier for
the remote entity (subject), as well as the concrete context (what kind of
service) is given. As a result a reputation bundle is provided.

Provide
Reputation
Information

This function is invocated at a given remote entity to provide reputation
information (recommendations or feedback) about another entity. As input
parameters, a unique identifier for the entity to be assessed (subject), as well
as the concrete context, the given score and a timestamp are given. As a
result, the corresponding reputation element is provided.

4.2.2.8 Management

QoS Manager
Description Manages the QoS when using functionalities provided by several

Functionality Groups of the architecture. Information about QoS capabilities
and usage is provided to services and applications.

Pertaining
requirements

UNI.614

Default function set
Function
name

Function description

Assess
policy

Manages consistency of the QoS requirements expressed and supported by the
different functionality components

Get QoS
policy

Informs about the QoS supported by the system’s Functionality Groups.

Device Manager
Description Manages the composition of non-device Functionality Groups with the

Device Functionality Group.

Pertaining
requirements

UNI.014, UNI.066, UNI.505

IoT-A (257521)

Internet of Things - Architecture © - 89 -

Default function set
Function name Function description

Set device default
configuration

Provides device with a default configuration that can be used when
the device is initialising.

Update device firmware Updates the firmware of the device.

IoT-A (257521)

Internet of Things - Architecture © - 90 -

4.2.3 Information
One of the main purposes of Connected and Smart Objects in the IoT is the exchange of
information between each other and also external systems. Therefore the way how to define,
structure, store, manipulate, manage and exchange information is very important. The
information view helps to generate an overview about static information structure and dynamic
information flow.

Based on the IoT Information Model, the information view gives more detailed information about
how the relevant information is to be represented in an IoT system. As we are describing a
reference architecture as opposed to a specific system architecture, various representation
alternatives will then be discussed as part of the design choices in Section 5.3.1.2.

Going beyond the IoT Information Model, the information view also describes the components
that handle the information, the flow of information through the system and the life cycle of
information in the system.

The current version of the Information View focuses on the information description, the
information handling and the information life cycle. In a future version we will provide more
details on the flow of information through the system and the components involved. Given the
current level of detail, we will provide a viewpoint only for modelling the type system of Virtual
Entities.

4.2.3.1 Information Description

Description of Virtual Entities
The Virtual Entity is the key concept of any IoT system as it models the Physical Entity or the
Thing that is the real element of interest. As specified in the information model, Virtual Entities
have an identifier, an entity type and a number of attributes that provide information about the
entity or can be used for changing the state of the Virtual Entity, triggering an actuation on the
modelled Physical Entity. Of special importance is the modelling of the entity type. The entity
type can be used to determine what attributes a Virtual Entity instance can have, defining their
semantics. The entity type can be modelled based on a flat type system or as a type hierarchy,
enabling sub-type matching. For modelling entity type hierarchies, ontologies or UML class
diagrams can be used. Of course, this choice is related to the design choice on how the overall
Virtual Entity information is represented.

Figure 29: Example for flat entity type model

IoT-A (257521)

Internet of Things - Architecture © - 91 -

Figure 30: Example for hierarchical entity type model

Viewpoint for modelling entity type hierarchies
Entity types are similar to classes in object-oriented programming, so UML class diagrams as
shown above are suitable for modelling entity types. As shown in Figure 30: Example for
hierarchical entity type model the generalization relation can be used for modelling sub-classes,
creating an entity type hierarchy. Alternatively, ontology languages like OWL also provide the
means for modelling classes and sub-classes, so they can also be used for modelling type
hierarchies. This is especially useful, if information in the IoT system is to be modelled using
ontologies.

Service descriptions
Services provide access to the functionality with which information provided by resources, which
may run on IoT devices, can be retrieved or actuation tasks can be executed. As a basis for
finding and interacting with services, services need to be appropriately described, which is done
in the form of service descriptions. Service descriptions contain information about the interface
of the service, both on a syntactic as well as a semantic level, e.g. the required inputs, the
provided outputs or the necessary pre-conditions as well as post-conditions. Furthermore, the
service description may include information regarding the functionality of the resources, e.g. the
type of resource, the processing method or algorithm etc., or information regarding the device
on which the resource is running, e.g. it’s hardware or its geographical location. Different
specification languages for describing services are available, so again, there are different
design choices.

IoT-A (257521)

Internet of Things - Architecture © - 92 -

Associations between Virtual Entities and services
Services can provide information or enable actuation, but the services themselves may not be
aware for what Virtual Entity / Virtual Entities they can provide what kind of information or
enable what kind of actuation. This information is captured by associations that relate to the
Virtual Entity and the service. The association includes the attribute of the Virtual Entity for
which the service provides the information or enables the actuation as a result of a change in its
value.

4.2.3.2 Information Handling
Information in the system is handled by IoT services. IoT services may provide access to On-
Device Resources, e.g. sensor resources, which make real-time information about the physical
world accessible to the system. Other IoT service may further process and aggregate the
information provided by IoT services/resources, deriving additional higher-level information.
Furthermore, information that has been gathered by the mentioned IoT services or has been
added directly by a user of the IoT system can be stored by a special class of IoT service, the
history storage. A history storage may exist on the level of data values directly gathered from
sensor resources as a resource history storage or as a history storage providing information
about a Virtual Entity as a Virtual Entity history storage.

IoT services are registered to the IoT system using service descriptions. Service descriptions
can be provided by the services themselves, by users or by special management components
that want to make the service visible and discoverable within the IoT system. The IoT Service
Resolution is responsible for managing service descriptions and providing access to service
descriptions. In detail the IoT Service Resolution provides an interface for discovering service
descriptions based on service specifications given by the requestor, for looking up a service
description based on the identifier of a service and for resolving a service identifier to a service
locator. The latter can also be seen as a convenience function as the service description also
contains the currently valid service locator.

Associations can be registered with the VE Resolution by services that know for what Virtual
Entities they can provide information, by users, by special management components, or by the
VE & IoT Service Management component that automatically derives them based on
information existing in the system, including service descriptions and other associations.

4.2.3.3 Information Life Cycle
Information provided by sensor resources is transient in nature and may not even be measured
or observed without a specific request. Information stored by a storage resource may be
permanently stored there or have an expiry data after which the information is to be removed.
For this purpose a storage resource may have to implement mechanisms that remove such
information on a regular basis. It is also possible to adapt the granularity of information that is
stored over time, i.e., for a certain time interval all the information is stored, for a further time
interval only a fraction of the information is kept whereas the rest is discarded. Such a scheme
may allow the definition of multiple such time intervals and also requires specific underlying
mechanisms that can implement the scheme.

To avoid keeping service descriptions of services that no longer exist, a time-out mechanism
needs to be implemented by the IoT Service Resolution. After the time-out has been reached
without a renewal of the service description, the service description should be automatically be
removed. This in turn requires that the components originally providing the service description
renew the registration of the service description before the time-out is reached. The same
applies for associations stored by the VE Resolution.

IoT-A (257521)

Internet of Things - Architecture © - 93 -

4.2.4 Deployment & Operation
The deployment and operation view aims at providing users of the IoT-A Reference Model with
a set of guidelines to drive them through the different design choices that they have to face
while designing the actual implementation of their services. To this extent this view will discuss
how to move from the service description and the identification of the different functional
elements to the selection among the many available technologies in the IoT to build up the
networking diagram for the deployment.

Figure 31 Domain model groups

Since a complete analysis of all the technological possibilities and their combination would
make this document overlong, this section will identify those categories that have the strongest
impact on IoT system realization: In particular, starting from the domain model, we found three
main element groups (see Figure 31): devices, resources, and services in red, blue and yellow,

IoT-A (257521)

Internet of Things - Architecture © - 94 -

respectively, in the figure. Each of them poses a different deployment problem, which, in turn,
reflects on the operational capabilities of the system.

In particular, the viewpoints used in the Deployment and Operation view are the following:

1) the domain model diagram is used as a guideline to describe the specific application domain;
to this extent UML diagram can be used to further detail the interaction among the many
elements composing the target application;

2) Network connectivity diagrams have to be used to plan the connectivity topology to enable
the desired networking capability of the target application; at the deployment level, the
connectivity diagram will be used to define the hierarchies and the type of the sub-networks
composing the complete system network;

3) Device description (such as datasheets and information manuals) have to be used to map
actual hardware on the service and resource requirements of the target system.

First of all, devices in IoT systems include the whole spectrum of technologies ranging from the
simplest of the radiofrequency tags to the most complex of the servers. The unifying
characteristics are mainly two: On the hand, every device is connected with one another
forming a part of the IoT; and, on the other hand, every device is “smart”, even though with
different degree of complexity, in that it provides computational capabilities. These two
characteristics are the subject of the first choices a system designer has to make.

Selecting the computational complexity for a given device is somewhat intrinsic to the target
application. However, choosing among the different connectivity types is not as straightforward
as different choices may provide comparable advantages, but in different areas. In this section,
we will simply detail the main options for device connectivity, leaving their impact on the
different perspective for Section 5.3.1 in which the design choices for the deployment view are
discussed.

IoT-A (257521)

Internet of Things - Architecture © - 95 -

1. Sensor & Actuator Networks

2. RFIDs and smart tags

3. WiFi or other unconstrained technologies

4. Cellular networks

As a consequence of the coexistence of different communication technologies in the same
system, the second choice the system designer must account for is related to communication
protocols. Although, IoT-A and WP3 in particular suggest a communication protocol suite aimed
at the interoperability among different technologies with IP as the common denominator, the
system designer, may be forced to make suboptimal choices [please refer to deliverable D3.3
for the specificities]. In particular, we identified the following possibilities:

1. IoT protocol suite: This is the main direction supported by this project and providing the
best solution for interoperability

2. Ad hoc proprietary solutions: Whenever the performance requirements of the target
application are more important than the system versatility, ad hoc solutions may be the
only way to go.

3. Other standards: Depending on the target application domain, regulations may exist
forcing the system designer to adopt standards, different from those suggested by the
IoT protocol suite, that solved a given past issue and have been maintained for
continuity.

After having selected the devices and their communication patterns, the system designer has to
account for services and resources. These are pieces of software that range from simple binary
application and increasing their complexity up to full blown control software. Both in the case of
resources and for services the key point here is to choose where to deploy the software related
to a given device. The options are as follows:

1. On smart objects: This choice applies to simple resource definitions and lightweight
services, such as web-services that may be realized in few tens or hundreds of byte.

2. On gateways: Whenever the target devices are not powerful enough to run the needed
software themselves, gateways or other more capable devices have to be deployed to
assist the less capable ones.

3. In the cloud: Software can be also deployed on web-farms. This solution improves the
availability of the services, but may decrease the performance in terms of latency and
throughput.

Note that this choice has to be made per type of resource and service and depending on the
related device. As an example, a temperature sensor can be deployed on a wireless
constrained device, which is capable of hosting the temperature resource with a simple service
for providing it, but, if a more complex service is needed, the software has to deployed on a
more powerful device as per option 2 or 3.

At the same line, it is important to select where to store the information collected by the system,
let their data be gathered by sensor networks or additional information provided by users. In
such a choice, a designer must take into consideration the sensitiveness (e.g.: is the device
capable of running the security framework), the needed data availability and the degree of
redundancy needed for data resiliency. The foreseen options are the following:

IoT-A (257521)

Internet of Things - Architecture © - 96 -

1. Local only: Data is stored on the device that produced it, only. In such a case, the
locality of data is enforced and the system does not require complex distributed
databases, but, depending on the location of a given request, the response might take
longer time to be delivered.

2. Web only: No local copy is maintained by devices. As soon as data is sent to the
aggregator, they are dispatched in databases.

3. Local with web cache: A hierarchical structure for storing data is maintained from
devices up to database servers.

Finally, one of the core features of IoT systems is the service core engine, which is in charge of
semantically retrieving resources and services, discovering new elements and binding users
with data, resources, and services. This choice, while one of the most important for the
designer, has only two options:

1. Internal deployment: The core engine is installed on servers belonging to the system
and is dedicated to the target application or shared between different applications of the
same provider.

2. External usage: The core engine is provided by a third party and the system designer
has to drive the service development on the third party APIs.

Differently from the other choices, this is driven by the cost associated to the maintenance of
the core engine software. In fact, since it is a critical component of the system, security,
availability and robustness must be enforced. Hence, for small enterprises the most feasible
solution is the external one.

4.3 Perspectives
Architectural decisions often address concerns that are common to more than one view, or even
all of them. These concerns are often related to non-functional or quality properties. We are
following the approach of Rozanski/Woods [11] which suggest special perspectives to address
these aspects of an concrete architecture. They emphasize the importance of stakeholders
requirements just like we do within our project. Therefore we are adopting their definition of
perspective for usage within IoT-A:

An architectural perspective is a collection of activities, tactics, and guidelines that are used to
ensure that a system exhibits a particular set of related quality properties that require
consideration across a number of the system’s architectural views.[11]

where a quality property is defined as

A quality property is an externally visible, non-functional property of a system such as
performance, security, or scalability. [11]

The stakeholder requirements clearly show a need of addressing non-functional requirements.
Based on them we identified the perspectives which are most important for IoT-systems:
Evolution and Interoperability, Availability and Resilience, and Performance and Scalability. As
these requirements are requiring some kind of quality for a real system, the perspectives aim
more on the actual architecture of a system than to an reference architecture.

We got more than ten requirements concerning the Evolution and Interoperability perspective,
around six concerning Availability and Resilience, and ten more related to performance and
scalability. As can be seen from the definition above there is a close relationship between
Perspectives, Views and Best Practices.

IoT-A (257521)

Internet of Things - Architecture © - 97 -

4.3.1 Evolution and interoperability
The Evolution perspective addresses the fact that requirements change and software evolves
sometimes rapidly. We identified a second, closely related, perspective namely interoperability
which plays especially in IoT a crucial role. The vision of the Internet of Things is still evolving
itself. There are, for example, not yet all used technologies mature enough, and there are for
sure many more technologies to come in the future.

Desired Quality The ability of the system to be flexible in the face of the inevitable
change that all systems experience after deployment, balanced
against the costs of providing such flexibility

IoT-A Requirements UNI.003, UNI.010, UNI.012, UNI.047, UNI.048, UNI.049, UNI.071,
UNI.093, UNI.094, UNI.096

Applicability Important for all systems to some extent; more important for
longer- lived and more widely used systems. IoT systems are
expected, as an emerging technology, to be highly affected by
evolution and interoperability issues.

Activities characterize the evolution needs
assess the current ease of evolution
consider the evolution tradeoffs
rework the architecture

Tactics contain change
create extensible interfaces
apply design techniques that facilitate change
apply metamodel-based architectural styles
build variation points into the software
use standard extension points
achieve reliable change
preserve development environments

Table 4: Evolution and interoperability (adopted from [11], extended with IoT specific aspects)

4.3.2 Performance and scalability
This perspective addresses two quality properties which are closely related: Performance and
Scalability. Both are, compared to traditional information systems, even harder to cope with in a
highly distributed scenario as we have it in IoT.

Desired Quality The ability of the system to predictably execute within its
mandated performance profile and to handle increased processing
volumes in the future if required

IoT-A Requirements UNI.008, UNI.926, UNI.027, UNI.028, UNI.066,
UNI.089,UNI.101,UNI.102

Applicability Any system with complex, unclear, or ambitious performance
requirements; systems whose architecture includes elements
whose performance is unknown; and systems where future
expansion is likely to be significant. IoT systems are very likely to
have unclear performance characteristics, due to its heterogeneity
and high connectivity of devices.

IoT-A (257521)

Internet of Things - Architecture © - 98 -

Activities capture the performance requirements
create the performance models
analyze the performance model
conduct practical testing
assess against the requirements
rework the architecture

Tactics optimize repeated processing
reduce contention via replication
prioritize processing
consolidate related workload
distribute processing over time
minimize the use of shared resources
reuse resources and results
partition and parallelize
scale up or scale out
degrade gracefully
use asynchronous processing
relax transactional consistency
make design compromises

Table 5: Performance and scalability (adopted from [11], extended with IoT specific aspects)

4.3.3 Trust, Security and privacy
Due to the importance of these free topics, while elsewhere in the document we use a
integrated trust/security/privacy perspective, in this context, we provide a vertical approach and
detail each of them.

4.3.3.1 Trust
This perspective addresses application level trust and specifically aims at supporting the
architecture design process so that the resulting system behaves as expected and is
dependable

Desired Quality A complex quality related to the extent to which a subject expects
(subjectively) an IoT system to be dependable regarding in all the
aspects of its functional behaviour.

IoT-A Requirements UNI.062, UNI.065, UNI.099, UNI.407, UNI.408, UNI.602, UNI.604,
UNI.605, UNI.620, UNI.622

Applicability Relevant to the systems that share the use of resources with
subjects that are not a priori trusted.

Activities capture trust requirements

perform risk analysis

check interoperability requirements

define trust model

Tactics harden root of trust

ensure physical security and implement tampering detection

IoT-A (257521)

Internet of Things - Architecture © - 99 -

ensure and check data freshness

consider the impact of security/performance tradeoffs on trust

avoid “leap of faith”

use (trusted) infrastructural Trust and Reputation Agents for
scalability

use security imprinting

check system integrity often

balance privacy vs. non-repudiation (accountability)

Table 4: Trust perspective (adopted from [11], extended with IoT specific aspects)

4.3.3.2 Security
This perspective addresses two qualities which are closely related: Communication Security
and Operational Security. Communication Security in most contexts is a prerequisite for
Operation Security. The Security perspective is tightly related to the Trust, privacy and
Performance perspectives.

Desired Quality Ability of the system to enforce the intended confidentiality,
integrity and service access policies and to detect and recover
from failure in these security mechanisms.

IoT-A Requirements UNI.062, UNI.407, UNI.408, UNI.410, UNI.412, UNI.413, UNI.424,
UNI.502, UNI.507, UNI.604, UNI.609, UNI.611, UNI.612, UNI.617,
UNI.618, UNI.624

Applicability Relevant to all IoT systems.

Activities capture the security requirements

check interoperability requirements

conduct risk analysis

use infrastructural Authentication components that support more
Identity Frameworks for scalability and interoperability

Use infrastructural or federated KEM to secure communication
initiation and tunnelling between gateways for interoperability

Use an Authorization component to enable interoperability with
other systems

define security impact on interaction model

address all aspects of Service and Communication Security

integrate the trust model and support privacy features

identify security hardware requirements

consider performance/security tradeoffs

IoT-A (257521)

Internet of Things - Architecture © - 100 -

validate against requirements

Tactics harden infrastructural functional components

authenticate subjects

define and enforce access policies

secure communication infrastructure (gateways, infrastructure
services)
secure communication between subjects

secure peripheral networks (data link layer security, network entry,
secure routing, mobility and handover)

avoid wherever possible wireless communication

physically protect peripheral devices

avoid OTA device management if not properly secured

Table 5: Security perspective (adopted from [11], extended with IoT specific aspects)

4.3.3.3 Privacy

Desired Quality

IoT-A Requirements UNI.001, UNI.002, UNI.410, UNI.412, UNI.413, UNI.424, UNI.501,
UNI.606, UNI.611, UNI.623, UNI.624

Applicability Relevant to the systems to all IoT systems.

Activities capture the security requirements

conduct risk analysis

evaluate compliancy with existing privacy frameworks.

Tactics use an Identity Management component that supports
Pseudonymization

avoid transmitting identifiers in clear especially over wireless
connections

minimize unauthorized access to implicit information (e.g. deriving
location information from service access requests)

validate against requirements

consider the impact of security/performance tradeoffs on privacy

enable the user to control the privacy (and thus security and trust)
settings

IoT-A (257521)

Internet of Things - Architecture © - 101 -

balance privacy vs. non-repudiation (accountability)

 Table 5: Privacy perspective (adopted from [11], extended with IoT specific aspects)

4.3.4 Availability and resilience
As we are dealing with distributed IoT systems, where a lot of things can go wrong the ability of
the system to stay operational and to effectively handle failures that could affect a systems
availability is crucial. The Activities and Tactics shown in Table 6 can be used for dealing with
that kind of problems.

Desired Quality The ability of the system to be fully or partly operational as and
when required and to effectively handle failures that could affect
system availability

IoT-A Requirements Uni.040, UNI.050, UNI.058, UNI.065, UNI.092, UNI.610

Applicability Any system that has complex or extended availability
requirements, complex recovery processes, or a high profile (e.g.,
is visible to the public)

Activities capture the availability requirements
produce the availability schedule
estimate platform availability
estimate functional availability
assess against the requirements
rework the architecture

Tactics select fault-tolerant hardware
use high-availability clustering and load balancing
log transactions
apply software availability solutions
select or create fault-tolerant software
design for failure

allow for component replication
relax transactional consistency
identify backup and disaster recovery solution

Table 6: Availability and resilience (adopted from [11], extended with IoT specific aspects)

IoT-A (257521)

Internet of Things - Architecture © - 102 -

IoT-A (257521)

Internet of Things - Architecture © - 103 -

5 Best practices

5.1 Overview
A major goal of best practices in IoT-A is to provide guidance for system architects. The
guidance best practices provides is manifold: giving examples; highlighting design choices and
lessons learnt from developers; recommending ways to document an implementation; and
providing a detailed analysis of an IoT use case highlighting the technical and business benefits
that IoT-A provides.

In this section we focus on the IoT Reference Model, in particular the IoT Domain Model as it
currently is most mature. In particular we provide guidelines and examples on how to use the
IoT Domain Model.

We will also provide a first overview of design choices that one typically faces during the
derivation of specific architectures.

In the forthcoming version of this Deliverable, viz. D1.4 and D1.5, we will provide a more
thorough discussion of the design choices and also guidelines and examples for the other
aspects of the IoT Reference Model. The design-choice discourse will include a discussion of
techniques, and solutions that are adapted for addressing specific issues while implementing
the IoT Reference Architecture part of the IoT ARM.

Last but not least, we will put the advice contained in best practices in action. For one, we will
analyse the requirements and constraints of an existing domain-specific application. We will
highlight the steps taken to model this application using the IoT ARM. We will also provide an
example derivation of a concrete architecture.

5.2 Usage of the IoT Reference Model
Similar to the identification of stakeholders and actors in standard software engineering
practices, the IoT Domain Model is used in a first step of the architectural design process in
order to:

1. Identify Physical Entities and related Virtual Entities
2. Identify resources (at least from a functionality perspective)
3. Identify devices (or device options)

The identification of resources and devices is used together with the IoT Communication Model
to define the communication paradigms and how these devices and resources interact. This is
comparable to interaction models in standard software engineering practices. And finally, the
services to be used and where they should be deployed are analysed.

5.2.1 Guidelines for using the IoT Domain Model
This section is intended for architects who want to apply the IoT Domain Model on a specific
use case. We discuss typical instantiations of the IoT Domain Model. These model cases can
be used as basic patterns when doing concrete modelling.

IoT-A (257521)

Internet of Things - Architecture © - 104 -

5.2.1.1 Deployment configurations
Figure 32 shows a range of deployment configurations for resources, services, and users. In the
first case from the left, resource, service, and the service are running on the same device. This
is a configuration in which we have a powerful device, and the interaction with the user is local.
In the second case from the left, the service of the user is running somewhere else, e.g., in the
cloud, and the interaction is thus not local. The API used between the service client and the
service, however, is the same. In the third configuration the service is not running on the device,
but in the cloud. This is a typical configuration for a constrained device that may not be able to
expose a user interface across the network. For example, due to energy constraints or other
limiting factors, such a device may sleep most of the time and is therefore not be able to always
handle user requests. The interface between the service and the resource may be very specific
and proprietary.

Figure 32: Various deployment configurations of devices, resources, and services.

Network-based resources are not shown in this Figure, as they can be regarded as being
hidden behind cloud-based services.

5.2.1.2 Modelling of non-IoT-specific aspects
It is important to understand that the IoT Domain Model is not attempting to be a domain model
for all types of ICT systems. Rather, it focuses on the IoT-specific parts. When modelling a
complete system, many of the aspects to be covered that are not IoT-specific. For these
aspects, the IoT Domain Model will provide only little help.

There are, however, two main concepts in the IoT Domain Model that provide a link to general I
Services nowadays form the basis for many ICT systems and applications. When modelling a
system, it is thus natural to include both IoT-related services as well as other services. The IoT
Domain Model doesn’t make a distinction between the different types of services as such a
distinction is not a core IoT issue.

5.2.1.3 Identifiers and addresses
Identifiers and addresses are logically two different concepts, which unfortunately however are
often confused in practice, in particular in the discussions about IoT [26]. While in some cases

IoT-A (257521)

Internet of Things - Architecture © - 105 -

the address might be used in the role of an identifier, it is important to distinguish between these
terms.

Identifiers are used to identify something, for example a Physical Entity. In this case, the
identifier is an attribute of the related Virtual Entity. Examples include EPCs and uIDs.

Addresses, on the other hand, are means for locating, accessing or communication with
something, e.g., a service or a device. Addresses manifest themselves as attributes of the
corresponding concepts, i.e., attributes of a service or a device. Examples include IPv6 or MAC
addresses.

5.2.1.4 Granularity of concepts
In the IoT Domain Model, concepts like device, resource, and user have specialisations.
Pertinent examples for devices are sensors and actuators. When modelling a concrete
scenario, one can use either the general concepts or their specialisations, the IoT Domain
Model doesn’t prescribe anything. For example, instead of using a concrete concept like sensor
it is also possible to use a more general concept like device. However, the specialisations are
more precise and are therefore preferable where they apply. In other words, if at the time of
modelling it is not (yet) clear what type of device is used, then just use device.

Modelling Rule 1 Model as precisely as possible at the time of modelling. Use more
concrete, more fine-granular concepts and entities whenever possible.

5.2.1.5 Common patterns

Augmented Entities
As described in Section 3.2.2.2, Augmented Entities are the composition of a Physical Entity
with its related Virtual Entity. In many cases though, the Augmented Entity is of little practical
relevance and will have no concrete instantiation, as the example in Figure 33 shows. In this
figure, a typical pattern is shown for how Physical Entities are mapped to data base records: In
a data base of assets (a Network Resource in terms of the IoT Domain Model), a data base
record (Virtual Entity, and also a Passive Digital Artefact) is stored for every building (Physical
Entity).

IoT-A (257521)

Internet of Things - Architecture © - 106 -

Figure 33: Data-base pattern as an example for an Augmented Entity.

Modelling Rule 2 The Virtual Entity for a given Physical Entity can be a data base record
stored in a Network Resource.

A different case is truly smart objects, i.e., intelligent devices that have embedded logic
seemingly able to act autonomously. In this case, the Augmented Entity is the smart object
itself, and the associated Virtual Entity is an Active Digital Artefact, namely, the embedded logic
(e.g., the software agent).

Building 1 :Physical
Entity

Building 1 DB
Record :Virtual

Entity

IoT Domain Model::
Physical Entity

Domain Model::
Virtual Entity

Domain Model::
Network Resource

Asset DB :Network
Resource

IoT Domain Model::
Augmented Entity

«is instance of»

is stored in relates to

«is instance of»

1

1

is associated with

1..*

relates to

1

«is instance of»

IoT-A (257521)

Internet of Things - Architecture © - 107 -

Figure 34: Smart-object pattern. UAV: unmanned aerial vehicle.

Figure 34 shows an example of a smart object: an unmanned aerial vehicle (UAV). The body of
the UAV can be considered the Physical Entity, while the UAV controller is the related Virtual
Entity. Together they form the Augmented Entity, the smart object.

Modelling Rule 3 When modelling an autonomous object, an Augmented Entity is used,
consisting of a physical embodiment (the device) and its software
controller (Virtual Entity).

Finally, the question often arises if something should be modelled as a Physical Entity or not.
While possibly every real-world object could be modelled as a Physical Entity, this doesn’t make
sense. Not every sand corn needs to be represented in an IoT system. Hence we can deduce:

IoT Domain Model::
Augmented Entity

IoT Domain Model::
Physical Entity

Active Digital Artefact
Digital Artefact

IoT Domain Model::
Virtual Entity

UAV Controller :
Virtual Entity

Unmanned Aerial
Vehicle :Augmented

Entity

UAV Body :Physical
Entity

1

1..*

1

1

1..*

relates to

1

controls

«is instance of»
«is instance of»

«is instance of»

IoT-A (257521)

Internet of Things - Architecture © - 108 -

Modelling Rule 4 Only model something as a Physical Entity if it is clear what the
associated Virtual Entity is and in what form it will manifest itself in the
pertinent system.

Multiple Virtual Entities
In order to understand the case of multiple Virtual Entities, we take the example of a customer
buying a new car. The customer visits the exhibition of an automobile manufacturing company
and buys a new car. He then registers it under her name at the department of motor vehicles. In
order to protect himself from unexpected financial expenses resulting from traffic collisions, he
decides to buy car insurance. In this small scenario we notice that the same car, which is the
Physical Entity, is registered at three stakeholders: The manufacturer, the vehicle-registration
department, and the insurance company. As depicted in Figure 35 each of the three
stakeholders maintains a unique entry in his data base identifying the car. These entries are
multiple Virtual Entities for the same car.

Figure 35: Multiple Virtual Entities (data-base entries) for a single car.

In practice, the number of Virtual Entities depends on the systems and domains, where the
Physical Entity is represented and of course also what stakeholders are involved. We note that
the characteristics of the Physical Entity change and, therefore, many of the Virtual Entities
need to be maintained and kept up-to-date. Notice that the IoT Domain Model does not explicitly
spell out any requirements on the maintenance of single and multiple Virtual Entities.

IoT-A (257521)

Internet of Things - Architecture © - 109 -

Smart phones
Smart phones are a very common element in many IoT-related scenarios. They are on the one
hand devices containing a multitude of sensors, but they also host apps (Active Digital
Artefacts), services, and resources. Figure 36 shows this in exemplary fashion: John’s smart
phone is used as a device to track the location of John, its owner. The GPS sensor is
embedded in the phone itself. It is thus embedded sensor hardware. Its data is made accessible
through the related On-Device Resource and the location service that exposes it. An app can be
used to display the location information.

Figure 36: Exemplary modelling of a smart phone that is used as tracking device.

Note that in this example both the service as well as the application is shown to be hosted on
the phone itself. While this depicts the most common case, other instantiations are possible.

Simple interactions
The IoT paradigm can be seen as a digital way to carry out interactions between the digital and
the physical world. These interactions can be initiated either in the digital world or in the
physical world.

In the first case, it is usually a user that needs to access a resource exposed through a service
in order to attain a given goal. Such goals may range from observing a Physical Entity by using
a sensor to modifying its state by leveraging an actuator device.

Notice that a user can invoke a service for getting some data or initiating some actuation, as
well as for subscribing to certain events. After subscription, the resource (e.g., on a device) will
detect the events of interest according to the specification provided by the user. The service
providing access to the resource will then forward the event to the interested user. In an

SmartPhone :Dev ice Location Serv ice :
Serv ice

GPS Sensor :Sensor Location :On-Dev ice
Resource

Tracking App :Activ e
Digital Artefact

John :Physical Entity

contains
hosts exposes

hosts

relates to

useshosts

is attached to

has location information about

IoT-A (257521)

Internet of Things - Architecture © - 110 -

alternative implementation, the service implementation is performing the event detection by
processing all the raw data from the resource.

M2M interaction
Machine-to-Machine (M2M) communication is a technological approach for enabling meaningful
information exchange between networked machines which show a certain degree of smartness.
The term machine is generally related to an autonomous application while the smartness is
related to the capability of controlling its own behaviour and communicating. This reflects the
capability of making decisions on the basis of information retrieved from outside the system and
being able to receive and execute commands. This approach is very relevant to the IoT and a
specific definition of IoT Machine can be provided. In the terms of the IoT domain model, we
define an IoT Machine as the union of:

• an Augmented Entity whose Virtual Entity component is an Active Digital Artefact. In
this way, it can start interactions (being a User, it can invoke Services) and can control
the behaviour of the machine

• one or more Resources and the underlying Devices which are used by the Active Digital
Artefact to monitor/control the Physical Entity. Note that, because Resources are
internal functionalities and the Active Digital Artefact is generally co-located on the
same hardware, the interaction can happen even without the use of Services.

• the Services that are used for exposing Resources

Figure 37: Domain model instantiation for a M2M communication scenario

An example is given Figure 37, where IoT Machine1 (for example an incoming car) needs
information from IoT Machine2 (an automated barrier operator) in order to speed the passage
through the barrier. The Machine1 Controller, an instantiation of an Active-Digital-Artefact

Machine2Machine1

Augmented Entity
Smart Machine1

Physical Entity
Machine1 Body

Virtual Entity
Machine1 Controller

Device
Dev ice1

Digital Artefact
User

IoT Domain Model::
Activ e Digital

Artefact

Service
Serv ice2

Virtual Entity
Machine2 Controller

On-Device Resource
Functionality2

Device
Dev ice2

Physical Entity
Machine2 Body

Augmented Entity
Smart Machine2

relates to

is attached to
(monitors / acts on)

hosts

is associated with

is associated with
(provides)

exposes

is attached to
(monitors / acts on)

accessesrelates to

IoT-A (257521)

Internet of Things - Architecture © - 111 -

Virtual-Entity, will access as a User (Active-Digital-Artefact can be Users) Service2 and will
require the activation of the barrier. Service2 provides access to Functionality2 (Resource)
related to Machine2 and thus, by accessing Service2, the car can retrieve the information about
the barrier status which is needed in turn to decide whether it needs to slow down or can pass
through without danger. Another example of a smart machine is given in Section 5.2.1.5 on
Augmented Entities.

As M2M is about the communication-based interaction between machines, it is important to
clarify that IoT Machines can also interact with non-IoT Machines. For example, an IoT-Machine
could need certain information provided by an autonomous web application, a non-IoT Machine,
in order to make decisions.

However, as the controlling program of Machine 1 is a user, it can also communicate with other
Machines by calling appropriate embedded services on another Machine, as shown in a
simplified way in Figure 38.

Figure 38: M2M communication.

RFID gate in logistics
The term “Internet of Things” was originally coined by the MIT Auto-ID Centre around 1999 [39],
the precursor to what is now known as EPCglobal. It is therefore worthwhile to map one of the
most common scenarios of EPCglobal to the IoT Domain Model: The tracking of goods –
pallets, cases, etc. – throughout the supply chain, from the manufacturer via distribution centres
to the retail stores.

A first thing to note is that we often have a hierarchy of Physical Entities and the related Virtual
Entities. A large boxed pallet is identified by a shipping company as PE5 with its corresponding
Virtual Entity VE5. As depicted in Figure 39, the large boxed pallet contains multiple other cases
that are identified as (PE1, VE1), (PE2, VE2), (PE3, VE3), and (PE4, VE4).

We note that the granularity of identifying PEs contained in other PEs is not defined by the IoT
Domain Model, since it intimately depends on the application. In this example, if the large box
contains four boxes of similar goods, e.g., shoes, the interest of the shipping company usually
stops at identifying PE5 and thus tracking it by using VE5. Now if each of the four boxes
contains different goods, e.g., shoes, hats, earrings, and bags, it might be of interest for the
shipping company to additionally identify the four boxes as PE1, PE2, PE3, and PE4. The aim
behind this higher granularity is to facilitate the process of sorting out the goods after delivery by
checking VE1, VE2, VE3, and VE4.

IoT-A (257521)

Internet of Things - Architecture © - 112 -

Figure 39: Shipping box containing multiple packets. The VE-to-PE mapping is exemplified by
paper tags.

The result of the whole mapping of the RFID logistics scenario for only the pallet plus everything
it contains, is depicted in Figure 39.

Figure 40: Domain modelling of a typical EPC-based RFID scenario (pallet containing cases).

Logistics Manager :
Human User

SCM Application :
Activ e Digital

Artefact

Pallet :Physical
Entity

Case :Physical
Entity

PalletTag :Tag

Pallet Record :
Virtual Entity

Case Record :Virtual
Entity

Case Tag :Tag

Warehouse Worker :
Human User

EPCIS :Serv ice

RFID Reader :Sensor

RFID Inv entory :
On-Dev ice Resource

EPC Capturing
Serv ice :Serv ice

EPC Data Base :
Network Resource

relates to

uses (EPCIS
query interface)

contains

is associated withidentifies

relates to

uses

exposes

is associated with (is stored in)

identifies is associated with

interacts with (moves)
exposes

readsreads

hosts

invokes (EPCIS capture interface)

refers to

IoT-A (257521)

Internet of Things - Architecture © - 113 -

In this example, the Virtual Entities take the form of data base records Figure 40) stored in a
Network Resource, the EPC Data Base. This data base is exposed for querying and updating
through the EPCIS service (EPC Information Service).

The logistics manager, a Human User, can use the SCM application in order to view the status
of the tracked items (pallets and cases). The SCM application is invoking the EPCIS query
interface in order to get the necessary data.

Both pallet and cases have RFID tags attached that identify them. A RFID reader – a type of
sensor – reads the EPCs on the tags and hosts a resource that makes the RFID inventory data
accessible. A special service, the EPC Capturing Service, is exposing this resource and is
updating the EPC Data Base by invoking the EPCIS capture interface of the EPCIS service.
The EPCIS capture interface and the EPCIS query interface are standardized and defined by
EPCglobal [29].

Finally note that also physical interactions with the pallet can take place: a warehouse worker –
a Human User – moves around the pallet.

5.2.2 Examples for IoT Domain Model objects
In this section we give examples on different objects in the IoT Domain Model. For each object
we discuss a practical example and, where applicable, we highlight the dependency of the
object on other objects and also provide some general information.

5.2.2.1 User

Application
- Example: A WSN installed in a wine cave monitors environmental factors such as

temperature, humidity, and light intensity. These factors play an essential role in
defining the quality of the final wine product. Therefore, the winegrower has an
intelligent application running on his smart phone. The application allows him to
periodically visualize the status of the cave. In this example, the application is a user
and the cave is a Physical Entity.

- Note: An application is one kind of Active Digital Artefact.

Human User
- Example: The employee in a supermarket loads the fridge with meat instead of cheese.

Therefore, he regulates the temperature of the fridge accordingly. In this example, the
employee is a Human User and the fridge is a Physical Entity.

- Note: The case of multiple Human Users for one Physical Entity is possible as well. We
take the example of the safe in a bank. For security reasons, more than one high-
ranked employee is required to identify themselves simultaneously at the safe in order
to be able to open it. In this example the eligible employees are Human Users and the
safe is the Physical Entity.

5.2.2.2 Physical Entity

Environment
- Example: An optical fog sensor measures the density of water particles in the air that

limit visibility. This sensor is used for traffic-control purposes, where it is often installed
on the side of roads for monitoring visibility impairment through fog. The information

IoT-A (257521)

Internet of Things - Architecture © - 114 -

about the fog is sent to a traffic management system where it is analyzed. In this
example the near surrounding above the road is the Physical Entity.

Living being
- Example: A WSN for agricultural monitoring. The network targets to report on the

growth of fruits. To this end growth monitors are deployed. They are equipped with fruit-
growth sensors as depicted in Figure 41. In this example, the fruits are Physical Entities
that are living beings.

Figure 41: Growth fruit sensor [3].

Structural Asset
- Example: Equipping bridges with electrochemical fatigue sensors that reveal flaws in

metal [41]. This works much the same way as an electrocardiogram tests the human
heart. First, bridge inspectors identify parts of the bridge that are more susceptible to
cracks. Second, they equip these areas with electrochemical fatigue sensors. Third,
they apply a constant electrical current that runs between the sensors and the bridge.
By monitoring the amplitude of the current passing through the metal, sensors can
detect cracks. In this example, a susceptible area of the bridge is a structural-asset
Physical Entity.

5.2.2.3 Resource
We explain the two examples for resources, one an On-Device Resource and the other a
Network Resource.

On-Device Resource
- Example: TinyOS is an event-based OS for embedded networked sensors [42]. TinyOS

provides predefined software components that manage the access and control of i.e.,
local LEDs, radio, or sensors. In this example, the software components are On-Device
Resources.

IoT-A (257521)

Internet of Things - Architecture © - 115 -

Network Resource
- Example: HBase is an open-source, distributed, column-oriented database [43]. HBase

offers a set of functionalities that allow the management of distributed information. In
this example the HBase software libraries and components are -Network Resources.

5.2.2.4 Service

Interacting services
- Example: A system for home-patient monitoring. The system is composed of a body

sensor network (BSN) attached to the body of the patient. Bioelectric chips monitor the
status of the patient and require no direct involvement from a human being. As depicted
in Figure 42, the intelligence of the system resides not only in the hardware but also in
three main services. First, the BSN monitoring service that evaluates the readings of the
bioelectric chips i.e., a blood pressure. Second, the automatic service call, which alerts
the relatives of the patient whenever his situation deteriorates. Third, another automatic
service call that alerts the ambulance. The diagram in Figure 42 shows the conditions to
be fulfilled for one service to invoke another service.

- Note: A service demanding high processing and storage capabilities can be divided into
multiple subservices running on different machines that invoke each other. In
comparison to the original service, each of these subservices requires less storage and
processing capabilities. Therefore, a trade-off exists between the number of
subservices and the power consumption of the hosting machines. Distributed
subservices induce an inter-communication overhead that increases the power-
consumption of the hosting machines. This trade-off should be taken into consideration
when dealing with low-power communicating devices [44].

IoT-A (257521)

Internet of Things - Architecture © - 116 -

Figure 42: Interacting services for a home-patient monitoring scenario.

Service associated with a Virtual Entity
- Example: Services can be associated with Virtual Entities and these associations are

stored and can be discovered in the IoT system. The management of these
associations can be handled in a centralized database or in a highly distributed fashion
as in a peer-to-peer system, depending on the characteristics of the underlying system.

Service accessing a resource
- Example: A service for monitoring air pollution. Sensor nodes are semi-randomly

distributed in a city and measure the percentage of CO in the air. A remote server runs
software that periodically queries the readings from the sensor nodes, analyses the
readings, and monitors the evolution of the air pollution. In this example, the monitoring
software is a service that accesses multiple resources. The latter are the components
and functions running on sensor nodes, and these components allow operations such
as reading from the sensors.

IoT-A (257521)

Internet of Things - Architecture © - 117 -

5.2.2.5 Device

Hierarchical devices
- Example: As depicted in Figure 43, a Telos node contains three types of integrated

sensors (photodiode, humidity and temperature), several expansion pins to mount
external sensors, and three integrated LEDs [44]. Two views of the node exist: The
node as a whole may be seen as a single device or it can be seen as a composition of
multiple sensors and actuators acting as individual devices.

- Note: A device can be seen as a single unit as well as a composition of multiple
devices. This granularity of modulating a device is not specified in the IoT Domain
Model due to the fact that it is application dependent.

Figure 43: Telos ultra-low power wireless module.

5.3 Usage of the IoT Reference Architecture
The IoT Reference Architecture consists of views, which define core architectural aspects that
need to be taken into account, and perspectives, which basically are quality aspects spanning
across the views.

5.3.1 Design choices
For each of the four defined views (functional, information, deployment and operational view), a
table as shown below will give the designer a number of design choices, and will list what the
impact of the particular choice on the aspects of the different perspectives is.

The table contains a topic that addresses an architectural problem to which the respective
design choice provides a suggested solution for. To assist architects with their selection of the
most suitable design choice the impact on four perspectives is assessed in the table. The
symbols in the ‘Impact on’-column indicate the impact seen from Security & Privacy (S&P)-,
Performance & Scalability-, Availability & Resilience-, as well as Evolution & Interoperability-
perspectives when the respective design choice is applied:

IoT-A (257521)

Internet of Things - Architecture © - 118 -

+: has a positive impact onto the perspective, e.g. increases security or contributes to scalability

-: has a negative impact onto the perspective, e.g. increases the risk for security leaks

+/-: has positive and negative impact onto the perspective

0: has no impact onto the overall architecture

5.3.1.1 Functional view
Table 7: Design choices functional view

Topic

Design Choice

Impact on

Se
cu

rit
y

&
Pr

iv
ac

y

Pe
rfo

rm
an

ce

&
Sc

al
ab

ilit
y

Av
ai

la
bi

lit
y

&

R
es

ilie
nc

e

Ev
ol

ut
io

n
&

In
te

ro
pe

ra
bi

lit
y

IoT Business
Process

Management
/ Application

support

DC1.1 Business Process Modelling according
to BPMN 2.0 +/- + + +

DC1.2 Business Process Execution by BPMN
2.0 execution engine +/- + + +

Service
Organisation

DC2.1 Service Orchestration with mandatory
security +/- 0 + 0

DC2.2 Service Orchestration with optional
security - 0 - 0

VE
Resolution

DC3.1

VE Resolution with mandatory security
+/- 0 + 0

DC3.2 VE Resolution with optional security - 0 - 0

DC3.3 VE Resolution with QoS 0 0 + 0

DC3.4 VE Resolution domain-oriented + + + +

DC3.5 VE Resolution location-oriented - + +/- +/-

DC3.6 Resolution Semantic Web-oriented 0 0 + +/-

DC3.7 Resolution Peer-to-Peer-oriented 0 + + 0

DC3.8 Resolution Federation-based 0 + + 0

VE & IoT
Service

Monitoring

DC3.9

VE & IoT Service Monitoring with mandatory
security

+/- 0 + 0

IoT-A (257521)

Internet of Things - Architecture © - 119 -

DC3.10

VE & IoT Service Monitoring with optional
security

- 0 - 0

IoT Service
Resolution

DC4.1 IoT Service Resolution with mandatory
security +/- 0 + 0

DC4.2 IoT Service Resolution with optional
security - 0 - 0

IoT Service
DC4.3 IoT Service with mandatory security +/- 0 + 0

DC4.4 IoT Service with optional security - 0 - 0

Identification
and

Authenticatio
n

DC.51 Identifier based identification - + +/- 0

DC5.2 Crypto -based authentication over
open channel +/- - +/- -

DC5.3 Authentication over encrypted channel + - + -

Service
Access
Control

DC6.2 Unrestricted access to service - + - +

DC6.2 Authentication based service access +/- +/- +/- +/-

DC6.3 Policy-based service access + +/- +/- -

Sharing
Public

Keys/Certific
ation

DC7.1 Manually/Out of Band shared Public
Keys 0 +/- 0 -

DC7.2 Leap-of-faith shared Public keys - 0 0 -

DC7.3 Certificate Authority + - - +

DC7.4 Web of Trust + +/- 0 +/-

Public Keys
exchange

format

DC8.2 Raw Public Keys 0 + 0 -

DC8.2 Explicit Certificate 0 - - +

DC8.3 Implicit Certificate 0 + 0 +/-

Communicati
on

Confidentialit
y

DC9.1 No encryption - + 0 +

DC9.2 End-to-end Encryption + - 0 -

DC9.3 Hop-to-hop Encryption - - 0 0

DC9.4 Onion routing-like encryption + - 0 -

DC9.5 Tunnelling + - +/- +/-

Identity DC10.1 Local Identity 0 + 0 -

IoT-A (257521)

Internet of Things - Architecture © - 120 -

Scope DC10.2 Global Identity - 0 0 +/-

IoT business process management

Business process modelling according to BPMN 2.0 standard (DC1.1)
By using BPMN 2.0 conformant process modelling tools a smooth integration of IoT Services
with enterprise level applications is supported. The expression of Security & Privacy (S&P)
aspects is limited in standard BPMN 2.0; respective extensions have been proposed by [45].
BPMN 2.0 allows modelling applications without assigning particular Virtual Entities and IoT
Services at design time of the application which contributes to scalability. That means that
applications can be designed without knowing the IoT Services available at runtime. Using
BPMN 2.0 contributes to interoperability since it is a widely used standard for modelling
enterprise-level applications.

Business process execution by BPMN 2.0 execution engine (DC2.2)
BPMN 2.0 execution engines are able to execute the enterprise level applications modelled
according to the widely accepted standard BPMN 2.0 that ensures interoperability with existing
business processes. S&P policies modelled in BPMN 2.0 must be also supported by the
underlying Functional Groups; otherwise the policies cannot be guaranteed. BPMN 2.0
execution engines are able to process applications modelled with Virtual Entities and IoT
Services that are available at execution time.

Service organisation
Service management means resolution of suitable services and allocating them to the user’s
service request and the resolution of services that are needed to compose higher-level services.

Service Orchestration with mandatory security (DC2.1)
An orchestration engine enforces S&P policies during allocation of IoT Services and setting up
service compositions. This requires that Virtual Entity Resolution and IoT Service Resolution
must support S&P policies as well. Only those services are orchestrated that are aligned with
the S&P policies.

Service Orchestration with optional security (DC2.2)
An orchestration engine can be configured to enforce security and privacy policies during
allocation of IoT Services and setting up service compositions. It is left to the application if S&P
policies have to be applied. S&P policies can only be enforced though if they are supported by
the VE Resolution and IoT Service Resolution used during orchestration. S&P policies on
Virtual Enities and IoT Services can be bypassed if security is not enforced.

Virtual Entity
The Virtual Entity topic covers all functions that concern the Virtual Entity handling within IoT-A
such as resolution, monitoring, and storage of history. The so called Entity Services are also
handled here. Due to the large amount of data stored in the VE Resolution framework
distributed architectures are recommended here in order to provide scalability, availability and
reliability. [34] suggests five approaches to structure the distributed search space in the VE
Resolution framework: Domain-oriented and Location-oriented.

IoT-A (257521)

Internet of Things - Architecture © - 121 -

Virtual Entity Resolution with mandatory security (DC3.1)
During the resolution security and privacy policies must be applied. This requires having defined
the policies on the Virtual Entity-associations for each association in the resolution framework.
Furthermore it is required that the IoT Service Resolution used by the Virtual Entity Resolution
must support S&P policies as well. If so only those services are provided that are aligned with
the S&P policies.

Virtual Entity Resolution with optional security (DC3.2)
During the resolution security and privacy policies can be applied. This allows resolution of
Virtual Entity-associations with no particular policies defined on them in the resolution
framework. S&P policies can only be enforced if they are supported by IoT Service Resolution.
S&P policies on Virtual Entities can be bypassed if security is not enforced.

Virtual Entity Resolution with QoS (DC3.3)
This allows filtering of Virtual Entity-associations returned upon discovery request that match
given QoS criteria defined. This gives users more options to specify suitable Virtual Entities
since only those services are provided that meet the QoS requirements.

Virtual Entity Resolution domain-oriented (DC3.4)
Domain-oriented VE Resolution approach organises the resolution framework in hierarchically
organised domains similar to Domain Name System (DNS). The hierarchy is build according to
the hierarchy of things captured by Virtual Entities from higher granularity to lower granularity,
e.g. country  city  district  building  room. The resolution framework performs faster
through divided search space; its complexity is of O(log n) in best case, and O(n) in worst case.
Load balancing is supported through replication, and a Resource can be member of different
domains at a time. Fault tolerance is supported through distribution and redundancy; the
framework evolves with the number of things connected.

Virtual Entity Resolution location-oriented (DC3.5)
A resolution server (RS) is responsible for indexing all connected things in a certain
geographical area, called indexing scope. A Catalogue server then creates the Catalogue Index
of every RS’ indexing scope. A resolution request is redirected towards the RS whose indexing
scope intersects the search scope of the request. Large scale IoT systems are expected to
have multiple administrative domains that must be handled by a federated resolution
infrastructure. Different domains interact with each other by the means of a central domain
directory or domain catalogue. Communication between framework domains needs to be
secured. The framework performs faster through a divided search space. Indexing scope can
be adjusted according to usage load. The framework scales by adding more RSs. With this
approach it is impossible to retrieve things based on identifiers. Fault tolerance is achieved
through data distribution and index data replication. The central domain directory is potential
single point of failure. There is no theoretical limit on indexed things, but indexing scope is
bound to geographic location. Only a limited number of things can share the same location.

Virtual Entity Resolution Semantic Web-oriented (DC3.6)
Semantic Web technologies are used to annotate Virtual Entity descriptions in a way machines
can interpret them. This overcomes the need for exact syntactic matchmaking between
resolution request and search terms in the resolution infrastructure. The search space of the
resolution infrastructure is indexed by an unsupervised machine-learning technique and
clustered through latent factors derived from the learning. This design is independent from the
deployment of the resolution infrastructure. Distribution and replication is supported by this
approach, but depends on implementation on how it is done. Semantic interoperability is

IoT-A (257521)

Internet of Things - Architecture © - 122 -

achieved through shared ontologies, after extending ontologies the training model needs to be
updated.

Virtual Entity Resolution Peer-to-Peer-oriented (DC3.7)
A peer-to-peer infrastructure will maintain no centralised servers, all data is distributed in the
network along with sophisticated retrieval and routing mechanisms. There are several
approaches on how to distribute the data (pure, centralised indexing server, distributed hash
tables). The latter approach is the recommended one for IoT Resolution infrastructures.
Resolution requests result in traffic complexity of O(n) in worst case and O(log n) in best case.
The framework is stable and robust through distribution and redundancy.

Virtual Entity Resolution Federation-based (DC3.8)
In a federated infrastructure Virtual Entities are clustered based on similarity. Dedicated places
are in charge of the IoT Services they offer and provide their descriptions as part of a distributed
resolution framework. The framework is scalable and fault tolerant because of distribution.

Virtual Entity & IoT Service Monitoring with mandatory security (DC3.9)
The VE & IoT Service Monitoring functional component is responsible for automatically finding
new associations, which are then inserted into the VE resolution functional component, where it
is stored in the associations storage. New associations can be derived based on existing
associations, service descriptions and information about Virtual Entities [46]. If security is
enforced the S&P policies of Virtual Entity need to match the policies of IoT Service to establish
an association that is again compliant to the S&P policies. Both VE Resolution and IoT Service
Resolution have to support S&P policies. In this case only those associations are established
that are aligned with the S&P policies determined by Virtual Entity and IoT Service.

Virtual Entity & IoT Service Monitoring with optional security (DC3.10)
It cannot be guaranteed that an established association is compliant to the S&P policies of
Virtual Entity or IoT Service if security is not enforced. S&P policies can only be enforced if they
are supported by Virtual Entity and IoT Service Resolution.

IoT Service Resolution
The IoT Service Resolution framework offers lookup and discovery functions for IoT Services.
The same design choices as in VE Resolution can be applied to IoT Resolution [34].

IoT Service Resolution with mandatory security (DC4.1)
The IoT Service Resolution will discover only those services that are compliant to the S&P
policies determined in its service description. For doing so S&P policies must be supported by
IoT Services as well.

IoT Service Resolution with optional security (DC4.2)
The IoT Service Resolution will discover all services regardless of the IoT Services’ S&P
policies unless security is enforced. Also unsecure services are provided if security is not
enforced. S&P policies can only be enforced though if they are supported by IoT Services.

IoT Service

IoT Service with mandatory security (DC4.3)
The IoT Service provides an interface to IoT users by utilising capabilities of IoT Resources. The
software running on the Resource implementing the IoT Service must apply the S&P policies

IoT-A (257521)

Internet of Things - Architecture © - 123 -

described in its service description. If so only those IoT Services are provided that implement
the respective S&P policies.

IoT Service with optional security (DC4.4)
The IoT Service provides an interface to IoT users by utilising capabilities of IoT Resources. It
cannot be assured that the software running on the Resource implementing the IoT Service
applies any S&P policies if security is not enforced. S&P policies can only be enforced if they
are implemented on IoT Resources.

Identification and Authentication
In the frame of the IoT, subjects must be identified for functional reasons. In some cases, after
cautious investigation, services might be designed for anonymous access if this doesn’t raise
privacy and safety issues. When identification is needed though, depending on the reason for
which it is needed, authentication might be required to exclude that malicious users
impersonate other subjects.

Identifier based identification (DC5.1)
In this case, the identifier is sent in clear over the communication channel for identification
purposes. This solution must never be used as basis for authorization as these messages can
easily be replayed or even faked. It could be implemented when the identification is needed for
the customization of the service. Even in this case, the fact that the identity could be forged has
to be taken into account. For example a malicious user could feign to be user A in order to gain
knowledge about user A’s customization settings. This solution has the advantage of consuming
only a reduced amount of battery power.

Crypto -based authentication over open channel (DC5.2)
In this scenario, the party requesting authentication initiates a challenge-response process in
which the subject to be authenticated answers with a signed version of the challenge. The fact
that the communication is performed on an open channel will not affect the authentication
process itself, as a malicious user would not be able to derive the secret cryptographic material
used for the authentication. This solution unfortunately is subjects to replay and similar attacks,
aimed at (where applicable) depleting the battery resources of the device hosting the
authenticated party. Man in the middle attacks would theoretically be possible albeit not
effective. Depending on the implementation, the identity (or pseudonym) of the user might also
be provided in clear, in which case an overhearing entity might learn who the user is and about
his habits. Usually this kind of solution needs the support of an Authentication infrastructure
functional component.

Authentication over encrypted channel (DC5.3)
This is the most secure of the solutions where even the content of the message exchanged
between the two parties in encrypted. In this scenario though a great amount of battery is used
as cryptographic functions must be applied both for the authentication process itself and for the
encryption of the communication.

Service Access Control
Service Access Control means providing control over which user can interact with a given
service.

IoT-A (257521)

Internet of Things - Architecture © - 124 -

Unrestricted access to service (DC6.1)
This scenario presents no architectural requirements. It is taken as reference for what concerns
communication, battery performance and availability in DC6. No interoperability issues due to
authentication and authorization.

On the downside, privacy issues might rise and resilience could suffer due to malicious
behaviour of not authenticated consumer.

Authentication based service access (DC6.2)
This choice requires the implementation of Authentication component.

Communication performance slightly decreased. Life-time of battery-powered nodes decreased.
Scalability issues regarding the number of authenticable users.

Authentication and authorization process carried out on constrained nodes can lead to
unavailability. Unconstrained nodes are not affected otherwise.

Requestor and provider endpoints should both support at least one common Identity Framework
OR the Authentication implementation component should provide mediation.

Policy-based service access (DC6.3)
This choice requires the implementation of Authentication and Authorization components.
Communication performance might be affected negatively as well as the life-time of battery-
powered nodes. Scalability issues in common with DC6.2

The availability of highly requested services to authorized nodes in peak moments can result
increased. Resilience generally increased.

Requestor and provider endpoints should both support at least one common Identity Framework
OR the Authentication implementation component should provide mediation. The Authorization
component implementation used by service provider should store requestor’s access right OR
be able to retrieve them from federated components.

Capability-based service access (DC6.4)
Authentication component is not a requirement for Authorization, while each node must be able
to perform capability validation. Capabilities provisioning falls into the problem of Key Exchange.
No Privacy issues arise. Communication performance will result slightly decreased as well as
the life-time of battery-powered nodes. Scalability is not affected by the number of users.

Can result in increased availability of highly requested services to authorized nodes in peak
moments. Resilience generally increased compared to DC6.1.

As authentication based service access, but also the Authorization component used by service
provider should store client's access right OR be able to retrieve them.

Sharing Public Keys/Certification
Sharing Public Keys is needed in case of asymmetric cryptography to initiate a communication,
to send secure messages or to validate an identity (DC5.2). Generally it is a mechanism to
establish the authenticity of the binding between a public key and its owner.

IoT-A (257521)

Internet of Things - Architecture © - 125 -

Manually/Out of Band shared Public Keys (DC7.1)
The Public Key is shared before initializing the communication out of band.

S&P No concerns

P&S Faster bootstrap. Scalability is affected by the fact all public keys needs to be permanently
stored in the device.

A&R No concerns

E&I Evolution is complicate, as much as the initial provisioning. No concerns regarding
Interoperability.

Leap-of-faith shared Public keys (DC7.2)
The Public Key is shared during the first association with no prior trust.

S&P The bootstrap should be performed in a secure environment or the whole life cycle is
endangered.

P&S No concerns

A&R No concerns

E&I No concerns regarding Interoperability. If the set of keys is changed a manual invalidation is
required.

Certificate Authority (DC7.3)
S&P Certificate Authorities need to be trusted.

P&S It requires interaction with the Certificate Authorities.

A&R Additional point of failures.

E&I No concerns regarding Interoperability.

Web of Trust (DC7.4)
Web of Trust is a decentralised trust model to establish a web of peers that trust each other.

S&P: No concerns

P&S: Performance depends on the locality of the web of trust

A&R: No concerns

E&I: No concerns regarding Interoperability. Certificate revocation is not easy.

Public Keys exchange format
Public keys exchange format means in which format public keys are exchanged.

Raw Public Keys (DC8.1)
P&S: Very compressed format

E&I: The key format should be known beforehand and supported.

IoT-A (257521)

Internet of Things - Architecture © - 126 -

Explicit Certificate (DC8.2)
Explicit Certificates bundle identity, the public key and CA signature (which could be the owner
itself).

P&S: Explicit Certificates tend to be verbose and redundant. In case of LLNetworks several
packets are required to transport an explicit certificate.

E&I: Explicit Certificates are a widespread Interoperable form

Implicit Certificate (DC8.3)
Implicit Certificates embeds the signature and the public key in a length comparable to the one
of the public key itself. Implicit certificates require a Certificate Authority (DCS3.3).

P&S: Implicit Certificates avoid being verbose. Faster operations required to have a validated
key.

E&I: Implicit Certificates requires prior knowledge of Algorithms as well as a compliant
Certificate Authority.

Communication Confidentiality
This section is concerned with the topic of securing communication channels against
eavesdropping.

No encryption (DC9.1)
No encryption means the data flow is in clear text. This design choice offers no confidentiality
but the best performances. That is used as a goodput benchmark.

End-to-end Encryption (DC9.2)
End-to-end encryption means the two communication endpoints are the only ones supposed to
be able to decode the message. It requires the same algorithm and keys are shared and
supported by both ends. The trade-off is between inability of constrained objects to support
strong encryption and weak security.

Hop-to-hop Encryption (DC9.3)
Hop-to-hop encryption means that every hop (according to the conceptual communication layer
we are referring to) decode and re-encode the message to the following hop. That means that
hops have to share keys and support for protocols two by two. That means also that every hop
knows the content of the message.

Onion routing-like encryption (DC9.4)
In this case every packet is re-encoded (without decoding) for every (arbitrary chosen) hop. It
can introduce additional anonymity and can help to support stronger cryptography even in case
of constrained nodes involved.

Tunnelling (DC9.5)
Secure network access provides a network connection or service access only if the device is
authorized.

Secure communications functions include authenticating communicating peers, ensuring
confidentiality and integrity of communicated data, preventing repudiation of a communication
transaction, and protecting the identity of communicating entities.

IoT-A (257521)

Internet of Things - Architecture © - 127 -

Secure storage mandates confidentiality and integrity of sensitive information stored in the
system.

Content security enforces the usage restrictions of the digital content stored or accessed by the
system.

Availability ensures that the system can perform its intended function and service legitimate
users at all times, without being disrupted by denial-of-service attacks.

Identity Scope

Local Identity (DC10.1)
A local identity is scoped and valid only among a restricted party.

This increase performances for validation and ease the support.

Interoperability is negatively affected by the reduced scope of the Identity and overcoming this
limitation would require additional solution, among them identity mapping.

Global Identity (DC10.2)
A global identity is scoped in the whole Internet. This can introduce infrastructure burdens and
exploits. This can also introduce privacy leaks.

Interoperability is affected positively, identities being under the same global namespace. In the
other hand Extensibility has some drawbacks, for instance the propagation of identity updates.

Scalability is not a real concern, given a number of solutions in the literature, but still is suitable
to pay attention to it.

5.3.1.2 Information view
This section presents design choices on how to specify the design of the IoT Information Model
to be used in IoT architectures.

Table 8: Design choices information view

Topic

Design Choice

Impact on

Se
cu

rit
y

&
Pr

iv
ac

y

Pe
rfo

rm
an

ce

&
Sc

al
ab

ilit
y

Av
ai

la
bi

lit
y

&

R
es

ilie
nc

e

Ev
ol

ut
io

n
&

In
te

ro
pe

ra
bi

lit
y

Storage of
Information

History

DC11.1 Storage of History locally + - - 0

DC11.2 Storage of History remotely +/- + + 0

DC11.3 Storage of History locally and
remotely +/- + + 0

Implementati
on of

DC12.1 Implementation of Semantics in RDF 0 +/- - +

DC12.2 Implementation of Semantics in OWL 0 - - +

IoT-A (257521)

Internet of Things - Architecture © - 128 -

semantics DC12.3 Implementation of Semantics in
RDFa 0 + - +

Storage of history
IoT architectures can store information that has been gathered before from IoT Resources to be
used later for further processing. Another reason to provide the information history as cache for
the IoT Resource is to avoid excessive use of IoT devices to minimise energy consumption on
the constraint IoT devices. There are several choices on where to store the information history:
locally, remotely, or a combination of both.

Storage of history locally (DC11.1)
The information history is stored on the IoT device that has produced the information. History
needs to be secured in the same way as the present information. Constrained IoT devices are
used every time the history is queried; the storage size of history as well as the performance is
limited on IoT devices. Having a single storage place for history information is against good
scalability. The availability of information history depends on the availability of the IoT device
hosting the history. There is no impact on Evolution and Interoperability.

Storage of history remotely (DC11.2)
The information history is not stored on the IoT device that has produced the information, but on
a different IoT Resource, to which the information is uploaded to. The additional history
resource needs to be secured too with either the same S&P policies as the original IoT
Resource or different policies. A history resource in the cloud can perform better than IoT
devices; the replication of information allows load balancing between history and present
information which contributes to better scalability. The Information history still exists when the
respective IoT device becomes unavailable; fault tolerance is achieved by data replication.
There is no impact on Evolution and Interoperability.

Storage of history locally and remotely (DC11.3)
The information history is stored on the IoT device that has produced the information as well as
on a different IoT Resource replicating the information. History information that exceeds the
capabilities of the hosting IoT device capabilities can be offloaded to high performance devices.
This design choice contributes to high scalability as well as higher performance since the
remotely stored history information is a replication of the locally stored information. Replicating
information is cheaper to achieve by the device than retrieving ‘fresh’ information for every
replication. This approach provides a reference-information on the local device that can be used
in case a remotely stored history information resource fails. Thus this design choice leads to
higher Availability and better Resilience. There is no impact on Evolution and Interoperability.

Implementation of semantics
This paragraph presents design choices on the description formats for semantic annotation of
information. Presented are three choices that have been analysed in [53]

Implementation of semantics in RDF (DC12.1)
The Resource Description Framework (RDF) [47] provides a standard to express relationships
between objects, like things or location, defined as URL’s. The RDF documents can be stored in
‘triple stores’. Those stores form databases designed for semantically structured data that can
be queried by semantic query languages, like SPARQL [48]. When using RDF for information
annotation URLs have to be accommodated in the information descriptions. Those URLs can be

IoT-A (257521)

Internet of Things - Architecture © - 129 -

very long and require some size of memory on the hosting device. Thus performance of
restricted devices might be to low to handle RDF documents. In those cases the RDF
documents should be handled by more powerful gateways in the network. Interoperability is
achieved by using URLs as unique identifiers for Things. Those Thing-URLs have to be
available over the network. If a device associated to a Thing is not able to handle the URLs of
the Thing it is associated to a gateway has to translate the RDF-URLs to its respective device
specific identifier. The translation has a negative impact on the performance, but putting the
burden onto more powerful gateways will solve the problem and leads to better scalability if one
gateway handles address translation for several devices. If semantic information is not
replicated it will be unusable as soon as the device managing the device becomes unavailable.
There is no impact on Security and Privacy.

Implementation of semantics in OWL (DC12.2)
The Web Ontology Language (OWL) [33] is a standard to express taxonomies of things in a
descriptive language. OWL is based on RDF and XML. Like RDF documents, OWL documents
can be stored and queried in triple stores too, but additionally OWL reasoning tools allow
inferring additional knowledge based on the information that is asserted in the documents
explicitly. Due to more expressiveness OWL documents can be bigger than RDF documents.
Hence the impact on Performance is worse than in DC12.1. The impact in other perspectives is
the same as in DC12.1.

Implementation of semantics in RDFa (DC12.3)
RDF-in-attributes (RDFa) [49] provides a way to inject semantic concepts into non-semantic
documents. The URLs in the documents identify semantic concepts like Virtual Entities or its
attributes, but save the syntactic overhead required in pure RDF/XML or OWL documents.
Smaller documents allow constraint devices to handle the information onboard which results in
higher performance. The impact in other perspectives is the same as in DC12.1.

5.3.1.3 Deployment and operation view
Table 9: Design choices deployment and operation view

Topic

Design Choice

Impact on

Se
cu

rit
y

&
Pr

iv
ac

y

Pe
rfo

rm
an

ce

&
Sc

al
ab

ilit
y

Av
ai

la
bi

lit
y

&

R
es

ilie
nc

e

Ev
ol

ut
io

n
&

In
te

ro
pe

ra
bi

lit
y

Smart object
connectivity

DC13.1 Sensor and actuator networks - +/- +/- +

DC13.2 RFID and smart tags + - - +

DC13.3 WiFi connectivity + + + +

DC13.4 Cellular network connectivity + +/- + +

“Last mile”
communicati
on protocols

DC14.1 IoT-A protocol suite + + 0 +/-

DC14.2 Ad hoc proprietary stack +/- + 0 -

IoT-A (257521)

Internet of Things - Architecture © - 130 -

DC14.3 Other standards not in the IoT-A suite +/- + 0 -

Service
hosting

DC15.1 on smart objects +/- + + 0

DC15.2 on gateways + - +/- 0

DC15.3 in the cloud + +/- + 0

Service
engine

DC16.1 internal + + +/- +

DC16.2 external provider +/- + + +

Information
storage

DC17.1 local only + - +/- 0

DC17.2 web only - + +/- 0

DC17.3 local and web cached +/- +/- +/- 0

Smart object connectivity
Smart objects may have different functionalities and capabilities depending on the specific
service they are designed to provide. It is important to choose the correct category of device in
order to satisfy the requirements identified. This design choice concerns the connectivity
adopted to integrate the smart objects into the IoT. We addressed in particular Sensor and
Actuator Networks, RFID, WiFi, and cellular network.

Sensor & Actuator networks (DC13.1)
Sensor and Actuator Networks (S&AN), either wireless or wired, are usually characterized by
low data rate, low power consumption, low cost and low processing power. Opting for such a
connectivity type will limit the complexity of the service offered by the device, thus making
unfeasible some of the advanced functionalities in all the categories. However, S&AN devices
are mostly chosen for their small size and low cost, thus offering a lightweight solution for simple
service implementations.

RFID and smart tags (DC13.2)
The most cost effective solution for object identification. Smartness is provided by the most
advanced protocols only, such as NFC, which establish a two-way communication with the
reader. This type of connectivity calls for an additional tier of network interconnecting the
readers.

WiFi (DC13.3)
Whenever high performance is required, WiFi technology is the best solution. The downside
relies on the higher power consumption. The more mature standards are an additional benefit of
WiFi technology.

Cellular networks (DC13.4)
If the primary requirements for smart objects are the availability and the mobility, cellular
networks technology offers the widest coverage among the connection type. However, it is the
most expensive solution and has high energy consumption.

IoT-A (257521)

Internet of Things - Architecture © - 131 -

“Last mile” communication protocols
One of the key points of the IoT is the interoperability among the different smart objects. While
in the Web the HTTP/IP paradigm is predominant, smart objects are usually realized using
many different communication stack solutions. This is due to two main reasons: either the
service needs to comply to regulation that force the implementers to choose a particular
solution, or performance is preferred instead of interoperability, hence the communication is
designed for the specific service only.

IoT-A protocol suite (DC14.1)
This project aims at providing guidelines and best practices in order for system providers and
integrators to realize networks of smart objects, which are seamlessly interoperable and thus
can form a unique IoT.

Ad hoc proprietary stack (DC14.2)
As anticipated above, when the performance is the first requirement, usually interoperability is
more difficult and needs added complexity in the form of gateways and communication
wrappers.

Other standards not in the IoT-A suite (DC14.3)
A possible reason not to opt for the more versatile IoT protocol suite may arise from specific
regulation applying to specific domains. In such a case, gateways and wrappers may still save
the day.

Service hosting
Services are the primary active software in our IoT Domain Model. However, it is left to the
system designer to choose where to deploy them. Possible solutions are: on the smart objects
themselves, on gateways or in the Web.

On smart objects (DC15.1)
This is the most intuitive among the choices offered as the service is deployed directly on the
device which is providing a given functionality. However, depending on the hardware, this
choice may carry along issues concerning the capability of the device. If complex services are
needed in constrained environment, this is not the way to go.

On gateways (DC15.2)
Usually, the devices bridging two different networks are equipped with more computational
power and storage space. Thus they allow the system integrator to deploy more complex
services on them. However, once the network complexity increases, this choice may become
the most difficult to maintain.

In the cloud (DC15.3)
Smart objects, in this case, are less smart as their capabilities are deployed in the Web.
However, this choice offers great advantages in terms of availability and resilience. The worst
drawback here is that the actual communication from the user to the smart object may be quite
slower than DC9.1.

Service engine
The core service engine is the software in charge of discovering, retrieving and associating the
services. It is quite a complex piece of software and might require powerful dedicated machines

IoT-A (257521)

Internet of Things - Architecture © - 132 -

to run. Here the choice left to the system integrator is whether to deploy it internally or to rely on
third parties.

Internal (DC16.1)
Obviously, if the service engine is available internally, the system can be customized more
deeply according to the service needs. However, this solution requires specific expertise which
is not always available neither in the most advanced IT companies.

External provider (DC16.2)
This will be the most popular design choice for Small and Medium Enterprise, which need to
rely on robust service providing granted availability and scalability.

Information storage
The last design choice concerning the deployment and operation view is related to where and
how to store information. It is not always straightforward to decide whether to maintain internal
databases or to store data in the cloud.

Local only (DC17.1)
According to this design choice, data are only available within the network where they belong.
On the one hand this solution is appropriate for enforcing security and privacy, but on the other
hand availability and resilience might be degraded.

Web only (DC17.2)
On the contrary, data may also be stored only in the cloud. Benefits and issues are reversed
here than in the previous choice regarding security and privacy as well as availability and
resilience. In fact, the system integrator will have to trade longer transaction times between
users and smart objects with higher availability.

Local and web cached (DC17.3)
This solution combines the benefits offered by DC11.1 and DC11.2, but is exposed to both
choices issues depending on the particular implementation of the system.

5.3.2 Risk analysis
The risk analysis carried out in this section aims at assessing risks pertaining to the IoT-A
architecture and to classify them relatively to the underlying mechanisms they involve, the
elements they affect and the overall criticality they present.

Risk analysis traditionally begins with a definition of the elements that have to be protected.
Then an analysis of possible threats is provided. How identified threats may actually affect
elements to be protected leads to the definition of risks. These latter have to be categorized,
taking into account parameters such as criticality or probability of occurrence.

Multiple risk analysis methods have been proposed in the literature, such as the French EBIOS
[50] or OCTAVE [51]. The methodology for risk analysis that has been chosen in IoT-A and that
is used in this section is based on Microsoft STRIDE / DREAD [52]. This choice is based on two
reasons: first, this methodology is designed to assess risks in the field of communications and
information systems. Second, it largely bases on the analysis of architecture models and
communications flows (instead of, for example, partly relying on experts interviews such as in
EBIOS), which makes it perfectly suitable to be used within IoT-A architecture work package, in
the current maturity status of the project, in which architecture and relationships between
elements have largely been defined.

IoT-A (257521)

Internet of Things - Architecture © - 133 -

This section is organized as follows: first, a list of elements to be protected is provided. Then,
the threats that may affect these elements (risk sources) are reviewed, following the STRIDE
classification. A table of identified risks follows, each risk being assessed in accordance with
DREAD methodology/metric.

Eventually, this risk analysis is intended to be used as input for subsequent evolutions of IoT-A
architecture, on order to make it more resilient against the most critical risks.

5.3.2.1 Elements to protect
Elements to protect generally depend on the considered scenario. In the current analysis, it is
worth, though, to provide a generic overview that encompasses all elements whose protection
must be ensured in IoT-A. Therefore all IoT scenarios that were identified in IoT-A deliverable
D1.2 were considered as inputs for the risk analysis performed in this section. These scenarios
are:

• Transportation / Logistics
• Smart home
• Smart city
• Smart factory
• Retail
• eHealth
• Environment (Smart Grid)

The following elements to protect were identified:

• Physical person. This represents the Human User. Threats affecting the Human User
are usually qualified as relating to 'safety' instead of 'security'. Such threats may arise if
a critical service is diverted (e.g. returns wrong information, or even information
specifically shaped to produce hazardous results) or made unavailable by an attacker.
The eHealth scenario is the most prone to such attacks, even though their criticality
depends on its level of automation. It is likely that most critical decisions will still require
the involvement of a human operator.

• Subject's privacy. This element represents all information elements that a subject
(either a User or a Service in the Domain Model terminology) does not explicitly agree
to make publicly available, or whose availability should be restrained to a controlled set
of subjects only.

• Communications channel. The communication channel itself has to be protected,
especially to prevent attack regarding the integrity (tampering and replay attacks) or the
confidentiality (eavesdropping) of the data that are exchanged over it. The
communication channel should also be protected from attacks to the routing
functionality (black/worm-hole, depletion,...).

• Leaf devices. IoT-A leaf devices represents the wide variety of Internet of Things
element that the common IoT-A infrastructure interconnects. Tags, readers, sensors,
actuators are part of this category of elements. Various protection schemes relevant to
their object class are to be implemented. These should ensure the integrity of the
software, hardware and location of these devices.

• Intermediary devices. Intermediary devices provide services to IoT-A leaf devices and,
enable the novel IoT-A communication paradigm. The advanced gateway that is
designed to interconnect constrained and unconstrained domains is an example of such
intermediary entity. Disabling or tampering critical intermediary devices can lead to
denial of service attacks against the global service infrastructure, and is considered
within this scope. However, attacks against specific intermediary devices that offer non-
critical facilitating functions have to be considered per se, hence mentioning
intermediary entities within the list of elements to protect.

IoT-A (257521)

Internet of Things - Architecture © - 134 -

• Backend services. Backend services represent server-side applicative elements (e.g.
data collection server communicating with sensor nodes). Compromising this software
or the devices they are deployed on generally represents a critical threat against
specific application systems and has to be prevented.

• Infrastructure Services: Discovery, Lookup and Resolution Services are the most
critical services as they provide worldwide fundamental functionalities to IoT-A systems.
In the same way, Security Services (Authorization, Authentication, Identity
Management, Key Management and Trust and Reputation) are essential for a secure
interaction between subjects.

• Global systems / facilities. This last category of elements to protect considers entire
services in a global manner. For example, there might be a risk that an attack against
the smart home scenario results in the complete disruption of the service, e.g. through
the disruption of underlying communications between devices.

5.3.2.2 Risk Sources
The risk sources are categorized following the STRIDE classification, which is a widely used
way of classifying threats that relate to information systems. STRIDE stands for Spoofing
Identity, Tampering with Data, Repudiation, Information Disclosure, Denial of Service, Elevation
of Privilege. These categories are quickly reviewed below:

• Identity spoofing means that one peer illegitimately uses the identity of another peer.
Spoofing attacks can happen with respect to all kind of identifiers, irrespective of
whether they are used to designate physical persons, devices or communication flows,
for example.

• Data tampering means that an attacker is able to alter the content of data exchanged
between two or more peers. Data tampering may involve subtle attack schemes,
wherein the attacker is able to trigger specific behaviours at recipients by finely
modifying original data.

• Repudiation relates to attacks in which an attacker performs illegitimate action and
may afterwards deny having performing it, such that other nodes are unable to prove
that the attacker actually behaved maliciously.

• Information disclosure means that information is disclosed to unauthorized peers. It is
related to the existence of an authorization model that defines for each information
element a set of peers that are authorized to access it (possibly under some specific
conditions).

• Denial of service attack is carried out to disable a service offered to legitimate users
(as opposed, for example, to more subtle schemes wherein the attacked service can be
altered, e.g. making a search service return false results, without the legitimate users
can notice it).

• Elevation of privilege may occur in systems that feature different classes of users,
each class being mapped to a specific set of rights. Illegitimate elevation of privilege
occurs when an attacker manages to acquire rights that would normally be granted to
more privileged class(es) only. In the most critical case, an attacker may obtain
administration rights on the entire system, or part of it, which means that he may
perform arbitrary actions on the elements he has access to, thereby being able to
destroy the system or entirely change its behaviour.

The risk sources that are considered in the following are restricted according to the following
rules:

• Non-human risk sources either global (flood, lightning, fire, electrical, heat) or local
(individual device failure) are not considered. Only human risk sources are.

• Among human risk sources, only theft/loss and hacker-initiated attacks are considered.
Technical staff errors or accidents are not considered.

IoT-A (257521)

Internet of Things - Architecture © - 135 -

The STRIDE classification is used below to identify risks, as intersections between a STRIDE
item and an element to protect.

 Spoofing
Identity

Tamperin
g with
Data

Repudiatio
n

Informatio
n
Disclosur
e

Denial of
Service

Elevatio
n of
Privileg
e

Physical
person

 Attack alters
data so that
wrong data
is supplied
to a critical
monitoring
system

Human Users
might use
unattended
electronic
devices
leaving no
digital trace

 A service
critical for
user's safety
is disabled

User's privacy User's
identity is
spoofed

User is
involved in
transactions
with a
malicious
peer

 Attacker
gains
knowledge of
user private
parameters

Attacker
gains
knowledge of
user's
location

Communicatio
ns channel

 Alteration of
the
invocation of
a service

Alteration of
the return
value upon
service
invocation

Jamming
wireless
communicatio
n channels
lead to local
DoS attacks
that can be
repudiated

Attacker
gains
knowledge of
sensitive
exchanged
data

Attacker
disrupts
communicatio
ns

Wrong
authorizati
on
information
propagatin
g from one
server to
another

Leaf devices Loss or theft
of physical
device used
for
authenticatio
n

Attacker
changes the
association
between a
Virtual Entity
and the
correspondi
ng Physical
Entity

Attacker
gains control
of an
actuator

Attacker
alter leaf
device
content so
that a user
will
eventually
be
redirected to
a malicious
content

Attacker
alter sensor

 Disclosure of
device
configuration
information

Device
identification

Loss or theft
of physical
device
containing
private
information

Attacker
physically
disables leaf
device (local)

Attacker
physically
disables leaf
device
(remote)

Attacker
prevents
proper
communicatio
n to an
actuator

IoT-A (257521)

Internet of Things - Architecture © - 136 -

device so
that
monitoring
of a Physical
Entity fails

Intermediary
devices

 Compromise
d
intermediary
devices alter
traversing
data

Intermediary
devices
behave
maliciously
and clients are
not able to
report the fact

 Assisting
intermediary
devices are no
longer usable

Backend
Services

Administrato
r role
usurpation

Backend
account
hacked

 Massive
disclosure of
collected data

Backend
Service is
made
unavailable

Infrastructure
Services

Attacker
impersonate
s
infrastructur
e Services,
compromisin
g IoT
functionalitie
s and/or
other
dependent
infrastructur
e Services

Attacker
poisons
infrastructur
e databases
or alter
outgoing
information

 Disclosure of
private
Services
(existence &
description)

Disclosure of
access
policies

Disclosure of
Identities and
cryptographic
material

Attacker
denies
legitimate
users access
to
Infrastructure
Services

Global
systems /
facilities

 Massive
disclosure of
users
personal
information

Disruption of a
global service

5.3.2.3 Risk Assessment
Identified risks were assessed using the DREAD methodology & (simplified) metrics. DREAD,
defines scoring methodology and metric that help to evaluate the criticality of an identified
threat. DREAD stands for Damage Potential, Reproducibility, Exploitability, Affected Users,
Discoverability. It defines the criteria along which a threat is evaluated. Each criteria is given a
rating between 0 and 10. Eventually, the threat can be globally rated (sum of D, R, E, A, D
individual ratings) or can be described along with its individual ratings, to allow for more precise
analysis. A simpler scheme for DREAD, used in what follows, consists in only affecting ratings
in the form of L (Low), M (Medium), H (High) for each D, R, E, A, D rating.

Note that a 'High' rating for Exploitability means that it is easy for an attacker to carry out an
attack leading to the identified threat, whereas a 'High' rating in Discoverability means that it is
difficult to discover the threat. This is to ensure a coherent approach, in which 'Low' ratings
decrease the overall criticality of a risk, whereas 'High' ratings increase it.

IoT-A (257521)

Internet of Things - Architecture © - 137 -

The DREAD methodology and metric is used below to evaluate identified risks. In addition to
the DREAD rating, the table below provides initial information on detailed threats that may lead
to the occurrence of the identified risk. In addition to this information, initial elements on threat
mitigation are provided.

An evolution of this table will consist in enhancing this initial information to more complete attack
trees, such that each risk can be mapped to a probabilistic review of the attack scenarios that
can lead to it.

Risk D/R/E/A/D rating Examples of Causes Mitigation

Attack alters data so that
wrong data is supplied to a
critical monitoring system

H/L/M/L/L

enforce strong
security

 Data integrity protection
provided as part of
protocol security.

Human Users might use
unattended electronic
devices leaving no digital
trace

L/L/H/L/L

enforce weak
security

 Not specifically targeted.
Addressable through
proper (local / remote) user
authentication scheme,
which would be a function
of the Authentication
component.

A service critical for user's
safety is disabled

H/M/M/L/L

enforce medium
security

 Not specifically targeted.
Critical services have to be
protected through
redundancy of their key
elements. Malicious actions
are prevented through
dedicated access control
policies (security
management).
Communication medium
between user and critical
service has to be made
robust against DoS attacks
at all layers.

User's identity is spoofed L/H/H/L/M

enforce medium
security

Credential theft,

Credential brute-forcing,

Registration procedure vulnerable
to man-in-the-middle attack

Robust user authentication
procedure preventing MitM
attacks, with proper
credentials management
policy provided by
Authentication
component.

User is involved in
transactions with a
malicious peer

L/H/H/M/L

enforce strong
security

Redirection to advertising or
malicious content, which may be
cause by data tempering on
communication channel or leaf
node compromising

Trustworthy discovery /
resolution / lookup system.
Trustworthiness of the
entire system is guaranteed
through its security
components (especially
Authentication and Trust
and Reputation) as well as
its global robustness
(security by design).

Attacker gains knowledge
of user private parameters

M/M/M/L/H

enforce medium
security

Characterization of a user as
requiring certain data (discovery,
lookup, resolution)

Characterization of a user as
providing certain data

Enforcement of a robust
pseudonymity scheme
ensuring both anonymity
and unlinkability and
provided by the Identity
Management security

IoT-A (257521)

Internet of Things - Architecture © - 138 -

Traceability (this path, hence this
user)

component.

Attacker gains knowledge
of user's location

L/H/M/L/H

enforce weak
security

 User's location can be
hidden through reliance on
pseudonyms provided by
the Identity Management
component.

Alteration of the invocation
of a service

L/L/M/L/L

enforce weak
security

 End-to-end integrity
protection of signalling to
access a service (Data
integrity protection is
provided as part of
protocol security).

Alteration of the return
value upon service
invocation

L/L/M/L/L

enforce weak
security

 End-to-end integrity
protection of signalling to
access a service (Data
integrity protection is
provided as part of
protocol security).

Jamming wireless
communication channels
can lead to local DoS
attacks that can be
repudiated

M/H/L/M/M

enforce medium
security

 Not specifically targeted.
Dealing with jamming-
obfuscated DoS attacks
would rather be addressed
through physical means
and start with the
localization of the jammer.

Attacker gains knowledge
of sensitive exchanged
data

M/L/M/L/L

enforce medium
security

 End-to-end confidentiality
protection of exchanged
data, offered through
protocol security.

Attacker disrupts
communications

M/H/L/H/L

enforce medium
security

 Various DoS prevention
schemes, which
applicability depends on
the communication
technology (anti-jamming,
enforced MAC, etc.). They
are offered through security
by design of the
communication stack.

Wrong authorization
information propagating
from one server to another

M/L/L/H/M

enforce medium
security

 Strong security for server to
server communications that
leverages on individual
credentials (e.g.
certificates) instead of
group keys, and allows for
revocation (security by
design, adequate
management policies).

Loss or theft of a physical
device used for
authentication

M/L/H/L/L

enforce weak
security

 Two-factor authentication,
when applicable.

Attacker changes the
association between a
Virtual Entity and the
corresponding Physical
Entity

M/L/M/H/L

enforce medium
security

Wrong tag on a device

Compromising of the resolution
system

Secured discovery/
resolution/ lookup system.

IoT-A (257521)

Internet of Things - Architecture © - 139 -

Attacker gains control of an
actuator

M/M/M/L/M

enforce medium
security

 Proper authorization
scheme as offered by the
Authorization component.

End-to-end integrity
protection, provided as part
of protocol security.

Attacker alter leaf device
content so that a user will
eventually be redirected to
a malicious content

M/M/H/M/L

enforce medium
security

 Not specifically targeted.
Addressable through a
proper URI verification
system on user device.

Attacker alter sensor device
so that monitoring of a
Physical Entity fails

L/M/L/L/H

enforce weak
security

 Not specifically targeted.
Sensitive physical values
may be monitored by a
large number of sensors, or
sensor integrity can be
remotely verified.

Disclosure of device
configuration information

L/L/L/L/H

enforce weak
security

 Not specifically targeted.
Unlinkability between
different actions of the
same device, provided by
the Identity Management
component, will mitigate
the criticality of this threat.

Device identification L/M/M/L/H

enforce medium
security

Attacker bypasses in-place
pseudonymity scheme and
identifies a device as providing
access to certain data

Adequate protection
scheme requiring partial
pre-knowledge of each
other before a tag can be
read by a reader.

Loss or theft of physical
device containing private
information

M/L/H/L/L

enforce medium
security

 Physical protection of
stored credentials (e.g.
security vault) – readability
of a device only upon
fulfilment of certain
conditions (e.g. known
reader).

Attacker physically disables
leaf device (local)

L/H/H/L/L

enforce weak
security

E.g. tag destruction Not specifically targeted –
typically addressable
through physical
investigation.

Attacker physically disables
leaf device (remote)

M/H/L/H/L

enforce weak
security

E.g. tag destruction by remote
electromagnetic means

Not specifically targeted –
typically addressable
through physical
investigation.

Attacker prevents proper
communication to an
actuator

M/H/L/M/L

enforce medium
security

 DoS detection / reaction
scheme (security by
design).

Compromised intermediary
devices alter traversing
data

M/H/M/M/L

enforce medium
security

 End-to-end security
scheme put in place by the
Key Exchange and
Management component,
and enforced by the
relevant Protocol Security
function.

Remote monitoring of
intermediary devices can

IoT-A (257521)

Internet of Things - Architecture © - 140 -

be another means of
dealing with this threat,
through identification of
compromised devices.

Intermediary devices
behave maliciously and
clients are not able to
report the fact

M/M/L/M/H

enforce weak
security

 Remote monitoring of
intermediary devices.

Depending on the
malicious action performed
by intermediary devices,
client nodes may mitigate it
by applying end-to-end
security schemes (Key
Exchange and
Management + Protocol
Security).

Assisting intermediary
devices are no longer
usable

L/M/H/H/L

enforce medium
security

Exhaustion attacks,

Various specific attacks against
the involved assistance
mechanisms

DoS detection / reaction
scheme.

Administrator role
usurpation

H/M/L/H/L

enforce medium
security

Administrator credentials
disclosed / hacked / brute-forces

Not specifically targeted.
Addressable through
security management,
credentials management
policies.

Backend account hacked M/M/L/H/M

enforce medium
security

 Not specifically targeted.
Addressable through
security management,
credentials management
policies.

Massive disclosure of
collected data

H/M/L/H/L

enforce medium
security

 Not specifically targeted.
Addressable through
security management
(databases).

Backend service is made
unavailable

L/M/M/H/L

enforce medium
security

 DoS detection / reaction
scheme.

Attacker impersonates
infrastructure Services,
compromising IoT
functionalities and/or other
dependent infrastructure
Services

H/M/L/H/M

enforce medium
security

 Prevention of
impersonation techniques
through proper use of
authentication /
authorization procedures
(enforced by the respective
Authentication and
Authorization
components).

Attacker poisons
infrastructure databases or
alters outgoing information

H/H/L/H/M

enforce strong
security

 Proper authorization
scheme put in place by the
Authorization component
mitigates this attack.
Enforcement of a trust
model (Trust and
Reputation component)
protects against blind
acceptation of erroneous
data.

IoT-A (257521)

Internet of Things - Architecture © - 141 -

Disclosure of private
services (existence &
description)

L/H/H/M/M

enforce medium
security

 Masking the belonging of
multiple services to a single
entity is another form of
unlinkability, which can be
provided through reliance
on pseudonyms provided
by the Identity
Management component.

Disclosure of access
policies

L/H/H/M/M

enforce medium
security

 Security management of
infrastructure prevents
global disclosure of access
policies from the decision
point. Probe discovery of
access policies are more
subtle, and have to be dealt
with through adaptive
security – this second type
of attacks is not specifically
targeted.

Disclosure of identities and
cryptographic material

M/H/H/M/L

enforce strong
security

 Addressable through
security management
(databases).

Attacker denies legitimate
users access to
Infrastructure Services

M/H/L/M/L

enforce medium
security

 Exclusion of the attacker,
once identified as such
through the Trust and
Reputation security
component.

Massive disclosure of users
personal information

H/L/L/H/L

enforce strong
security

 Secure storage of users
personal data with
dedicated protection
architecture (e.g. firewall
diodes) and access control
rules – this is part of
security management.

Disruption of a global
service

H/M/L/H/L

enforce strong
security

 Reliance on all functional
security components +
proper security
management.

IoT-A (257521)

Internet of Things - Architecture © - 142 -

IoT-A (257521)

Internet of Things - Architecture © - 143 -

6 Conclusions and Outlook
This second public version (v1.5) of the IoT-A Architectural Reference Model builds upon the
first release in 2011 presented during the IOT Week 2011 in Barcelona. Following this
presentation a long feedback process was started which led to this version. Therefore this
version 1.5 is not only a great improvement to version 1 but also a consolidated version that
took into account 300+ received comments from external stakeholders and internal partners
involved into the other technical Work Packages of IoT-A.

In a nutshell the technical improvements touch all models of the RM and provide more
explanations on the logical existing between the models of the RM and between the models of
the RM and some views of the RA. As far as the RA is concerned many views and perspectives
were added to the ones existing in ARM version 1 (D1.2). Finally a large chapter (Section 5) is
fully dedicated to making this ARM useful to IoT system developers, by providing Best Practice
guidance and a large set of Design Choices that provides the system architects with concrete
option when designing a concrete architecture out of the ARM.

The ARM is not a “Style exercise” aiming at staying on the corner of someone’s desk. In order
to fully reach its objective, the ARM needs to be used, challenged, squeezed, criticised by you
“the reader”, in order to be improved by us. Only then it will reach its full maturity.

Following the IoT week 2012 – where a long session on Day#1 was dedicated to the ARM v1.5
presentation (D1.3) - a new feedback process has started and naturally, the ARM v2 (coming
end of October 2012) will leverage on this feedback. However we have anticipated in our
internal roadmap to improve some of the models of the RM (security/privacy/trust and
communication), to improve all perspectives of the RA, to improve Management and Security
aspects of the Functional view, and to allocate a large effort to the Best Practice and Design
Choices section, which we consider as critical in order to reach our audience – you IoT System
Architects- , and in order to ensure that our results are beneficial to the development of IoT.

IoT-A (257521)

Internet of Things - Architecture © - 144 -

IoT-A (257521)

Internet of Things - Architecture © - 145 -

References

[1] G. Mueller, "A Reference Architecture Primer",
http://www.gaudisite.nl/referencearchitectureprimerpaper.pdf
(accessed Nov. 1, 2010), 2008

[2] J. Miller and J. Mukerji (Ed.), MDA Guide Version 1.0.1, Object
Management Group, Framingham, Massachusetts, June 2003.

[3] “Bio Instruments s.r.l.”, http://phyto-sensor.com/FI-LP-FI-MP-FI-sp.en
(accessed: 2012-04-05).

[4] Internet of Things - Architecture, “Terminology”, http://www.IoT-
A.eu/public/terminology (accessed 2011-06-14), 2011

[5] The Open Group, TOGAFTM, 9th edition, 3rd impression ed.: Van
Haren Publishing, Zaltbommel, 2009.

[6] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, B. A.
Hamilton (Ed’s), “Reference Model for Service Oriented Architecture
1.0”, OASIS, http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf, 2006

[7] ANSI/IEEE, "ANSI/IEEE 1471-2000 Standard for Systems and
Software Engineering - Recommended Practice for Architectural
Description of Software-Intensive Systems," ANSI/IEEE, 2000

[8] E. Woods and N. Rozanski, “Using Architectural Perspectives“, Fifth
Working IEEE/IFIP Conference on Software Architecture, 2005

[9] A. Pastor, E. Ho, A. Salinas Segura, R. Kernchen, S. Meyer, J. Riedl,
and A. Bassi, “Project Deliverable D6.1 - Requirements List”,
http://www.IoT-A.eu/public/public-documents/project-
deliverables/1/1/IoT-A_Deliverable_6.1.pdf/at_download/file
(accessed 2011-06-09), November 2010.

[10] Nicola Bui (Ed.), “Project Deliverable D1.1 - SOTA report on existing
integration frameworks/architectures for WSN, RFID and other
emerging IoT related Technologies”, http://www.IoT-
A.eu/public/public-documents/project-
deliverables/1/1/110304_D1_1_Final.pdf/at_download/file (accessed
2011-06-09), 2011

[11] N. Rozanski and E. Woods, “Software Architecture with Viewpoints
and Perspectives”, http://www.viewpoints-and-
perspectives.info/doc/spa191-viewpoints-and-perspectives.pdf
(accessed 2011-06-15), 2005

http://www.gaudisite.nl/referencearchitectureprimerpaper.pdf
http://phyto-sensor.com/FI-LP-FI-MP-FI-sp.en
http://www.iot-a.eu/public/terminology
http://www.iot-a.eu/public/terminology
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://www.iot-a.eu/public/public-documents/project-deliverables/1/1/IoT-A_Deliverable_6.1.pdf/at_download/file
http://www.iot-a.eu/public/public-documents/project-deliverables/1/1/IoT-A_Deliverable_6.1.pdf/at_download/file
http://www.iot-a.eu/public/public-documents/project-deliverables/1/1/110304_D1_1_Final.pdf/at_download/file
http://www.iot-a.eu/public/public-documents/project-deliverables/1/1/110304_D1_1_Final.pdf/at_download/file
http://www.iot-a.eu/public/public-documents/project-deliverables/1/1/110304_D1_1_Final.pdf/at_download/file
http://www.viewpoints-and-perspectives.info/doc/spa191-viewpoints-and-perspectives.pdf
http://www.viewpoints-and-perspectives.info/doc/spa191-viewpoints-and-perspectives.pdf

IoT-A (257521)

Internet of Things - Architecture © - 146 -

[12] N. Rozanski and E. Woods, ”Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives”, Addison-
Wesley Longman, 2011

[13] N. Rozanski and E. Woods, ”Applying Viewpoints and Views to
Software Architecture“, Whitepaper, http://www.viewpoints-and-
perspectives.info/vpandp/wp-
content/themes/secondedition/doc/VPandV_WhitePaper.pdf
(accessed 2012-05-23)

[14] P. Shames and T. Yamada, “Reference Architecture for Space Data
Systems”, JPL TRS 1992+, http://trs-
new.jpl.nasa.gov/dspace/handle/2014/7485 (accessed 2011-06-14),
2003

[15] T. Usländer (Ed.), “Reference Model for the ORCHESTRA
Architecture (RM-OA) V2”, Open Geospatial Consortium Inc., OGC
07-024, 2007

[16] S. Tamblyn, H. Hinkel, D. Saley, “NASA CEV Reference GN&C
Architecture”, 30th Annual AAS Guidance and Control Conference,
AAS 07-071,
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070005131_20
07004869.pdf (accessed 2011-06-14), 2007

[17] Boehm B, "A Spiral Model of Software Development and
Enhancement", ACM SIGSOFT Software Engineering Notes", "ACM",
11(4):14-24, August 1986

[18] The Consultative Committee for Space Data Systems, “Information
Architecture Reference Model”, CCSDS_312.0-G-0,
http://cwe.ccsds.org/sea/docs/SEA-
IA/Draft%20Documents/IA%20Reference%20Model/ccsds_rasim_20
060308.pdf (accessed: 2011-06-15), February 2006

[19] Open GeoSpatial Consotrium, “The OpenGIS abstract specification
Topic 12: the OpenGIS Service architecture”,
http://portal.opengeospatial.org/files/?artifact_id=1221 (accessed
2011-06-14), 2002

[20] C. Vicente-Chicote, B. Moros, and A. Toval, “REMM-Studio: an
Integrated Model-Driven Environment for Requirements
Specifications, Validation and Formatting”, International Journal of
Object Technology, Vol. 6, No. 9, pp. 437-454, 2007.

[21] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”, Addison-
Wesley Professional, Part of the SEI Series in Software Engineering,
October 1994

http://www.viewpoints-and-perspectives.info/vpandp/wp-content/themes/secondedition/doc/VPandV_WhitePaper.pdf
http://www.viewpoints-and-perspectives.info/vpandp/wp-content/themes/secondedition/doc/VPandV_WhitePaper.pdf
http://www.viewpoints-and-perspectives.info/vpandp/wp-content/themes/secondedition/doc/VPandV_WhitePaper.pdf
http://trs-new.jpl.nasa.gov/dspace/handle/2014/7485
http://trs-new.jpl.nasa.gov/dspace/handle/2014/7485
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070005131_2007004869.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070005131_2007004869.pdf
http://doi.acm.org/10.1145/12944.12948
http://doi.acm.org/10.1145/12944.12948
http://cwe.ccsds.org/sea/docs/SEA-IA/Draft%20Documents/IA%20Reference%20Model/ccsds_rasim_20060308.pdf
http://cwe.ccsds.org/sea/docs/SEA-IA/Draft%20Documents/IA%20Reference%20Model/ccsds_rasim_20060308.pdf
http://cwe.ccsds.org/sea/docs/SEA-IA/Draft%20Documents/IA%20Reference%20Model/ccsds_rasim_20060308.pdf
http://portal.opengeospatial.org/files/?artifact_id=1221

IoT-A (257521)

Internet of Things - Architecture © - 147 -

[22] R. Giffinger, C. Fertner, H. Kramar, R. Kalasek, N. Pichler-Milanovic,
E. Meijers, "Smart cities - Ranking of European medium-sized cities".
www.smart-cities.eu/download/smart_cities_final_report.pdf
(accessed 2011-06-14), , 2007

[23] R. Nicholson, “Smart Cities: Proving Ground for the Intelligent
Economy”, http://www.slideshare.net/rlnicholson2/smart-cities-
proving-ground-for-the-intelligent-economy (accessed 2011-06-15),
2010

[24] Field, A., “As Wal-Mart expands its requirements for RFID, others find
new uses for the technology”, Journal of Commerce, Vol. 9 Issue 16,
p.21, 2008.

[25] P. Oldfield, "Domain Modelling"
http://www.aptprocess.com/whitepapers/DomainModelling.pdf,
(accessed Dec. 15, 2010), 2002

[26] Haller, S., “The Things in the Internet of Things”, Poster at the Internet
of Things Conference, Tokyo (IoT 2010), http://www.IoT-
A.eu/public/news/resources/TheThingsintheInternetofThings_SH.pdf,
(accessed Jan. 24, 2011), 2010.

[27] Serbanati, A., Madaglia, C.M., Ceipidor, U.B, “Building Blocks of the
Internet of Things: State of the Art and Beyond”, in RFID / Book 3,
ISBN 979-953-307-026-0, InTech, 2011

[28] K. Römer, F. Mattern, T. Dübendorfer, J. Senn, “Infrastructure for
Virtual Counterparts of Real World Objects”, Technical Report ETHZ,
http://www.inf.ethz.ch/vs/publ/papers/ivc.pdf (accessed 2011-06-09),
2002

[29] EPCglobal, “EPC Information Services (EPCIS) Version 1.0.1
Specification”, September 2007,
http://www.gs1.org/gsmp/kc/epcglobal/epcis/epcis_1_0_1-standard-
20070921.pdf (accessed 2012-04-30)

[30] Martín, G. (Ed.), “Resource Description Specification”, IoT-A
deliverable D2.1, 2012, (not yet online!!!)

[31] NGSI Context Management Specification, Open Mobile Alliance
http://www.openmobilealliance.org/Technical/release_program/docs/N
GSI/V1_0-20101207-C/OMA-TS-NGSI_Context_Management-V1_0-
20100803-C.pdf (accessed Jun. 11, 2012), 2010

[32] Furness, A., “Ontology for Identification”, in CASAGRAS Final Report,
Annex C, 2009, http://www.grifs-
project.eu/data/File/Casagras_Final%20Report.pdf (accessed 2012-
04-18)

[33] OWL 2 Web Ontology Language Definition,
http://www.w3.org/TR/owl2-overview/ (accessed 2011-06-14), 2009

http://www.smart-cities.eu/download/smart_cities_final_report.pdf
http://www.slideshare.net/rlnicholson2/smart-cities-proving-ground-for-the-intelligent-economy
http://www.slideshare.net/rlnicholson2/smart-cities-proving-ground-for-the-intelligent-economy
http://www.aptprocess.com/whitepapers/DomainModelling.pdf
http://www.inf.ethz.ch/vs/publ/papers/ivc.pdf
http://www.gs1.org/gsmp/kc/epcglobal/epcis/epcis_1_0_1-standard-20070921.pdf
http://www.gs1.org/gsmp/kc/epcglobal/epcis/epcis_1_0_1-standard-20070921.pdf
http://www.openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20101207-C/OMA-TS-NGSI_Context_Management-V1_0-20100803-C.pdf
http://www.openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20101207-C/OMA-TS-NGSI_Context_Management-V1_0-20100803-C.pdf
http://www.openmobilealliance.org/Technical/release_program/docs/NGSI/V1_0-20101207-C/OMA-TS-NGSI_Context_Management-V1_0-20100803-C.pdf
http://www.grifs-project.eu/data/File/Casagras_Final%20Report.pdf
http://www.grifs-project.eu/data/File/Casagras_Final%20Report.pdf
http://www.w3.org/TR/owl2-overview/

IoT-A (257521)

Internet of Things - Architecture © - 148 -

[34] Ricardo de las Heras (Ed.), “Project deliverable D4.1 - Concepts and
Solutions for Identification and Lookup of IoT Resources”, December
2011

[35] SAP Research “what is USDL and why do we need it",
http://www.internet-of-services.com/index.php?id=264&L=0 (accessed
2012-05-31), 2012

[36] N. Gruschka (Ed), IoT-A D4.2: Deliverable Concepts and Solutions for
Privacy and Security in the Resolution infrastructure, http://www.IoT-
A.eu/public/public-documents/documents-1/1/1/d4.2/at_download/file
retrieved on May 2012

[37] D. Gambetta, Can We Trust Trust?, in Trust: Making and Breaking
Cooperative Relations, D. Gambetta, pp. 213-237, Basil Blackwell,
Oxford, 2000, http://www.loa.istc.cnr.it/mostro/files/gambetta-
conclusion_on_trust.pdf, retrieved in May 2012

[38] M. Rossi (Ed), IoT-A D3.3 Deliverable: Protocol Suite, available from
http://www.IoT-A.eu/public/public-documents, retrieved on ……..

[39] Ashton, K., “That ‘Internet of Things’ Thing”, RFID Journal, June
2009, http://www.rfidjournal.com/article/view/4986 (accessed 2012-
04-30)

[40] IoT-I, ”Survey on IoT scenarios”, private communication, 2011.

[41] “Demonstration of the electrochemical fatigue sensor system at the
transportation technology center facility”,
http://www.arema.org/files/library/2007_Conference_Proceedings/De
monstration-Electochemical_Fatigue_Sensor_System_TTC_2007.pdf
(accessed: 2012-04-05).

[42] Philip Levis, “TinyOS Programming”, http://www.tinyos.net/tinyos-
2.x/doc/pdf/tinyos-programming.pdf (accessed 2012-04-05).

[43] “Apache HBase”, http://hbase.apache.org/ (accessed: 2012-04-05).

[44] Joseph Polastre, Robert Szewczyk, and David Culler, “Telos:
Enabling Ultra-Low Power Wireless Research,” in Proc. of the
International Conference on Information Processing in Sensor
Networks (IPSN), CA, USA, April 2005, pp. 364–369.

[45] Brucker, Achim D., Isabelle Hang, Gero Lückemeyer, and Raj
Ruparel. “SecureBPMN: Modeling and Enforcing Access Control
Requirements in Business Processes”. ACM symposium on access
control models and technologies (SACMAT), 2012, New York, NY,
USA.

http://www.internet-of-services.com/
http://www.iot-a.eu/public/public-documents
http://www.rfidjournal.com/article/view/4986
http://www.arema.org/files/library/2007_Conference_Proceedings/Demonstration-Electochemical_Fatigue_Sensor_System_TTC_2007.pdf
http://www.arema.org/files/library/2007_Conference_Proceedings/Demonstration-Electochemical_Fatigue_Sensor_System_TTC_2007.pdf
http://www.tinyos.net/tinyos-2.x/doc/pdf/tinyos-programming.pdf
http://www.tinyos.net/tinyos-2.x/doc/pdf/tinyos-programming.pdf
http://hbase.apache.org/

IoT-A (257521)

Internet of Things - Architecture © - 149 -

[46] Suparna De (Ed.), “Project deliverable D4.3 - Concepts and Solutions
for Entity-based Discovery of IoT Resources and Managing their
Dynamic Associations”, March 2012

[47] Resource Description Framework (RDF), http://www.w3.org/RDF/
(accessed 2012-06-01), 2004

[48] SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-
query/ (accessed 2012-06-01), 2008

[49] RDFa Primer, http://www.w3.org/TR/xhtml-rdfa-primer/ (accessed
2012-06-01), 2008

[50] Ebios 2010 - expression of needs and identification of security
objectives. Technical report, Agence Nationale de la Sécurité des
Systèmes d‟Information (ANSSI), 2010.

[51] OCTAVE (Operationally Critical Threat, Asset, and Vulnerability
Evaluation), http://www.cert.org/octave/, retrieved on May 2012.

[52] Microsoft, The STRIDE Threat Model, http://msdn.microsoft.com/en-
us/library/ee823878, retrieved on May 2012.

[53] Payam M. Barnaghi, Stefan Meissner, Mirko Presser, and Klaus
Moessner, "Sense and Sens’ability: Semantic Data Modelling for
Sensor Networks", In Proceedings of the ICT Mobile Summit 2009,
June 2009.

http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://msdn.microsoft.com/en-us/library/ee823878
http://msdn.microsoft.com/en-us/library/ee823878
http://epubs.surrey.ac.uk/470685/
http://epubs.surrey.ac.uk/470685/

IoT-A (257521)

Internet of Things - Architecture © - 150 -

IoT-A (257521)

Internet of Things - Architecture © - 151 -

Appendix

A Terminology
This glossary aims at defining the new terminology introduced by this document and at updating
the existing terms if their meaning has been refined during the editing of this document. The
changes introduced by this document will be applied to the IoT-A terminology webpage at
http://www.IoT-A.eu/public/terminology. Please, always refer to the online version of the
glossary, since it contains a more complete version of the glossary and, after new deliverables
got released, new definitions may have superseded these ones.

Also, the terms written in italic have a specific definition in the table.

Term Definition Source

Active Digital
Artefact

Active Digital Artefacts are running software
applications, agents or Services that may access other
Services or Resources.

Internal

Active Digital Entity Any type of active code or software program, usually
acting according to a Business Logic. Obsolete: the
term to be used is Active Digital Artefact

Internal

Actuators Special Device that executes a change in the physical
state of one or more Physical Entities.

Internal

Address An address is used for locating and accessing – “talking
to” – a Device, a Resource, or a Service. In some
cases, the ID and the Address can be the same, but
conceptually they are different.

Internal

Application
Software

“Software that provides an application service to the
user. It is specific to an application in the multimedia
and/or hypermedia domain and is composed of
programs and data”.

[ETSI- ETR173]

Architectural
Reference Model

The IoT-A architectural reference model follows the
definition of the IoT reference model and combines it
with the related IoT reference architecture.
Furthermore, it describes the methodology with which
the reference model and the reference architecture are
derived, including the use of internal and external
stakeholder requirements.

Internal

Architecture “The fundamental organization of a system embodied in
its components, their relationships to each other, and to
the environment, and the principles guiding its design
and evolution”.

[IEEE-1471-2000]

Architecture Vision ”A high-level, aspirational view of the target
architecture.”

[TOGAF9]

Aspiration “Stakeholder Aspirations are statements that express
the expectations and desires of the various
stakeholders for the services that the final [system]

[E-FRAME]

http://www.iot-a.eu/public/terminology

IoT-A (257521)

Internet of Things - Architecture © - 152 -

implementation will provide.”

Association An association establishes the relation between a
service and resource on the one hand and a Physical
Entityon the other hand.

Internal

Augmented Entity The composition of a Physical Entity and its associated
Virtual Entity.

Internal

AutoID and
Mobility
Technologies

“Automatic Identification and Mobility (AIM)
technologies are a diverse family of technologies that
share the common purpose of identifying, tracking,
recording, storing and communicating essential
business, personal, or product data. In most cases, AIM
technologies serve as the front end of enterprise
software systems, providing fast and accurate
collection and entry of data.

AIM technologies include a wide range of solutions,
each with different data capacities, form factors,
capabilities, and "best practice" uses.

AIM technologies also include mobile computing
devices that facilitate the collection, manipulation, or
communication of data from data carriers as well as
through operator entry of data via voice, touch screens
or key pads.

Each member of the AIM technology family has its own
specific benefits and limitations -- meaning there is no
"best" technology. Rather, applications may be best
served by one or more AIM technologies. Multiple AIM
technologies are often used in combination to provide
enterprise-wide solutions to business issues.

Most AIM technologies are defined by international and
national technical standards. International, national or
industry application standards also exist to define the
use of AIM technologies.”

[AIMglobal]

Business Logic Goal or behaviour of a system involving Things.
Business logic serves a particular business purpose.
Business logic can also define the behaviour of a single
or multiple Physical Entities, or a complete business
process.

Internal

Controller Anything that has the capability to affect a Physical
Entity, like changing its state or moving it.

Internal

Device Technical physical component (hardware) with
communication capabilities to other IT systems. A
device can be either attached to or embedded inside a
Physical Entity, or monitor a Physical Entity in its
vicinity.

Internal

Digital Artefact Virtual Entities are Digital Artefacts that can be Internal

IoT-A (257521)

Internet of Things - Architecture © - 153 -

classified as either active or passive.

Digital Entity Any computational or data element of an IT-based
system. Obsolete: the new term to be used is Digital
Artifact.

Internal

Discovery Discovery is a service to find unknown
resources/services based on a rough specification of
the desired result. It may be utilized by a human or
another service. Credentials for authorization are
considered when executing the discovery.

Internal

Domain Model “A domain model describes objects belonging to a
particular area of interest. The domain model also
defines attributes of those objects, such as name and
identifier. The domain model defines relationships
between objects such as “instruments produce data
sets”. Besides describing a domain, domain models
also help to facilitate correlative use and exchange of
data between domains”.

[CCSDS_312.0-G-
0]

Energy-harvesting
Technologies

“Energy-harvesting (also known as power harvesting or
energy scavenging) is the process by which energy is
derived from external sources (e.g., solar power,
thermal energy, wind energy, salinity gradients, and
kinetic energy), captured, and stored. Frequently, this
term is applied when speaking about small, wireless
autonomous devices, like those used in wearable
electronics and wireless sensor networks.

Traditionally, electrical power has been generated in
large, centralized plants powered by fossil fuels,
nuclear fission or flowing water. Large-scale ambient
energy, such as sun, wind and tides, is widely available
but technologies do not exist to capture it with great
efficiency. Energy harvesters currently do not produce
sufficient energy to perform mechanical work, but
instead provide very small amount of power for
powering low-energy electronics. While the input fuel to
large scale generation costs money (oil, coal, etc.), the
"fuel" for energy harvesters is naturally present and is
therefore considered free. For example, temperature
gradients exist from the operation of a combustion
engine and in urban areas, there is also a large amount
of electromagnetic energy in the environment because
of radio and television broadcasting”.

[Wikipedia_EH]

Entity of Interest
(EoI)

Any physical object as well as the attributes that
describe it and its state that is relevant from a user or
application perspective. The term is obsolete in the IoT-
A reference model: the term Physical Entity should be
used instead

Internal

Gateway A Gateway is a forwarding element, enabling various Internal

IoT-A (257521)

Internet of Things - Architecture © - 154 -

local networks to be connected.

Gateways can be implemented in Device that provides
protocol translation between peripheral trunks of the
IoT that are provided with lower parts of the
communication stacks. For efficiency purposes,
gateways can act at different layers, depending on
which is the lowest layer in a common protocol
implementation. Gateways can also provide support for
security, scalability, service discovery, geo-localisation,
billing, etc.

Global Storage Storage that contains global information about many
entities of interest. Access to the global storage is
available over the Internet.

Internal

Human A Human that either physically interacts with Physical
Entities or records information about them, or both.

Internal

Identifier (ID) Artificially generated or natural feature used to
disambiguate things from each other. There can be
several IDs for the same Physical Entity. This set of IDs
is an attribute of a Physical Entity.

Internal

Identity Properties of an entity that makes it definable and
recognizable.

Internal

Information Model “An Information Model is a representation of concepts,
relationships, constraints, rules, and operations to
specify data semantics for a chosen domain of
discourse. The advantage of using an information
model is that it can provide sharable, stable, and
organized structure of information requirements for the
domain context.

The Information Model is an abstract representation of
entities which can be real objects such as devices in a
network or logical such as the entities used in a billing
system. Typically, the Information Model provides
formalism to the description of a specific domain
without constraining how that description is mapped to
an actual implementation. Thus, different mappings can
be derived from the same Information Model. Such
mappings are called data models.”

[AutoI]

Infrastructure
Services

Specific services that are essential for any IoT
implementation to work properly. Such services provide
support for essential features of the IoT.

Internal

Interface “Named set of operations that characterize the
behaviour of an entity.”

[OGS]

Internet “The Internet is a global system of interconnected
computer networks that use the standard Internet
protocol suite (TCP/IP) to serve billions of users
worldwide. It is a network of networks that consists of

[Wikipedia_IN]

IoT-A (257521)

Internet of Things - Architecture © - 155 -

millions of private, public, academic, business, and
government networks of local to global scope that are
linked by a broad array of electronic and optical
networking technologies. The Internet carries a vast
array of information resources and services, most
notably the inter-linked hypertext documents of the
World Wide Web (WWW) and the infrastructure to
support electronic mail.

Most traditional communications media, such as
telephone and television services, are reshaped or
redefined using the technologies of the Internet, giving
rise to services such as Voice over Internet Protocol
(VoIP) and IPTV. Newspaper publishing has been
reshaped into Web sites, blogging, and web feeds. The
Internet has enabled or accelerated the creation of new
forms of human interactions through instant messaging,
Internet forums, and social networking sites.

The Internet has no centralized governance in either
technological implementation or policies for access and
usage; each constituent network sets its own
standards. Only the overreaching definitions of the two
principal name spaces in the Internet, the Internet-
protocol address space and the domain-name system,
are directed by a maintainer organization, the Internet
Corporation for Assigned Names and Numbers
(ICANN). The technical underpinning and
standardization of the core protocols (IPv4 and IPv6) is
an activity of the Internet Engineering Task Force
(IETF), a non-profit organization of loosely affiliated
international participants that anyone may associate
with by contributing technical expertise.”

Internet of Things
(IoT)

The global network connecting any smart object. Internal

Interoperability “The ability to share information and services. The
ability of two or more systems or components to
exchange and use information. The ability of systems to
provide and receive services from other systems and to
use the services so interchanged to enable them to
operate effectively together.”

[TOGAF 9]

IoT Service Software component enabling interaction with
resources through a well-defined interface, often via the
Internet. Can be orchestrated together with non-IoT
services (e.g., enterprise services).

Internal

Local Storage Special type of Resource that contains information
about one or only a few Entities in the vicinity of a
device.

Internal

Location
Technologies

All technologies whose primary purpose is to establish
and communicate the location of a device e.g. GPS,

Internal

IoT-A (257521)

Internet of Things - Architecture © - 156 -

RTLS, etc.

Look-up In contrast to Discovery, Look-up is a Service that
addresses exiting known Resources using a key or
Identifier.

Internal

M2M (also referred
to as machine to
machine)

“The automatic communications between devices
without human intervention. It often refers to a system
of remote sensors that is continuously transmitting data
to a central system. Agricultural weather sensing
systems, automatic meter reading and RFID tags are
examples.”

[COMPDICT-
M2M]

Microcontroller “A microcontroller is a small computer on a single
integrated circuit containing a processor core, memory,
and programmable input/output peripherals. Program
memory in the form of NOR flash or OTP ROM is also
often included on chip, as well as a typically small
amount of RAM. Microcontrollers are designed for
embedded applications, in contrast to the
microprocessors used in personal computers or other
general purpose applications.

Microcontrollers are used in automatically controlled
products and devices, such as automobile engine
control systems, implantable medical devices, remote
controls, office machines, appliances, power tools, and
toys. By reducing the size and cost compared to a
design that uses a separate microprocessor, memory,
and input/output devices, microcontrollers make it
economical to digitally control even more devices and
processes. Mixed signal microcontrollers are common,
integrating analog components needed to control non-
digital electronic systems”.

[Wikipedia_MC]

Network-based
resource

Resource hosted somewhere in the network, e.g., in
the cloud.

Internal

Next-Generation
Networks (NGN)

“Packet-based network able to provide
telecommunication services and able to make use of
multiple broadband, QoS-enabled transport
technologies and in which service-related functions are
independent from underlying transport-related
technologies”

[ETSI_TR_102_47
7]

Observer Anything that has the capability to monitor a Physical
Entity, like its state or location.

Internal

On-device
Resource

Resource hosted inside a Device and enabling access
to the Device and thus to the related Physical Entity.

Internal

Passive Digital
Artefact

PDigital Artefactassive Digital Artefacts are passive
software elements such as data-base entries or other
digital representations of the Physical Entity.

Internal

IoT-A (257521)

Internet of Things - Architecture © - 157 -

Passive Digital
Entities

A digital representation of something stored in an IT-
based system. Obsolete: the term to be used is Passive
Digital Artefact.

Internal

Perspective (also
referred to as
architectural
perspective)

“Architectural perspective is a collection of activities,
checklists, tactics and guidelines to guide the process
of ensuring that a system exhibits a particular set of
closely related quality properties that require
consideration across a number of the system’s
architectural views.”

[Rozanski, 2005]

Physical Entity Any physical object that is relevant from a user or
application perspective.

Internal

Reference
Architecture

A reference architecture is an architectural design
pattern that indicates how an abstract set of
mechanisms and relationships realises a
predetermined set of requirements. It captures the
essence of the architecture of a collection of systems.
The main purpose of a reference architecture is to
provide guidance for the development of architectures.
One or more reference architectures may be derived
from a common reference model, to address different
purposes/usages to which the Reference Model may be
targeted.

Internal

Reference Model “A reference model is an abstract framework for
understanding significant relationships among the
entities of some environment. It enables the
development of specific reference or concrete
architectures using consistent standards or
specifications supporting that environment. A reference
model consists of a minimal set of unifying concepts,
axioms and relationships within a particular problem
domain, and is independent of specific standards,
technologies, implementations, or other concrete
details. A reference model may be used as a basis for
education and explaining standards to non-specialists.”

[OASIS-RM]

Requirement “A quantitative statement of business need that must be
met by a particular architecture or work package.”

[TOGAF9]

Resolution Service by which a given ID is associated with a set of
Addresses of information and interaction Services.
Information Services allow querying, changing and
adding information about the thing in question, while
interaction services enable direct interaction with the
thing by accessing the Resources of the associated
Devices. Resolution is based on a priori knowledge.

Internal

Resource Heterogeneous, generally system-specific, software
components that store or process data or information
about one or more Physical Entities, or that provide
access to measurements and actuations in the case of

Internal

IoT-A (257521)

Internet of Things - Architecture © - 158 -

Sensors and Actuators respectively.

RFID “The use of electromagnetic or inductive coupling in the
radio frequency portion of the spectrum to
communicate to or from a tag through a variety of
modulation and encoding schemes to uniquely read the
identity of an RF Tag.”

[ISO/IEC 19762]

Sensor Special Device that measures physical characteristics
of one or more Physical Entities.

Internal

Service Platform-independent computational entity that can be
used in a platform-independent way.

Internal

Stakeholder (also
referred to as
system
stakeholder)

“An individual, team, or organization (or classes
thereof) with interests in, or concerns relative to, a
system.”

[IEEE-1471-2000]

Storage Special type of Resource that stores information
coming from Resources and provides information about
Entities. They may also include Services to process the
information stored by the Resource. As Storages are
Resources, they can be deployed either on-device or in
the network.

Internal

System “A collection of components organized to accomplish a
specific function or set of functions.”

[IEEE-1471-2000]

Tag Label or other physical object used to identify the
Physical Entity to which it is attached.

Internal

Thing Generally speaking, any physical object in combination
with its digital representation. In other words, it denotes
the same concept as an Augmented Entity.

Internal

User A Human or some Active Digital Entity that is interested
in interacting with a particular physical object.

Internal

View “The representation of a related set of concerns. A view
is what is seen from a viewpoint. An architecture view
may be represented by a model to demonstrate to
stakeholders their areas of interest in the architecture.
A view does not have to be visual or graphical in
nature”.

[TOGAF 9]

Viewpoint “A definition of the perspective from which a view is
taken. It is a specification of the conventions for
constructing and using a view (often by means of an
appropriate schema or template). A view is what you
see; a viewpoint is where you are looking from - the
vantage point or perspective that determines what you
see”.

[TOGAF 9]

Virtual Entity Computational or data element representing a Physical
Entity. Virtual Entities can be either Active or Passive

Internal

IoT-A (257521)

Internet of Things - Architecture © - 159 -

Digital Entities.

Wireless
communication
technologies

“Wireless communication is the transfer of information
over a distance without the use of enhanced electrical
conductors or "wires". The distances involved may be
short (a few meters as in television remote control) or
long (thousands or millions of kilometres for radio
communications). When the context is clear, the term is
often shortened to "wireless". Wireless communication
is generally considered to be a branch of
telecommunications.”

[Wikipedia_WI]

Wireless Sensors
and Actuators
Network

“Wireless Sensor and Actuator Networks (WS&ANs)
are networks of nodes that sense and, potentially,
control their environment. They communicate the
information through wireless links enabling interaction
between people or computers and the surrounding
environment.”

[OECD2009]

Wireline
communication
technologies

“A term associated with a network or terminal that uses
metallic wire conductors (and/or optical fibres) for
telecommunications.”

[Setzer-
Messtechnik,
20102010]

− [AIMglobal] Association for Automatic Identification and Mobility, online at:
http://www.aimglobal.org/

− [AutoI] Information Model, Deliverable D3.1, Autonomic Internet (AutoI) Project. Online
at: http://ist-autoi.eu/autoi/d/AutoI_Deliverable_D3.1_-_Information_Model.pdf

− [CCSDS_312.0-G-0] Information architecture reference model. Online at:
http://cwe.ccsds.org/sea/docs/SEA-
IA/Draft%20Documents/IA%20Reference%20Model/ccsds_rasim_20060308.pdf

− [COMPDICT-M2M] Computer Dictionary Definition, online at:
http://www.yourdictionary.com/computer/m2-m

− [E-FRAME] E-FRAME project, available online at: http://www.frame-online.net/top-
menu/the-architecture-2/faqs/stakeholder-aspiration.html

− [EPCglobal] EPC Global glossary (GS1), online at:
http://www.epcglobalinc.org/home/GS1_EPCglobal_Glossary_V35_KS_June_09_2009.
pdf

− [ETSI-ETR173] ETSI Technical report ETR 173, Terminal Equipment (TE); Functional
model for multimedia applications. Available online:
http://www.etsi.org/deliver/etsi_etr/100_199/173/01_60/etr_173e01p.pdf

− [ETSI_TR_102_477] ETSI Corporate telecommunication Networks (CN); Mobility for
enterprise communication, online at:
http://www.etsi.org/deliver/etsi_tr/102400_102499/102477/01.01.01_60/tr_102477v0101
01p.pdf

− [IEEE-1471-2000] IEEE 1471-2000, “IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems”

− [ITU-IOT] the Internet of Things summary at ITU, online at:
http://www.itu.int/osg/spu/publications/internetofthings/InternetofThings_summary.pdf

− [ISO/IEC_2382-1] Information technology -- Vocabulary -- Part 1: Fundamental terms,
online at:
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=722
9

http://www.aimglobal.org/
http://ist-autoi.eu/autoi/d/AutoI_Deliverable_D3.1_-_Information_Model.pdf
http://cwe.ccsds.org/sea/docs/SEA-IA/Draft%20Documents/IA%20Reference%20Model/ccsds_rasim_20060308.pdf
http://cwe.ccsds.org/sea/docs/SEA-IA/Draft%20Documents/IA%20Reference%20Model/ccsds_rasim_20060308.pdf
http://www.yourdictionary.com/computer/m2-m
http://www.frame-online.net/top-menu/the-architecture-2/faqs/stakeholder-aspiration.html
http://www.frame-online.net/top-menu/the-architecture-2/faqs/stakeholder-aspiration.html
http://www.epcglobalinc.org/home/GS1_EPCglobal_Glossary_V35_KS_June_09_2009.pdf
http://www.epcglobalinc.org/home/GS1_EPCglobal_Glossary_V35_KS_June_09_2009.pdf
http://www.etsi.org/deliver/etsi_tr/102400_102499/102477/01.01.01_60/tr_102477v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102400_102499/102477/01.01.01_60/tr_102477v010101p.pdf
http://www.itu.int/osg/spu/publications/internetofthings/InternetofThings_summary.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=7229
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=7229

IoT-A (257521)

Internet of Things - Architecture © - 160 -

− [OGS] Open GeoSpatial portal, the OpenGIS abstract specification Topic 12: the
OpenGIS Service architecture. Online at:
http://portal.opengeospatial.org/files/?artifact_id=1221

− [OASIS-RM] Reference Model for Service Oriented Architecture 1.0 http://docs.oasis-
open.org/soa-rm/v1.0/soa-rm.pdf

− [OECD2009]: “Smart Sensor Networks: Technologies and Applications for Green
Growth”, December 2009, online at: http://www.oecd.org/dataoecd/39/62/44379113.pdf

− [Sclater, 2007] Sclater, N., Mechanisms and Mechanical Devices Sourcebook, 4th
Edition (2007), 25, McGraw-Hill

− [Setzer-Messtechnik, 2010] Setzer-Messtechnik glossary, July 2010, online at:
http://www.Setzer-Messtechnik, 2010.at/grundlagen/rf-glossary.php?lang=en

− [TOGAF9] Open Group, TOGAF 9, 2009
− [Wikipedia_EH] Energy harvesting page on Wikipedia, online at:

http://en.wikipedia.org/wiki/Energy_harvesting
− [Wikipedia_IN] Internet page on Wikipedia, online at: http://en.wikipedia.org/wiki/Internet
− [Wikipedia_MC] Microcontroller page at Wikipedia, online at:

http://en.wikipedia.org/wiki/Microcontroller
− [Rozanski, 2005] Software Architecture with Viewpoints and Perspectives, online at:

http://www.viewpoints-and-perspectives.info/doc/spa191-viewpoints-and-
perspectives.pdf

− [Wikipedia_WI] Wireless page on Wikipedia, online at:
http://en.wikipedia.org/wiki/Wireless

http://portal.opengeospatial.org/files/?artifact_id=1221
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://www.oecd.org/dataoecd/39/62/44379113.pdf
http://www.setzer-messtechnik.at/grundlagen/rf-glossary.php?lang=en
http://en.wikipedia.org/wiki/Energy_harvesting
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Microcontroller
http://www.viewpoints-and-perspectives.info/doc/spa191-viewpoints-and-perspectives.pdf
http://www.viewpoints-and-perspectives.info/doc/spa191-viewpoints-and-perspectives.pdf
http://en.wikipedia.org/wiki/Wireless

IoT-A (257521)

Internet of Things - Architecture © - 161 -

B Requirements
The purpose of this section is to describe the process in which requirements were created and
refined, so that they could serve as inputs for developing the views, perspectives and the
functional decomposition shown in this document (see Section 4.2.2). Since the time of
publication of D1.2, new internal requirements were introduced while an update of the
requirements coming from stakeholders was integrated in D6.2. After D6.2 a major rework was
done regarding the existent set of requirements lists. The result is a single unified requirements
list merging the unified requirements with the internal requirements, as well as recently emerged
security requirements in order to provide a unique list with a consistent numbering scheme.
Henceforward in the project this integrated list will be mentioned as the unified requirements list.
The whole development process of the requirements from the beginning until D1.3 is described
in Figure 44.

Figure 44: Evolution of requirements lists towards unified requirements list in D1.3

B.1 Requirements Gathering Methodology
B.1.1 Gathering external requirements from stakeholders

B.1.1.1 First Stakeholder Workshop (SW1)
The process began with collecting requirements from 7 stakeholders during the first stakeholder
workshop in Paris, October 2010. The members of the stakeholder group were representatives
of a wide range of business domains with an interest on the Internet of Things: Logistics,
Healthcare, Technology Integration, Retail, Automotive, Service Integrators, Telecom
Operators, Law, Standardization and Veterinary Medicine. These stakeholder aspirations were
then reviewed individually by WP1 and WP6, each providing input relevant to their respective
work packages. In WP1, after the requirements were reviewed, they were used to develop the
views and functional decomposition for a first Draft Initial Architecture. The inputs of WP1 and
WP6 were then combined, so that a unified set of requirements were obtained (as shown in
Figure 45) The underlying unification process consisted of aligning the notations in order to

IoT-A (257521)

Internet of Things - Architecture © - 162 -

achieve consistency and of a generalization of the partially specific stakeholder objectives. This
resulting set of requirements was then used to refine the views and functional decomposition as
found in D1.2 Initial Architecture Reference Model.

Figure 45: Development process for Requirements

B.1.1.2 Second and third Stakeholder Workshop 2 (SW2 + SW3)
Within IoT week 2011 in Barcelona the second stakeholder workshop took place. Its purpose
was on the one hand to discuss the outcomes of SW1 and on the other hand to present the
initial concept of the validation approach.

Figure 46: Further development of requirements and validation approach

IoT-A (257521)

Internet of Things - Architecture © - 163 -

Both inputs led to stakeholder comments which, in turn, have been categorized using four
different feedback categories to identify new requirements, get feedback to the requirements
distillation process and the ARM in general, as well as the feasibility of the presented validation
approach. After that, a validation framework has been generated considering the improvement
suggestions from the stakeholders and potential new requirements which were implemented in
D6.2 Updated requirements list. The overall approach undertaken for SW2 is shown in Figure
46.

Stakeholder workshop 3 (SW3) was held one day before IoT International Forum in Berlin, 22nd
of November 2011. During this event the objectives included to conduct open discussions with
the goal to obtain new requirements, as well as to discuss the further developed validation
process. By means of showing a set of visionary IoT videos the stakeholders were encouraged
to evaluate the feasibility for the future and to identify possible issues (e.g. security or privacy)
to infer new requirements based on their statements. The post-processing was similar to the
post-processing of SW2 that is all stakeholder comments were collected, extracted and
transcribed in order to categorize them into the categories mentioned above.

B.1.2 Gathering internal requirements
A set of technical requirements were acquired from the partners spanning the entire IoT-A
project, in all of IoT-A's different aspects: this includes specialists in orchestration,
communication, discovery & lookup, and in IoT objects and platforms (topics which roughly map
onto the project work package structure).

The approach taken was to ask each work package (which corresponded roughly to the topics
cited above) to analyse the state-of-the-art work which they carried out in D1.1, and formulate
best practices by writing requirements for the IoT-A ARM.

Additionally upon completion of the system use cases (see Annex C), each work package was
requested to extract the requirements for certain functionalities which an IoT system should
have. It should be noted that some of these internal requirements were considered as too
detailed or too implementation specific for the RA-level unified requirement list – those were
removed from this list although they remain valuable input at the corresponding WP level.

Finally, Security requirements evolved from the fact that in almost each IoT scenario one has to
deal with security or privacy issues. As a result, IoT-A created a cross work package security
task force in charge of these issues. In particular, this task force compiled a list of requirements
containing only security-related requirements from internal partners.

B.1.3 Unification process
Gathered requirements were aggregated and carefully reviewed to produce a comprehensive
list of requirements for the IoT-A Reference Architecture and Reference Models. In the process,
some external requirements which were considered too specific (e.g. to a specific use case
scenario) or too vague had to be rewritten, and in some cases discarded. Similarly, some
internal requirements were deemed as too implementation specific and removed from this list,
although they remain valuable input for the technical WP aiming at having components
implemented.

B.2 Unified requirements list
For the reader reference, the following (simplified) unified requirement list and the mapping to
the corresponding view, perspective and relevant concepts from the Reference Model are
presented below. The reader is advised that this list is work in progress, but gives a good
preview of the Final Requirement List that will be released in D6.3.

IoT-A (257521)

Internet of Things - Architecture © - 164 -

Only a subset of the full requirements list fields is used in the following to ease the reading -
each requirement consists of a unique ID, a requirement type and a requirement description.
The reason why the requirement exists turns out in the “Rationale”. The traceability to the RA is
provided in the two columns “View” and “Perspective”, whereby it should refer to only one of the
two. The column “Reference Model” follows the same purpose of traceability where each
requirement is assigned to components of the RM. The different fields are depicted in more
detail in the table below.

Out of scope requirements have been excluded from the document. Thus, the continuous
numbering in the ID column is interrupted in some spots.

Field Description

ID
Each requirement is uniquely identified by a three-digit number: UNI.klm.
All requiremnts with klm > 200 are either based on state of the art or
about our understanding of the IoT domain.

Requirement
Type

Type of requirement among the three categories Functional
Requirements / Non-Functional Requirements / Design Constraints,
abbreviated as FR/NFR/DC.

Description The description is the intent of the requirement. It is a statement about
what the system has to fulfil according to the rationale.

Rationale

The rationale is the reason behind the requirement’s existence. It
explains why the requirement is important and how it contributes to the
system’s purpose. It typically refers to direct stakeholder input for
stakeholder-originated requirements, or an explanation/reference for
internally-originated requirements.

View One or several views to which the requirement is related.

Functionality
Group

One or several functionality groups in the functional decomposition to
which the requirement is related.

Functional
Component

One or several components in the functional decomposition to which the
requirement is related. These functional components are part of the
groups listed in the functionality-group field.

Domain Model One or several domain-model entities to which the requirement is
related.

Perspective One or several perspectives to which a requirement is related.

IoT-A (257521)

Internet of Things - Architecture © - 165 -

UNI ID Type Description Rationale View Perspective Functional
Group

Functional
Component

Domain
Model

UNI.001 NFR
The system shall provide a means to

allow people to use Internet of
Things services anonymously

Citizens want to protect their private
data (none) Security and

Privacy Security Identity Management User, Service,
Resource, Device

UNI.002 NFR Users have control how their data is
exposed to other users

Citizens want to protect their private
data (none) Trust, security and

privacy Security Authorisation Human User,
Service, Resource

UNI.003 NFR

The system shall enable the
provision and exchange of

semantics between services in order
to support the design of new

applications

I would like a way to create and
exchange semantics between objects
in order to design new applications

(none) Evolution and
Interoperability (none specific) (none specific) Service, Resource

UNI.004 NFR
The system shall enable the

semantic description of Physical
Entities

I would like a way to create and
exchange semantics between objects
in order to design new applications

Information (none) (none specific) (none specific) (none)

UNI.005 FR
The system shall support event-

based, periodic, and/or autonomous
communication

The remote monitoring device gathers
patient measurements, data and or

events. Data may be communicated
each time the device gathers the data,
accumulated measurements may be

communicated periodically (e.g.,
hourly, daily), or data may be

delivered upon request or upon
certain events

Functional (none) IoT Service IoT Service (none)

IoT-A (257521)

Internet of Things - Architecture © - 166 -

UNI.008 NFR
The system shall be able to run
applications and services in an

interoperable manner

The problem is to provide a
framework, a set of scenarios where

these applications could be developed
in harmony, in an interoperable way

and in a way that responses to the real
needs of organization and people

(none) Performance and
Scalabiltiy (none specific) (none specific) Service

UNI.010 NFR

The system shall enable
autonomous goal-driven (task-
driven) collaboration between

devices or services

"I would expect that the traffic lights
collaborate for a goal" - Smart objects
should collaborate in order to realize
a common goal (such as traffic lights
in order to reduce traffic or pollution).

(none) Evolution and
Interoperability (none specific) (none spedific) Device, Service

UNI.012 NFR
The system shall be able to handle
interference between IoT devices

(avoidance and detection)

In order to achieve a reliable eHealth
service the system must be

interference-free
(none) Evolution and

Interoperability Communication Error detection &
correction Service, Device

UNI.014 FR
The system shall support devices to

activate themselves into a
collaboration

The remote monitoring device is
prepared for use and communication

by the action of the patient or
clinician. This may involve physically

attaching or placing the device,
registering the device, setting up the
communications channels to M2M
application entities, setting up the

communications capabilities of the
device and providing for secure

communications.

Deployment (none) Management Device Manager Device, Service,
Resource

UNI.015 FR
Devices shall have the possibility to
be remotely controlled and
configured

The remote monitoring device may be
configured by via the M2M network
by the M2M application entities. The
configuration capability could span
simple parametric changes, such as,

reporting rates, event or alarm trigger
levels, and dosing levels to

downloading and securely restarting
new operating software

Deployment,
Operation (none) (none specific) (none spedific) Device, Service,

Resource

UNI.016 FR
The system shall support Physical

Entity location tracking (geo spatial
and/or logical location)

High value assets need to be tracked
in order to avoid theft and also to

know where they are currently located

Information,
Functional (none) Virtual Entity

VE Resolution, VE &
IoT Service

Monitoring, VE
Service

Augmented Entity,
Resource, Service

IoT-A (257521)

Internet of Things - Architecture © - 167 -

UNI.018 FR

The system shall support data
processing (filtering,

aggregation/fusion, ...) on different
IoT-system levels (for instance

device level)

The remote monitoring device gathers
patient measurements, data and or

events. Data may be communicated
each time the device gathers the data,
accumulated measurements may be

communicated periodically (e.g.,
hourly, daily), or data may be

delivered upon request or upon
certain events

Functional (none) IoT Service IoT Service Service

UNI.019 FR The system shall support user-
initiated communication

Providers can initiate communication
with the patients health monitoring

device for a number of reasons.
Examples of this include a provider
querying the device for a reading or

for configuring such a device

Functional (none) Communication Communiction
Trigger (none)

UNI.020 FR
The system shall support real-time

monitoring of radio usage of
devices and gateways

The application knows the current
radio transmission activity of the

M2M device
Functional (none) Communication Error detection &

correction (none)

UNI.021 FR The user shall be able to control the
radio activity of the system

The application can control the radio
transmission Functional (none) Communication Error detection &

correction Device

UNI.022 FR The system shall provide end users
with secure access to resources

Patients are able to initiate
communication to the providers

Electronic Medical Record (EMR) or
health database application using the
secure messaging tool for a variety of
purposes. Examples include providing

manually gathered information on
existing self-monitoring and/or

chronic care regiments.

Functional (none) IoT Service,
Security

 IoT Service, Key
Exchange &
Management

(none)

IoT-A (257521)

Internet of Things - Architecture © - 168 -

UNI.023 FR
The system shall provide access to
external information sources, e.g.

health databases

Patients are able to initiate
communication to the providers

Electronic Medical Record (EMR) or
health database application using the
secure messaging tool for a variety of
purposes. Examples include providing

manually gathered information on
existing self-monitoring and/or

chronic care regiments.

Functional (none) (none specific) (none specific) Resource, Storage

UNI.026 FR
The system shall support time-
critical message handling and

delivery on a second time scale.

In case of emergency the Remote
Monitoring Device has to send or

receive time critical messages
Functional Performance and

Scalabiltiy Communication QoS (none)

UNI.027 FR The system shall support
prioritization of services

In case of time-sensitive services the
system needs to assure that important

services are prioritized
Functional Performance and

Scalabiltiy (none specific) (none specific) (none specific)

UNI.028 FR The system shall provide a
message-prioritization mechanism

Not every message has the same
priority Functional Performance and

Scalabiltiy Communication QoS (none specific)

UNI.030 FR

The system shall provide a
resolution infrastructure for naming,

addressing and assignment of
Virtual Entities and services

A system may be provided which is
operable to determine a routing node

for a data object. The system can
comprise an identifier generator

operable to generate an identifier for
the data object on the basis of data

content thereof, and a lookup engine
operable to compare the identifier for

the data object to a routing table to
determine a routing node for the data

element.

Functional (none) Virtual Entity, IoT
Service

VE Resolution, IoT
Service Resolution

VE, Service,
Resource

IoT-A (257521)

Internet of Things - Architecture © - 169 -

UNI.031 FR
The system shall enable centralized

or decentralized automated
activities (control loops)

Today, due to sub-optimal processes,
a lot of time and money is wasted.

This situation could be improved a lot
by tracking all the items/things,

providing context data on them at any
time and location, allowing for

automated evaluation of the collected
data and reacting immediately on a

dangerous situation to protect against
the break down of items.

Functional (none)
IoT Business

Process
Management

Business Process
Modeling, Business
Process Execution

Service

UNI.032 FR The system shall enable the
planning of automated tasks

Today, due to sub-optimal processes,
a lot of time and money is wasted.

This situation could be improved a lot
by tracking all the items/things,

providing context data on them at any
time and location, allowing for

automated evaluation of the collected
data and reacting immediately on a

dangerous situation to protect against
the break down of items.

Functional (none)
IoT Business

Process
Management

Business Process
Modeling, Business
Process Execution

Service

UNI.036 FR The system shall enable the retrieval
of the self-description of things

My wish is to retrieve the capacity of
a thing. Thus, I can plan a change

maintenance of all my bulbs if they
can say when they should be changed

Functional (none) Virtual Entitty VE Resolution Service, Resource

UNI.040 NFR The system shall provide ways to
ensure security and resilience

Road users and energy providers want
to avoid shortages/ blackouts (none) Availability and

Resilience (none specific) (none specific) (none specific)

UNI.041 FR
The system shall provide historical

information about the Physical
Entity

A method for clarification whether
the Cold/Hot Chain has been violated

or not is required. To be able to do
this, the continuous context

information (e.g., temperature) of the
things needs to be collected. This is
for example of major importance to

avoid any damage to the
pharmaceutics during the transport

and storage process.

Information,
Functional (none) IoT Service IoT Service Physical Entity,

Storage, MetaData

IoT-A (257521)

Internet of Things - Architecture © - 170 -

UNI.042 NFR
Both user and device must be able

to exchange information about their
state

Both the M2M server and the M2M
device must be able to provide

information about the current state
(none) Evolution and

Interoperability (none specific) (none specific) User, Device,
Service, Resource

UNI.043 FR
The system shall enable the

composition of entity-related
services

The costs for complex logistics and
healthcare processes need to be kept

on a low level. A modular setup of the
applications and services is one

important ingredient to achieve this.
Therefore it should be very easy to
integrate things together with their
atomic services into other services,

and it should be easy for things to use
services provided by others.

Functional (none) Service
Organization

Service Composition,
Service Orchestration Service

UNI.047 NFR
The system must ensure

interoperability between objects or
between applications

As an example, CCTV system could
inform traffic management of the
length of the waiting queue at a

crossroad. Having smart traffic lights
receiving such input from the CCTV

system could, could help changing the
schedule of green/red light to

optimize the traffic.

(none) Evolution and
Interoperability Security Key Exchange &

Mangement (none specific)

UNI.048 FR
The system shall provide
interoperable naming and

addressing

IoT-A will play a role in terms of
providing a kind of novel resolution

infrastructure. We need to understand
how best IoT could be served by
scheme regarding the naming of

objects, the addressing and assigning
problems.

Functional Evolution and
Interoperability Communication Gateway, Routing &

Addressing (none)

UNI.050 NFR The system shall support mobility
of the Physical Entity

The use of M2M Devices for
monitoring health related information
is not confined to the residence of the

patient.

(none) Availability and
Resilience (none specific) (none specific) Augmented Entity

UNI.058 NFR The system shall provide high
availability

Communication blackouts are not
accepted from client side and

particularly if they are paying for
premium services

(none) Availability and
Resilience (none specific) (none specific) (none specific)

IoT-A (257521)

Internet of Things - Architecture © - 171 -

UNI.060 NFR The system shall support different
SLA

Communication blackouts are not
accepted from client side and

particularly if they are paying for
premium services

(none) Availability and
Resilience Communication QoS Service

UNI.062 DC
The system shall provide trusted
and secure communication and

information management

A method for clarification whether
the Cold/Hot Chain has been violated

or not is required. To be able to do
this, the detailed context information

(e.g., temperature) of the things,
which have been collected in some

database need to be easily made
available. This is for example of
major importance to avoid any

damage to the pharmaceutics during
the transport and storage process.

(none) Trust, security and
privacy

IoT Service,
Security

IoT Service, Trust &
Reputation, Key

Exchange &
Management

(none)

UNI.064 NFR The system shall provide security
through resilience

Security, why? Simply because the
IoT - I am sure you will demonstrate
it - is a kind of critical information
infrastructure which means that if
ever for whatever reason there is a
failure somewhere on the IoT the

impact will be so high that it would
be a social loss, like if we do not have

more electricity.

(none)

Trust, security and
privacy,

Availability and
Resilience

(none specific) (none specific) Service

UNI.065 NFR The system shall provide reliable
services

 In order to accommodate certain
scenario, support of a certain degree

of reliability might be necessary
(none) Availability and

Resilience (none specific) (none specific) Service

UNI.066 FR
The system shall provide integrity

validation of Virtual Entities,
devices, resources, and services

In certain life-critical applications the
device may be required to perform a

secure start-up procedure that
includes integrity checking.

(none) Performance and
Scalabiltiy

Communication,
Management

Error detection &
correction, Device

Manager

Virtual Entity,
Service, Device,

Resource

UNI.067 FR The system shall provide different
access permissions to information

Sensitive data of patients must be
kept secure in order to assure trust
between the patients and to allow

access to certain people

Functional (none) Security Authorisation Resource

IoT-A (257521)

Internet of Things - Architecture © - 172 -

UNI.070 FR The system shall handle semantic
interoperability

I would like a way to create and
exchange semantics between objects
in order to design new applications

Information (none) (none specific) (none specific) Service, MetaData

UNI.071 DC
The system shall provide

standardized and semantic
communication between services

Standard communications between
objects, from a communication

channel point of view but also from a
semantic point of view.

(Standardization of object semantic is
somehow similar to the

standardization of MIB (Management
Information Base) of

telecommunication equipments).

(none) Evolution and
Interoperability (none specific) (none specific) Service

UNI.073 FR
The system shall allow the semantic
description of Physical Entities and

services by a user

I would like a way to create and
exchange semantics between objects
in order to design new applications

Information (none) (none specific) (none specific) Virtual Entity,
Service, Resource

UNI.087 FR The system shall support service
lifecycle management

Road users want to use one service
over a service life cycle Operation (none) (none specific) (none specific) Service

UNI.089 FR The system shall support reliable
time synchronization

Services which depend on a precise
time need a guarantee that the devices
they are communicating to have the

right time.

(none) Performance and
Scalabiltiy Communication Error detection &

correction

UNI.092 NFR Remote services shall be accessible
by hHuman Users

The mobile phone of the consumer
can and should be used for interacting

with product centric services
(none) Availability and

Resilience (none specific) (none specific) Service

UNI.093

NFR

The system shall be extensible for
future technologies.

The reference architecture shall
provide an integral approach that

combines legacy aspects as well as an
imaginating vision on the Internet of

Things.

(none) Evolution and
Interoperability (none specific) (none specific) (none)

UNI.094

NFR

The reference architecture shall
support any business scenarios.

The reference architecture shall
provide the building blocks in a

creative way coming from a business
perspective.

(none) Evolution and
Interoperability (none specific) (none specific) (none)

IoT-A (257521)

Internet of Things - Architecture © - 173 -

UNI.095

DC

The system shall include an
interface to IP communication
protocols.

The reference architecture shall
consider that we have gateways to IP
everywhere, so we must have a global
addressing system with protocol and
so on. That would be an evolution of

IPv6. Or we need an integration
package for existing addressing

systems.

Functional (none)
Virtual Entity, IoT

Service,
Communication

VE Resolution, IoT
Service Resolution,

Gateway

Service, Resource,
Device, VE

UNI.096

FR

The system shall support the
autonomous and dynamic selection
of protocols without human
intervention.

Future systems implementing the
reference architecture shall allow for
a dynamic selection of protocols and

layers without any human
intervention.

Functional Evolution and
Interoperability

Communication,
Service

Organization

Gateway, Service
Composition, Service

Orchestration
Device, Service

UNI.097

FR

The system shall support
information (data) lifecycle
management.

Deal with the lifecycle of information
(how to distinguish, if information

(tag) is temporary not available or not
valid any more?)

Information (none) (none specific) (none specific) (none)

UNI.098

FR

The system shall have a semantic
understanding of distance and
location.

"It is necessary to make the system
know what defines a distance." - this

is necessary to discover location-
based services

Information (none) IoT Service,
Virtual Entity

IoT Service
Resolution, VE

Resolution
Service, VE

UNI.099
NFR

The system shall guarantee
correctness of resolutions.

When searching for a certain object
you need an implemented system that
actually gives you the correct result.

Functional Trust, security and
privacy

IoT Service,
Virtual Entity

IoT Service
Resolution, VE

Resolution
(none)

UNI.100
FR

The system should include means to
wake-up sleepy devices.

We must look out also for some way
to wake up sleepy communications in

order to manage energy consume.
Functional (none) Communication Energy Optimization (none)

UNI.101

NFR

The system should include means to
manage the energy consumption of
devices.

We must look out for a highly energy
efficient system. (none) Performance and

Scalabiltiy Communication Energy Optimization (none)

UNI.102

NFR

The system should take into account
external computing resources, e.g.
'the cloud'.

Maybe there should be some part of
processing information in the cloud. (none) Performance and

Scalabiltiy (none specific) (none specific) (none)

IoT-A (257521)

Internet of Things - Architecture © - 174 -

UNI.211

FR

The process-modeling notation has
to be extensible in terms of the
definition of new symbols, the
specification of new syntax, the
definition of serialisation and
execution semantics.

The reuse of an existing process-
modeling notation allows to focus the

effort on the IoT-extension.
Information (none)

IoT Business
Process

Management

Business Process
Modeling (none)

UNI.212

FR

The process-modeling notation has
to be executable. The projects task 2.2 and 2.3 should

closly work together and represent a
hand in hand solution.

Functional (none)
IoT Business

Process
Management

Business Process
Modeling (none)

UNI.213

NFR

The systems' process modeling
notation shall be able to describe
IoT-specif aspects, as, for instance,
availability.

The standard established process
notations cannot cope with IoT
specific aspects, but in order to

address IoT aware processes, one
needs to be able to describe them
appropriately. Reference: Sonja
Meyer, Klaus Sperner, Carsten

Magerkurth, Jacques Pasquier (2011):
Towards Modeling Real-World

Aware Business Processes. Web of
Things 2011. San Francisco, USA,

June 6, 2011.

Information (none)
IoT Business

Process
Management

Business Process
Modeling (none)

UNI.214

NFR

The specification of the system's
process-modeling notation shall
include a graphical representation.

A graphical process notation offers a
symbolism to easily model and
document business processes.

Information (none)
IoT Business

Process
Management

Business Process
Modeling (none)

UNI.215

NFR

The process-modeling notation shall
adhere to a standard. A common standard maximizes the

potential application of industrial
stakeholders.

Information (none)
IoT Business

Process
Management

Business Process
Modeling (none)

UNI.229

NFR

The process-execution functional
component shall be "easily and
fastly" extendable.

The development should focus on the
IoT related extension. Information (none)

IoT Business
Process

Management

Business Process
Execution Service

IoT-A (257521)

Internet of Things - Architecture © - 175 -

UNI.230

NFR

The system's process execution
functional component shall be
interoperable with other functional
components in the same functional
group or, otherwise, with other
functional groups.

Non-interoperable components defy
the spirit of the functional

decomposition.
(none) Availability and

Resilience

IoT Business
Process

Management,
Service

Organization

Business Process
Execution, Service

Orchestration
Service

UNI.232

FR

The process-execution engine must
support the integration with a
complex-event-processing (CEP)
component.

One WP central process execution
engine including the CEP enables a

bigger research contribution.
Functional Availability and

Resilience

IoT Business
Process

Management,
Service

Organization

Business Process
Execution, Service

Orchestration
(none)

UNI.233

NFR

Mobile entities shall be able to
provide events to the platform

Many Physical Entities such as
mobile phones, products in a retail

store, etc. are mobile and IoT-A must
be able to detect changes related to

those entities

(none) Availability and
Resilience (none specific) (none specific) Active Digital

Entity

UNI.234

NFR

Events are processed on a set of
distributed nodes A distributed architecture provides

more flexibility in the way events are
processed, saves energy and allows
minimal functionality if there is no

network connectivity

(none) Performance and
Scalability

Service
Organization

Service Composition,
Service Orchestration (none)

UNI.235

FR

Processing of events shall take
quality of informaton (QoI) into
account

In IoT the quality of information
stemming from events is often

questionable.
Functional (none) Service

Organization
Service Composition,
Service Orchestration (none)

UNI.236

FR

The system shall offer services for
the retrival of quality of information
related to Virtual Entities.

Different devices provide information
with varying quality. An application

may have certain quality
requirements.

Functional (none) IoT Service IoT Service Service

UNI.237

FR

The system shall offer data types for
describing the quality of
information related to Virtual
Entities.

Different devices provide information
with varying quality. An application

may have certain quality
requirements.

Information (none) (none specific) (none specific) Resource

IoT-A (257521)

Internet of Things - Architecture © - 176 -

UNI.239

FR

The IoT-A architecture shall
provide a Storage Resource with a
shared cache, in which an
observable phenomenon is stored

Due to resources could not be online
all the time it could be necessary to
incorporate an intermediate shared

memory in order to store this
information, so it could be accessed
by services using this information.

Functional (none) IoT Service IoT Service Service

UNI.240

FR

The system shall provide unified
interfaces to access and query the
resource/entity meta data

This will enable WP4 discovery and
identification and also reasoning

mechanisms to access the required
descriptions

Functional (none) Virtual Entity, IoT
Service

VE Service, IoT
Service Service

UNI.241

FR

The system shall provide unified
interfaces to access and query the
observation and measurement data
emerging from resources

This will enable integration of IoT
data into business layer and high-level

applications.
Functional (none) IoT Service IoT Service Service

UNI.244

FR

The orchestration engine shall
interpret service descriptions Service orchestration needs to be

done based on IOPE information
provided in service descriptions.
Reference: Bell, Michael. 2008.

Service-Oriented Modeling.
Chichester: John Wiley & Sons.

Functional (none) Service
Organization

Service Composition,
Service Orchestration Service

UNI.245

FR

The service organization shall
support creation of new applications

Composite services allow added value
services based on simple services Functional (none) Service

Organization
Service Composition,
Service Orchestration Service

UNI.247

FR

The service organization shall
support flexible composition

Services involved in compositions
can fail and need to be replaced by

some serving equal needs. Reference:
Kephart, J. O., & Chess, D. M.

(2003). The vision of autonomic
computing. Computer, 36(1), 41-50.

Functional (none) Service
Organization

Service Composition,
Service Orchestration Service

IoT-A (257521)

Internet of Things - Architecture © - 177 -

UNI.251

FR

The service organization shall
provide a feedback to the user who
sent a composition request

The service user needs to be informed
whether or not the composition

request has succeded or failed due to
uncertainty of service availability.

Reference: Nielsen, J. (1993).
Usability Engineering. Retrieved

from
http://dl.acm.org/citation.cfm?id=529

793

Functional (none) Service
Organization

Service Composition,
Service Orchestration Service

UNI.252

NFR

The service organization shall
provide feedback within a
reasonable amount of time.

A time out must be set for
request/response loops. For requests
entered by hHuman Users a limit of

10 seconds could be reasonable. After
that an error is assumed. Reference:

Nielsen, J. (1993). Usability
Engineering. Retrieved from

http://dl.acm.org/citation.cfm?id=529
793

Operation (none) Service
Organization

Service Composition,
Service Orchestration Service

UNI.253

FR

The orchestration engines shall
support setting preferences for
selecting services involved in
composition

Users can have the possibility to
prefer one service over another for

any reason
Functional (none) Service

Organization
Service Composition,
Service Orchestration

Services
(Integration &
Interoperability

Layer)

IoT-A (257521)

Internet of Things - Architecture © - 178 -

UNI.401

FR

Discovery and lookup services of
the system shall allow locating
Physical Entities based on
geographical parameters

This requirement is derived from
SmartProducts (SP) requirement "A

SmartProduct should be able to locate
another SmartProduct in the same

environment w.r.t. their environment"

Reference:
[SmartProduct Deliverable: "D6.3.1

& D6.4.1 & D6.5.1 Initial Smart
Products Communication

Middleware, Initial Sensor and
Actuator Integration Framework &

Initial Context and Environment
Model Framework".

http://www.smartproducts-

project.eu/media/stories/smartproduct
s/publications/SmartProducts_D6.345

.1_Final.pdf]

Functional (none) Virtual Entity VE Resolution
Augmented Entity
(Physical Entity
+Virtual Entity)

UNI.402

FR

The system shall provide
geographical-location attributes for
Virtual Entities

Derived from SP requirement "A
SmartProduct should be able to access

the location information of other
SmartProducts"

Reference:

[SmartProduct Deliverable: "D6.3.1
& D6.4.1 & D6.5.1 Initial Smart

Products Communication
Middleware, Initial Sensor and

Actuator Integration Framework &
Initial Context and Environment

Model Framework".

http://www.smartproducts-
project.eu/media/stories/smartproduct
s/publications/SmartProducts_D6.345

.1_Final.pdf]

Functional (none) Virtual Entity VE Resolution Virtual Entity

IoT-A (257521)

Internet of Things - Architecture © - 179 -

UNI.403

FR

The system shall support a
standardized location model and
location-information representation.

Derived from SP requirement "Smart
products shall support a standardized

location model and location-
information representation."

Reference:

[SmartProduct Deliverable: "D6.3.1
& D6.4.1 & D6.5.1 Initial Smart

Products Communication
Middleware, Initial Sensor and

Actuator Integration Framework &
Initial Context and Environment

Model Framework".

http://www.smartproducts-
project.eu/media/stories/smartproduct
s/publications/SmartProducts_D6.345

.1_Final.pdf]

Functional (none) Virtual Entity VE Resolution Virtual Entity

UNI.404

FR

The system shall support a hybrid
location model, that is, it shall
support symbolic coordinates as
well as local and global
geometric coordinates

Derived from SP requirement "Smart
products shall support a hybrid

location model, that is, it shall support
symbolic coordinates as well as local

and global geometric coordinates"

Reference:
[SmartProduct Deliverable: "D6.3.1

& D6.4.1 & D6.5.1 Initial Smart
Products Communication

Middleware, Initial Sensor and
Actuator Integration Framework &

Initial Context and Environment
Model Framework".

http://www.smartproducts-

project.eu/media/stories/smartproduct
s/publications/SmartProducts_D6.345

.1_Final.pdf]

Functional (none) Virtual Entity VE Resolution Virtual Entity

IoT-A (257521)

Internet of Things - Architecture © - 180 -

UNI.405

FR

The system shall allow
programmers to add new coordinate
reference systems and shall support
the transformation of coordinates
among them

Derived from SP requirement: The
location model shall allow

programmers to add new coordinate
reference systems and shall support
the transformation of coordinates

among them

[SmartProduct Deliverable: "D6.3.1
& D6.4.1 & D6.5.1 Initial Smart

Products Communication
Middleware, Initial Sensor and

Actuator Integration Framework &
Initial Context and Environment

Model Framework".

http://www.smartproducts-
project.eu/media/stories/smartproduct
s/publications/SmartProducts_D6.345

.1_Final.pdf]

Functional (none) Virtual Entity (none) Virtual Entity

UNI.406

FR

The discovery service of the system
shall support the following location
queries: position queries, nearest
neighbour queries, navigational
queries, and range queries

Derived from SP requirement: "The
location model shall support the

following common location queries:
position queries, nearest neighbour
queries, navigational queries, and

range querie"

Reference:
[SmartProduct Deliverable: "D6.3.1

& D6.4.1 & D6.5.1 Initial Smart
Products Communication

Middleware, Initial Sensor and
Actuator Integration Framework &

Initial Context and Environment
Model Framework".

http://www.smartproducts-

project.eu/media/stories/smartproduct
s/publications/SmartProducts_D6.345

.1_Final.pdf]

Functional (none) Virtual Entity VE Resolution Virtual Entity

IoT-A (257521)

Internet of Things - Architecture © - 181 -

UNI.407

FR

The look-up service of the system
shall withold or grant information
depending on context. Context
includes application involved,
requesting entity, and security
permissions

Derived from BRIDGE requirement:
"A broad set of data from enterprise

applications MAY be requested
depending on context, industry,

application, etc"

Reference:
[BRIDGE Deliverable "D2.1

Requirements document of serial
level lookup service for various

industries, Section C".

http://www.bridge-
project.eu/data/File/BRIDGE%20WP
02%20Serial%20level%20lookup%2

0Requirements.pdf]

Functional Trust, security and
privacy Security Authorisation

Augmented
Entities

(Physical Entity +
Virtual Entity)

UNI.408

FR

The system's services shall indicate
what information can be found by a
discovery/look-up service

Opting out of being found in a data
search was indicated in the BRIDGE
requirement list and also in the IoT-A

Stakeholder Opinion Report. The
BRIDGE requirement was "Data that
companies are willing to provide to
the Discovery Services are mainly

URL addresses of databases / EPCIS
repositories"

Reference:

[BRIDGE Deliverable "D2.1
Requirements document of serial
level lookup service for various

industries, Section C".
http://www.bridge-

project.eu/data/File/BRIDGE%20WP
02%20Serial%20level%20lookup%2

0Requirements.pdf]

[IoT-A Deliverable "D6.6 Report on

Deployment Trust, security and
privacy Virtual Entity VE Resolution Services

IoT-A (257521)

Internet of Things - Architecture © - 182 -

Stakeholder Opinions"
http://www.IoT-A.eu/public/public-

documents/documents-
1/1/1/d6.6/at_download/file]

UNI.409

FR

The system shall allow for storage
of aggregation changes This is a main functionality of the

BRIDGE system which applies to
RFID/assets tracked in the

EPCGlobal framework

Reference:
[BRIDGE deliverable: "High level

design for Discovery Services".
http://www.bridge-

project.eu/data/File/BRIDGE%20WP
02%20High%20level%20design%20

Discovery%20Services.pdf]

Functional (none) Virtual Entity VE Service Virtual Entity

IoT-A (257521)

Internet of Things - Architecture © - 183 -

UNI.410

FR

The Digital Entity History Storage
shall be restricted in who can delete
and update it

The integrity and trust in the history
storage block depends on how

"unaltered" it is. The BRIDGE project
justifies the present use of the "history
storage" component. They expressed

it as "Discovery Service security
policies may be set to restrict update

and delete actions on DS records"

Reference:
[BRIDGE Deliverable "D2.1

Requirements document of serial
level lookup service for various

industries, Section C".
http://www.bridge-

project.eu/data/File/BRIDGE%20WP
02%20Serial%20level%20lookup%2

0Requirements.pdf]

Functional Trust, security and
privacy Virtual Entity VE Service Virtual Entity

UNI.411

FR

The system shall offer a unique
identification of clients requesting
data via the discovery/lookup
services

BRIDGE mentioned that the unique
client identification at the DS is

required to control access to data
stored on the DS (particularly EPC

number and link).

Functional Trust, security and
privacy Security Authentication

Users (Human,
Active

Digital Entitity)

UNI.412

FR

Data owners should be able to set
access-control rights/ policies (set
up by data owners) to their data
stored on resources

This addresses privacy by putting the
control in the hands of the data

owners (or certain external groups)
Functional Trust, security and

privacy Security Authorisation
Users (Human,

Active
Digital Entitity)

UNI.413

Design
Constraint

Access-control rights/ policies (set
up by data owners) shall not be
published publicly. Access control policies themselves, if

known, can give away information. Deployment Trust, security and
privacy (none) (none)

Resources
(Computational
Element for PE

Access)

IoT-A (257521)

Internet of Things - Architecture © - 184 -

UNI.414

FR

The system shall enable the
dynamic discovery of Virtual
Entities and their services. This is to
be done based on the specification
of the service and the virtual enities.

Augmented entities are the core
concept proposed for IoT and to

enable applications that do not have
to be a-priori configured for a fixed

set of augmented entities, discovery at
runtime must be possible.

Functional (none) Virtual Entity VE resolution Virtual Entity

UNI.415

FR

The system shall enable the
dynamic discovery of Virtual
Entities and their related services
based on a geographical location

Geographic location is one of the
most important aspects for finding
relevant Virtual Entities. Spatial

relations are of prime importance in
the physical world.

Functional (none) Virtual Entity VE resolution Virtual Entity

UNI.416

FR

The system shall enable the lookup
of service descriptions of specified
services for a Virtual Entity with the
VE identifier as key for the lookup

It is important to find the services
related to a Virtual Entity that may

provide information about the Virtual
Entity, allow to actuate the Virtual

Entity, or enable interaction with the
Virtual Entity.

Functional (none) Virtual Entity VE resolution Virtual Entity

UNI.417

FR

The system shall enable the
resolution of service identifiers to
service locators

Due to the heterogeneity, dynamicity
and mobility in the Internet of Things,

the communication endpoint may
change or different endpoints may be

suitable for different applications.
Therefore, services should be

uniquely identified by a service
identifier, but this identifier should
not be used for locating the service,

so a resolution step is necessary.

Functional Evolution and
Interoperability IoT Service IoT Service

Resolution

Services
(Intergation &
Interoperability

Layer)

IoT-A (257521)

Internet of Things - Architecture © - 185 -

UNI.418

FR

The system shall be able to discover
dynamic associations between
Virtual Entities and service related
to Virtual Entities

Due to the mobility of Physical
Entities as well as devices whose
resources are accessible through
services, changing services may

provide information, allow actuation
or enable interaction with Physical

Entities. In order to provide the
currently relevant services for a

corresponding Virtual Entity, the
dynamic assoications must be

discovered

Functional (none) Virtual Entity VE & IoT Service
monitoring

Augmented
Entities

(Physical Entity +
Virtual Entity)

UNI.419

FR

The system shall be able to track
dynamic associations between a
Virtual Entity and services related
to the Virtual Entity. This need to
be done in order to determine
whether they are still valid.

Due to the mobility of things, as well
as devices whose resources are

accessible through services, changing
services may provide information,

allow actuation, or enable interaction
with things. In order to provide the

currently relevant services for a thing,
dynamic assoications must be tracked

to determine whether they are still
valid.

Functional (none) Virtual Entity VE & IoT Service
monitoring

Augmented
Entities

(Physical Entity +
Virtual Entity)

UNI.420

FR

The IoT system shall be able to
discover dynamic associations
based on geographic location and
other context information.

Mobility is one of the key reasons for
changing associations. By monitoring
both the location of Physical Entities

and the service area of resources,
dynamic associations can be

discovered. Based on the proximity of
the Physical Entity, the service area of

the resource and the functionality
provided by the resource, it can be

determined whether the resource can
provide any information about the

Physical Entity or enable any
actuation on the Physical Entity. If

this is the case, an association
between the Virtual Entity, which

represents the Physical Entity in the
system, and the service, which makes

the functionality of the resource
accessible, can be established.

Functional (none) Virtual Entity VE & IoT Service
monitoring

Augmented
Entities

(Physical Entity +
Virtual Entity)

IoT-A (257521)

Internet of Things - Architecture © - 186 -

UNI.421

FR

The system shall be able to track
dynamic associations between a
Virtual Entity and services based on
geographic loaction to determine
whether they are still valid.

Mobility is one of the key aspects for
changing associations. By monitoring
the location of Physical Entities, e.g.,

using location services, it can be
determined when associations become
invalid due to the geographic distance

of Physical Entities and the service
areas of resources and possibly other

and possibly other aspects.

Functional (none) Virtual Entity VE & IoT Service
monitoring

Augmented
Entities

(Physical Entity +
Virtual Entity)

UNI.422

Design
Constraint

The system shall enable the
discovery and lookup of
associations across multiple
administrative domains.

The Internet of Things will consist of
multiple administrative domains with

different owners that generally
manage their devices, resources,

services Virtual Entities etc.
independently. To develop its full
potential interactions, including

lookup and discovery, across domain
boundaries must be possible.

(none) Evolution and
Interoperability Virtual Entity VE Resolution Virtual Entity

UNI.423

FR

When performing discovery,
resolution or lookup, the system
must respect any aspect of privacy,
including the possibility to retrieve
information about or related to
people by using (or subverting the
use of) the Internet of Things. In
addition some services should be
accessible in an anonymous way,
while others might require an
explicit authentication or
authorization of the user.

Privacy is a key aspect for the IoT. Functional (none)
IoT Services,
Virtual Entity,

Security

IoT Service
Resolution, VE

Resolution, Identity
Management

Services
(Intergation &
Interoperability

Layer)

UNI.424

FR

The system must provide privacy
protection for users accessing
information about Physical Entities
or services

For acceptance of the Internet of
Things privacy during usage must be

guaranteed
Functional Trust, security and

privacy Security Identity Management User, Service

IoT-A (257521)

Internet of Things - Architecture © - 187 -

UNI.425

FR

The system shall provide a service
identifier, and the identifier shall
use a service/resource description
for retrieval.

The system must consider the
description of a service/resource for
the semantic indexing on which the

search will be performed

Functional (none) IoT Service IoT Service
Resolution

Services
(Intergation &
Interoperability

Layer)

UNI.426

FR

The system shall be able to accept
and manage semantic queries from
the user and return
Resources/Services

Iot Service Resolution functional
component has interfaces to enable

the user make queries for the
discovery,lookup and resolution

functions.

Functional (none) IoT Service IoT Service
Resolution

Services
(Intergation &
Interoperability

Layer)

UNI.427

FR

The Discovery Service in a local
search is required to find
service/resource based on (rough)
semantic description

Users must be able to discover
Services locally in their environment.
This is because in many cases users a)

might not be able to leverage
infrastructure services b) leveraging

the Infrastructure would be
ineffective and c) context-awareness

would be higher if information is
derived from local network (e.g. in an
underground garage, proximity might

be measured with higher accuracy
using network metrics respect to

using A-GPS or cell-based
localization).

Functional (none) IoT Service IoT Service
Resolution

Resources
(Computational
Element for PE

Access)

UNI.428

FR

The system shall provide a service
that obtains unique identifiers for
associations between VE and the
service.

Association between Ves and the
services is one of the key parameters

for the resolution functional
component and association contains
unique association ID for example to

manage it (such as delete, insert)

Functional (none) Virtual Entity VE Resolution Virtual Entity

IoT-A (257521)

Internet of Things - Architecture © - 188 -

UNI.429

FR

The IoT resolution component shall
provide a service to insert or update
the operational specifications (i.e.
type, description, locator) of a new
IoT service into the data base that is
used for discovery, lookup, and
resolution.

In order for lookup and global
discovery to work properly, a IoT

service-resolution component must
provide a way to insert and update the
description of services that it will then

use as a search basis.

Functional (none) IoT Service
IoT Service

Resolution, IoT
Service

Service

UNI.432

FR

The system shall provide a virtual
identification system. A universal identifier should be

defined as standard ID in order to
map it to the specific ID used in every

type of system (TCP/IP, RFID, ...)

Functional Evolution and
Interoperability Virtual Entity VE Resolution

Augmented
Entities

(Physical Entity +
Virtual Entity)

UNI.501 NFR

The system shall make it difficult to
spy on communicated messages.

The confidentiality of messages must
be ensured. (none) Security & Privacy Security

Key Exchange &
Management,
Authentication

Device
Tag

Gateway
Infrastructure

services
Physical entity

Storage
Virtual entity

UNI.502 NFR

The device (contactless card for
example) must not be activated
without the consent of the owner. A
device is always owned by a person
or an entity. For example, in a retail
use case, the owner of an RFID tag
can be a retailer and after the
checkout the new owner should be
the client. The aim is to avoid
skimming attacks

The unsolicited scanning of people
shall be avoided. (none) Security & Privacy Security Authorisation

Device
Tag
User

Physical entity
Virtual Entity

IoT-A (257521)

Internet of Things - Architecture © - 189 -

UNI.503 NFR

It must be possible to change the
owner of a device (tag for example).
A device is always owned by a
person or an entity. For example, in
a retail use case, the owner of an
RFID tag can be a retailer and after
the checkout the new owner should
be the client. The aim is to avoid
skimming attacks

Privacy preserving solution in RFID
requires to share a secret key between
tag and reader (or owner since in this
case, the owner enters his key in the

reader). It must be possible to change
this key in tag and reader (and even in
the databases where the data related
to the device is stored) if the owner

has changed.

(none) Security & Privacy Security

Authorisation,
Authentication,

Key Exchange &
Management

Device
Tag

Gateway
Infrastructure

services
Physical entity

Storage
Virtual entity

UNI.504 NFR

The identifier of the device (ID of
an RFID tag for example) must not
be tracked by unauthorised entities.
To preserve privacy, only the owner
of the tag must be able to read it.
So, authoized persons are the owner
and the persons who are authorized
by the owner. The "unauthorized
entities" are all the other people.

The tracking of items and then people
raise the problem of privacy (none) Security & Privacy Security

Autorisation,
Authentication,

Key Exchange &
Management

Device
Tag
User

Physical entity
Virtual Entity

UNI.505 FR

Connected devices shall be able to
do energy harvesting, if needed Maintain operation in environments

where power supply is not possible Functional (none) Management,
Communication

Device Manager,
Energy Optimization Device

UNI.506 FR

Connecting devices shall be able to
communicate with each other
through the network by aid of
standardised communication
interfaces

Use of standard interfaces will enable
take up of IOTA concept on the

market
Functional Evolution &

Interoperability Communication Gateway Device

UNI.507 NFR

Data security&privacy should be
enabled at atomic level

Security in end-to-end
communication does not address
security issues pertaining to the

device itself.

(none) Security & Privacy Security
Authorisation, Key

Exchange &
Management

Resource, Device

UNI.508 NFR

Communication with devices must
be intermittent and command-based

Avoid traffic overhead (none) Evolution &
Interoperability Communication

Flow Control &
Reliability, Energy

Optimization
(none)

IoT-A (257521)

Internet of Things - Architecture © - 190 -

UNI.509 NFR

Each IoT device shall possess a
universal ID, part of it read only and
part of it read/write.

Enable object regonisition and
setup/configuration in the context of

applications development
(none) Evolution &

Interoperability Communication Routing & Addressing Resource

UNI.510 FR

Atomic-level protocols must
implement only functions related to
data acquisition (e.g. DSP-level),
crypto and security

Atomic-level protocols are the
protocols realised to carry out a
particular task related to device

internal functions. E.g. how data are
acquired from the environmnet. How

they are encoded/encrypted for
transportation of unreliable networks,

etc. This requirements is needed to
avoid overlap with user-level

communication protocols.

Functional (none) (none specific) (none specific) Device

UNI.511 NFR

The system shall be scalable, that is,
usable on very tight resources with
potentially reduced features (e.g.,
the level of security may be
different depending on the
underlying hardware resources)

IoT faces many issues in that complex
features have been to be made
available on restrained devices

(memory size, CPU speed, power
consumption). For example, can an

OS be run on something like an 8-bit
CPU, 8 KB RAM, 64 KB flash

platform? Or can use of symmetric
crypto algorithms (e.g., AES) be run
on resource-constraint platforms w/

AES co-processor functionality?

(none)
Performance and

Scalability,
Security

(none specific) (none specific) Device, Resource

UNI.512 NFR

The application shall share
information about
resource usage (for instance, when
will the application need to transmit
a message) with other functional
layers.

IoT systems are often resource
constrained, especially in terms of

energy consumption. Optimum
energy efficency can only be achieved

by cross-functional-layer
optimisation, which is dependent on

application needs.

(none)
Performance and

Scalability,
Security

Communication Energy Optimization Device, Resource

IoT-A (257521)

Internet of Things - Architecture © - 191 -

UNI.601 NFR

The system shall guarantee
infrastructure availability

The services provided by the
infrastructure should always be

available, as their operation is critical
to the operation of the Internet of

Things. Users should thus be able to
reach the infrastructure. The

infrastructure services should be able
to operate.

(none)

Availability and
Resilience, (Trust,

security and
privacy)

IoT Service,
Security

IoT Service
Resolution, IoT

Service

UNI.602 NFR

The infrastructure services shall be
trustable The services provided by the

infrastructure Services should be
trustworthy.

(none) Trust, security and
privacy

IoT Service,
Security

IoT Service
Resolution, IoT

Service
User, Service

UNI.603 FR

The infrastructure services shall
comply with the infrastructure
service design and operate
accordingly

Infrastructure Services should operate
properly according to their design.

Operation,
(Deployment) (none) IoT Service,

Security
IoT Service
Resolution

UNI.604 NFR

A service shall always be accessible
to entitled users Access to the service shall be

regulated by access policies. Users
entitled in access policies to envoke a
given service must be able to actually

envoke it.

(none)

Availability and
Resilience, (Trust,

security and
privacy)

IoT Service,
Security

IoT Service
Resolution, IoT

Service
Service

UNI.605 NFR

The system shall support the
reversing of the pseudonymization
processes in order to guarantee
mutual accountability

Some scenarios require Subjects to
take responsibility for their actions.

Some Services could be classified or
critical for their provider and could

require Users to take responsibility of
their action. On the other hand Users

might need providers to take
responsibility for the Services they
provide, because relying on such

Services is critical for them. The IoT
should support the reversing of the

Pseudonymization processes.

(none) Trust, security and
privacy

IoT Service,
Security

IoT Service, Identity
Management User, IoT Service

IoT-A (257521)

Internet of Things - Architecture © - 192 -

UNI.606 NFR

The system shall make the
traceability of digital activities
impossible

Subjects should not be able to track
the digital activities of other subjects (none) Trust, security and

privacy
IoT Service,

Security

IoT Service
Resolution, IoT
Service, Identity

Management,
Authorization

User, Service

UNI.607 FR

The system shall provide
communication confidentiality

The exchange of information between
Subjects (Users and Services) should

be understandable only for the
intended recipients. This is a generic
communication requirement because
it can be achieved at different layers

of the the stack.

Functional (none) IoT Service,
Security

IoT Service, Key
Exchange &
Management

User, Service

UNI.608 FR

The system shall support
communication integrity

The messages exchanged between
subjects must be delivered in a

complete and coherent way. It can
affect communications at different

layers (MAC, NWK, TRA).

Functional (none) Communication,
Security

Error detection &
correction, Key

Exchange &
Management

User, Service

UNI.609 NFR

The system shall ensure Data
Freshness The system should be protected from

replay attacks (message replays at
Service level, packet replay at
network and link layer level).

(none) Trust, security and
privacy Security Key Exchange &

Management Device, Service

UNI.610 NFR

The system shall provide IoT-
Service availability

Services providing access to
Resources must be reachable by the

Users who might need to rely on
them. This requirement has a specific

IoT declination as the resources of
many nodes will be constrained and
specific ways to protect from DoS or

exhaustion attacks will be needed.

(none)

Availability and
Resilience, (Trust,

security and
privacy)

Communication,
IoT Service,

Security

Flow Control &
Reliability, IoT

Service,
Authentication,

Authorization, Trust
& Reputation

Service, Device

UNI.611 NFR

The system shall support access
control mechanisms

The control of User access to
Resources must be supported and,

where needed, regulated by policies.
Anonymous interaction must be

supported and group authorization
should be supported.

(none) Trust, security and
privacy

IoT Service,
Security

IoT Service,
Authorisation, Identity

Management
User, Service

IoT-A (257521)

Internet of Things - Architecture © - 193 -

UNI.612 NFR

The system shall support subject
authentication Subjects (Users and Services) must be

able to confirm the identity of other
Subjects.

(none) Trust, security and
privacy

IoT Service,
Security

IoT Service,
Authentication,

Identity Management
User, Service

UNI.613 FR

The system shall be able to meter
service reputation

As there is a high chance of nodes
being compromised due to their

physical availability to malicious
users, a secondary mechanism for

establishing trust is needed.

Functional (none) IoT Service,
Security

IoT Service, Trust &
Reputation Service

UNI.614 FR

The system shall provide Quality of
Service

In networks where nodes are
constrained devices with limited
communication capabilities, QoS
might have a new (or extended)

meaning compared to the current
meaning. For example, real-time,

event-triggered data with high time
resolution, needs to be delivered with
a higher priority than other and might

need to ignore the need to sleep of
some devices in the network.

Operation,
(Deployment),

Functional
(none)

IoT Service,
Communication,

Management

IoT Service
Resolution, IoT

Service, QoS, QoS
Manager

Device

UNI.615 NFR

The system shall provide transport
layer fairness While congestion avoidance is

important in any large network, in
low bandwidth mesh networks this is

essential.

(none) Perfomance and
Scalability Communication Flow control and

Reliability Device

UNI.616 NFR

The system shall ensure network
availability The network functions should be

available to network endpoints.
Appropriate measures should be taken

to avoid network disruption.

(none) Availability and
Resilience

Communication,
Security (none specific) Device

UNI.617 NFR

The system shall enforce correct
routing

Packet routing over underlying Link
Layer should be efficient and should

not be subject to disruption by
malicious subjects. Disruption could
lead to worm/blackhole, exhaustion

and DoS attacks.

(none) Trust, security and
privacy

Communication,
Security

Routing &
Addressing, Trust

Authority,
Authentication

Device

IoT-A (257521)

Internet of Things - Architecture © - 194 -

UNI.618 NFR

The system shall have a
communication control for
restricted usage In some cases hop by hop

communication should only be
available to authenticated devices.

Functional Trust, security and
privacy Communication

Flow Control &
Reliability,

Authentication
Device

UNI.619 NFR

The system shall ensure non
repudiation at network level

Mobile devices should be able to join
peripheral networks belonging to

different provider. Devices entitled to
join a given network must be able to

do so.

(none) Trust, security and
privacy Security

Authorisation, Trust
& Reputation,
Authentication

Device

UNI.620 NFR

The system shall provide Software
Integrity

The software execution environment
should preserve software integrity. (none) Trust, security and

privacy Security Certification
Authority Service

UNI.622 FR

The system shall support device
location identification

A node that is considered fixed
should not be moved from its

position. This could alter the quality
of the data provided as it refers to a

different position.

Functional Trust, security and
privacy Security Trust & Reputation Device

UNI.623 NFR

The system shall support location
privacy

The Location of a Subject should only
be available to authorized Subjects.
Specific methods for obscuring both
network and physical location should

be available.

Functional Trust, security and
privacy

IoT Service,
Virtual Entity,

Security

IoT Service,
Autorisation, VE
Resolution, IoT

Service Resolution

Service

UNI.624 NFR

The system shall provide
pseudonymisation mechanisms While complete anonimity is not

feasibe in an IoT scenario,
pseudonimity should be supported.

(none) Trust, security and
privacy Security Identity Management Device, Service,

User

UNI.625 FR

The system shall provide a device
security and privacy measurement Users should be able to monitor and

control the security and privacy
settings of all the devices that they

own.

Functional Trust, security and
privacy Security (none specific) Device

IoT-A (257521)

Internet of Things - Architecture © - 195 -

UNI.626 NFR

The IoT should support secure
Over-the-Air/Over-the-Network
Device Management

The Execution Environment and the
Services provided on a given remote
device should be securely managed

from remote.

(none) Trust, security and
privacy

Security,
Management

Authorisation,
Authentication,
Device Manager

Device

IoT-A (257521)

Internet of Things - Architecture © - 196 -

IoT-A (257521)

Internet of Things - Architecture © - 197 -

C Use cases, sequence charts and interfaces
In this Appendix, the system use cases, interaction diagrams and interface definitions for the
different functionality groups and/or functional components are described according to the
functional view of Section 4.2.2.

The first step in the modelling of the functional components was taken in D1.2 where system
use cases were introduced. This document expands on this work and introduces interaction
diagrams and interface descriptions.

The modelling is of course not complete yet and will be further expanded in D1.4 and D1.5
where it will be complemented with:

o System use cases covering the components not covered in this document.

o Interaction diagrams not covered in this document

o Interface definitions between functionality groups not covered in this document.

The remainder of this Appendix is organized as follows.

First, system use cases and interaction diagrams of the “IoT Business Process Management”
and “Service Organisation” functionality groups are described. Next, system use cases,
interaction diagrams and interface descriptions of the “IoT Service” and “Virtual entity”
functionality groups will be given.

Finally, security is applied to some of the modelling above as an example.

C.1 IoT Business Process Management and Service
Organisation

The modelling presented in this section demonstrates the two primary functional components
provided by WP2, namely the Io Business Process Management and Service Organization. The
former functional component is located at a higher level of abstraction and stems from the world
of Business Process Management. Business processes are initially modelled at a business level
and then executed in a concrete technical environment in which services are resolved at design
or runtime that fulfil the process steps or activities outlined in the process model. This is where
the second functional component that provides Service Composition and Orchestration comes
into play, when services must be found and orchestrated in order to execute business steps.

The modelling depicted on the next pages show the mechanics of these two functions.

C.1.1 IoT Business Process Management

C.1.1.1 Use Cases
The Process Execution diagram (see Figure 48) illustrates how a process model is created by a
modelling application and then serialized and deployed to different execution platforms. The Isis
Platform and Real World Integration Platform (RWIP) are outlined as concrete examples, as
these execution platforms are used as background IP in the IoT-A project.

The use cases in the Business Process Execution component typically follow this usage
pattern:

1. A domain expert starts with modelling a business process in a dedicated modelling
application. While such an application for modelling IoT-Aware processes is not strictly
part of the IoT-A reference architecture, IoT-A will provide a respective tool within WP2

IoT-A (257521)

Internet of Things - Architecture © - 198 -

as Deliverable D2.5. The graphical modelling environment provides stencils and other
components following the IoT-A concepts of an entity based domain model as it is
outlined in this deliverable. Stencils are graphical shapes commonly found in CAD
applications that can frequently also be provided separately from websites such as
http://www.bpm-research.com/downloads/bpmn-stencils/.

2. The graphical model is then serialized to an executable form. The preliminary analysis
of process execution languages and notations that is part deliverable D2.2 indicates
that BPMN2.0 will most probably be the preferred output format for IoT-Aware
processes. A technical expert will use this serialization to deploy the process to an
execution environment in which the process is to be run.

3. The actual process execution is then IoT-specific in the sense that it delegates certain
activities or process steps to IoT execution platforms such as RWIP or Isis. What
happens there is that service capabilities and activity requirements are aligned in order
to allow for choosing appropriate services that are capable of providing the required
IoT-specific service qualities, such as e.g. a process might require a certainty of
information provided by a sensor service of at least 80%, so that only a subset of the
available sensor services might be suitable for executing the process. At this stage, the
Service Composition and Orchestration components within the Service Organisation FG
become relevant, as certain quality and capability parameters might not be met by
individual services, but only by an orchestration of individual services. The lower part of
the diagram is thus explained in more detail with the next figure in the next section.

IoT-A (257521)

Internet of Things - Architecture © - 199 -

Figure 47: Business Process Execution.

C.1.2 Service Organisation

C.1.2.1 Use Cases
When the individual processes, steps or activities need to be executed, the Service
Organisation diagram gains the focus. Here, the detailed and principal steps for service
composition are shown in a domain agnostic way. The general principle is always that a
mapping of services and Virtual Entities (VEs) must be found by aligning information from
Virtual Entity Resolution and IoT Service Resolution and that these services are then
orchestrated.

As we typically enter the Service Composition and Orchestration components from the Business
Process Execution component (i.e. services are typically orchestrated in the execution of a
process activity), the Process Execution component is shown as an actor starting the
composition activities. The diagram features the relationships to other functional components,

IoT ServiceService Organisation

Application Business Process Execution

Business Process
Modelling

Domain Expert

Create Model
Serialization

Deploy To Execution
Env ironment

Delegate Activ ities To
IoT Runtime Platforms

Delegate to RWIP
Delegate to Isis

Orchestrate IoT
Serv ices

Execute Activ ity

Align Activ ity
Requirements with
Serv ice Capabilites

Inv oke Serv ice

Technical Expert

Execute Serv ice

«include»

«use»

«include» «include»

«include»«include»

«invokes»
«invokes»

IoT-A (257521)

Internet of Things - Architecture © - 200 -

which we briefly outline below. For this section we however focus on the main responsibilities of
the component:

• Increase Quality of Information
Service Composition can increase the Quality of Information by fusing information from
different sources. This relates to the example given in the previous section. While a
single sensor service might not be able to guarantee a certain level of accuracy for the
respective sensor information, fusing several similar services might increase information
quality considerably, as errors are mitigated and faulty sensors compensated.

• Support semantic Service Composition
IoT Services can be composed of other services providing higher level functionality. The
composition is flexible because the composition is not made of particular services but of
services able to provide equal functionality. If one service fails it can be replaced by a
similar one. This is closely related to the previous aspect and actually further
contributes to an increase of information quality, as dynamic changes in the available
services are taken into account.

• Orchestrate IoT Services
The Business Process Execution component delegates service orchestration (executing
the services appropriate to the process activity) to the Service Composition and
Orchestration function. This is the actual interface between the process execution and
the service resolution infrastructure (the latter being discussed in the following
sections). In essence, the Process Execution component conveys the service
requirements needed for executing the respective activity to the Service Composition
and Orchestration component which in turn utilizes the IoT Service Resolution in order
to Service Manager in order find and resolve appropriate services and create a suitable
orchestration from them, if necessary. Then, the Service Manager is used for actually
invoking the services and eventually delivering service results back to the Process
Execution component.

The most important link to other functional components relates to the IoT Service resolution in a
first step of finding respective services appropriate for being bound to the process execution as
part of composite services. Here, service identifiers are both resolved to URLs used for
executing them, but also service descriptions / capabilities are evaluated in terms of matching
the requirements of the process within a service composition. Before the individual services
resolved in the IoT Service resolution are actually executed or subscribed to (this depends on
the nature of the service), the Virtual Entity resolution comes into play, as – in accordance with
the domain model – the respective services usually need to target a specific entity, so that the
associations between entities and services must be evaluated, for which the Virtual Entity
resolution is utilized. It must be noted that it is important to look for the Virtual Entity and the
required aspect first (instead of potential services), thereby finding possible services and only
then they would be picked up in the IoT Service Resolution. Trying to discover services first and
then match them with the result of the VE Discovery/Look-up may result in a huge amount of
services in the first step that then need to be discarded as they pertain to the wrong Virtual
Entities. This “early exclusion” principle is well known in the query optimizers of traditional
database systems and is relevant here as well.

IoT-A (257521)

Internet of Things - Architecture © - 201 -

Figure 48: Service Organization.

Virtual Entity ResolutionBusiness Process Execution

IoT Service Resolution

Service Organisation

Business Process
Execution

Combine Information from
different Serv ices

Compose IoT Serv ice

Increase Quality of
Information

Support flexible Serv ice
Composition

Analyse Serv ice
Descriptions

Bind resolv ed IoT
Serv ice

Resolv e IoT Serv ice

Orchestrate IoT
Serv ice

(from Domain Agnostic
Use Cases)

Discov er Serv ice
Based on Serv ice

Specification

(from Domain Agnostic Use
Cases)

Look Up Serv ice
Description Based on

Serv ice Identifier

(from Domain Agnostic
Use Cases)

Resolv e Serv ice
Identifier to URL

(from Domain Agnostic Use Cases)

Discov er Associations based on
VE Specification and VE Serv ice

Specification

(from Domain Agnostic Use Cases)

Look up Associations based on
Virtual Entity ID & VE Serv ice

Specification

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

IoT-A (257521)

Internet of Things - Architecture © - 202 -

C.1.2.2 Interaction Diagrams
The Interaction diagram related to the use cases of the Service Composition and Orchestration
functional component in the Service Organisation are depicted below. They are not yet
complete, as e.g. Virtual Entity Resolution is not involved yet, although, as discussed in the
previous section, it is vital for the formulation of abstract service requests addressing properties
of entities without knowing concrete Iot services associated to these entities a priori.

Interaction Diagram: Orchestrate Service

Figure 49: Orchestrate Service.

Business
Process

Execution

(from WP2 Interactions)

Service
Orchestration

(from WP2 Interactions)

IoT Service
Resolution

(from WP4 Interactions)

Service
Invocation

(from WP2 Interactions)

analyzeServiceDescription(ServiceDescription)

discoverService(Service Specification) :Service Description

invoke(IoT Service)

:Service Result

IoT-A (257521)

Internet of Things - Architecture © - 203 -

Interaction Diagram: Decompose Composite Service

Figure 50: Decompose Composite Service.

C.2 IoT Services
C.2.1 IoT Service Resolution functional component

C.2.1.1 Use Cases
The use cases of this section cover the IoT Service Resolution functional component as
identified in the functional view (see Section 4.2.2.5). They provide a service/resource
abstraction level, i.e., service descriptions can be discovered and looked up, but there is no
relation to Virtual Entities (and thus Physical Entities) being modelled. Associations between
Virtual Entities and services are handled by the Resolution of Virtual Entities component (see
Section 4.2.2.4).

The following use cases are depicted in Figure 51.

 Resolve Service Identifier to URL/Address

o The use case is initiated by a user of the system, i.e., a Human User or an Digital
Artefact. The user wants to have the URL or address of a service for interacting with
the service.

o The assumption is that the user already knows a unique identifier of the service.

o In this use case, the IoT Service Resolution resolves the service identifier to a URL
or address.

o If the resolution step is successful, the user can contact the service.

 Subscribe to resolution of Service Description based on Service Identifier

Business
Process

Execution

(from WP2 Interactions)

Service
Orchestration

(from WP2 Interactions)

IoT Service
Resolution

(from WP4 Interactions)

Service
Invocation

(from WP2 Interactions)

these steps are
applied to every
service the
composition contains

analyzeServiceDescription(ServiceDescription)

discoverService(Service Specification) :Service Description

decomposeService(Service Description) :Service Specification

discoverService(Service Specification) :Service Description

invoke(IoT Service)

:Service Result

composeServiceResults(Service Results)
:Service Result

:Service Result

IoT-A (257521)

Internet of Things - Architecture © - 204 -

o The use case is initiated by a user of the system, i.e., a Human User or an Active
Digital Artefact. The user wants to be asynchronously notified about the URL or
address of a service for interacting with the service. A new notification will be sent
whenever the URL of the service changes.

o The assumption is that the user already knows a unique identifier of the service.

o In this use case, the IoT Service Resolution asynchronously notifies the subscribing
user about the URL and sends a new notification whenever the URL changes.

o If the subscription is successful, the user will always receive the current URL for
contacting the service.

 Unsubscribe to resolution of Service Description

o The use case is initiated by a user of the system. The user has previously
subscribed to receive notifications about the current URL of a service identified by a
service identifier.

o The assumption is that the user knows the subscription identifier of the subscription
assigned by the IoT Service Resolution.

o In this use case, the subscription to the IoT Service Resolution identified by the
subscription identifier is cancelled.

o If the unsubscription is successful, the user will no longer receive notifications
concerning the URL of the identified service.

 Look up service description based on Service Identifier

o This use case is initiated by a user of the system. The user wants to have a full
description of the service, including a description of the interface and the URL or
address for interacting with the service.

o The assumption is that the user already knows a unique identifier of the service.

o In this use case, the IoT Service Resolution looks up the service description based
on the service identifier. The service description contains all information necessary
for interacting with the service (including URL). This interaction is then based on
service identifier.

o If the lookup step is successful, the user has all the information needed for
interacting with the service.

 Subscribe to look-up of Service Description based on Service Identifier

o The use case is initiated by a user of the system, i.e., a Human User or an Active
Digital Artefact. The user wants to be asynchronously notified about the service
description of a service, which includes a description of the URL or address for
interacting with the service. A new notification will be sent whenever the service
description of the service changes.

o The assumption is that the user already knows a unique identifier of the service.

o In this use case, the IoT Service Resolution asynchronously notifies the subscribing
user about the service description and sends a new notification whenever the
service description changes.

IoT-A (257521)

Internet of Things - Architecture © - 205 -

o If the subscription is successful, the user will always receive the current service
description of the service.

 Unsubscribe to look-up of Service Description

o The use case is initiated by a user of the system. The user has previously
subscribed to receive notifications about the current service description of a service
identified by a service identifier.

o The assumption is that the user knows the subscription identifier of the subscription
assigned by the IoT Service Resolution.

o In this use case, the subscription to the IoT Service Resolution identified by the
subscription identifier is cancelled.

o If the unsubscription is successful, the user will no longer receive notifications
concerning the service description of the identified service.

 Discover service based on service specification

o This use case is initiated by a user of the system. The user wants to discover a
service that can provide certain functionality.

o The assumption is that the user knows what kind of service he needs, but does not
know the specific service instances available.

o In this use case, the IoT Service Resolution discovers services that fit the service
specification, which can contain information about the type of service, its
requirements, and also scope information, e.g., the geographic area for which the
service provides information.

o If the discovery step is successful, i.e., services fitting the specification are found,
the user gets the service descriptions of these services.

 Subscribe to discovery of Service Descriptions based on Service Specification

o The use case is initiated by a user of the system, i.e., a hHuman User or an Active
Digital Artefact. The user wants to be asynchronously notified about the service
descriptions of all services fitting a given service specification. A new notification
with a service description will be sent whenever a service description changes, a
new service description fitting the service specification has become available or
when a fitting service description was deleted from the IoT Service Resolution.

o The assumption is that the user knows what kind of service he needs, but does not
know the specific service instances currently available.

o In this use case, the IoT Service Resolution asynchronously notifies the subscribing
user about the service descriptions fitting the give service specification and sends a
new notification whenever a service description changes, a new service description
fitting the service specification has become available or when a fitting service
description was deleted from the IoT Service Resolution..

o If the subscription is successful, the user will always be informed about changes in
the service descriptions fitting the provided service specification.

 Unsubscribe to discovery of Service Descriptions

IoT-A (257521)

Internet of Things - Architecture © - 206 -

o The use case is initiated by a user of the system. The user has previously
subscribed to receive notifications about all the service descriptions fitting a given
service specification.

o The assumption is that the user knows the subscription identifier of the subscription
assigned by the IoT Service Resolution.

o In this use case, the subscription to the IoT Service Resolution identified by the
subscription identifier is cancelled.

o If the unsubscription is successful, the user will no longer receive notifications
concerning service descriptions fitting the given service specification.

 Manage service resolution and service descriptions (insert, update, delete)

o This use case is initiated by a service (or an entity managing a service).

o The assumption is that a service description needs to be inserted, updated or
deleted due to a new service becoming available, an aspect of a service changing
(e.g. due to mobility), or a service no longer being available.

• This use case is about the management of service descriptions in the IoT-
service resolution, and the association of service identifiers to URLs /
addresses.

• The service (or an entity-managing a service) inserts a new service description,
so that it can be looked up and discovered and so that the service identifier can
be resolved as a URL/address.

• The service (or an entity managing a service) updates an existing service
description, which may include the update of the mapping of a service identifier
to a URL/address.

• The service (or an entity managing a service) deletes an existing service
description, so that a service is no longer available.

• If the management of a service description is successful, the service
descriptions can be looked up or discovered, and/or reflect the status as
reported by the services.

IoT-A (257521)

Internet of Things - Architecture © - 207 -

Figure 51: Use case IoT Service Resolution.

IoT Service Resolution

Resolution
Infrastructure User

Resolv e Serv ice
Identifier to URL

IoT Serv ice

Look Up Serv ice
Description Based on

Serv ice Identifier

Discov er Serv ice
Based on Serv ice

Specification

Manage Serv ice
Description

Insert Serv ice
Description

Update Serv ice
Description

Delete Serv ice
Description

Unsubscribe to
Serv ice Resolution

Subscribe to
Resolution of Serv ice

Identifier to URL

Unsubscribe to
Look-up of Serv ice

Description

Subscribe to Look-up of
Serv ice Description Based

on Serv ice Identifier

Unsubscribe to
Discov ery of Serv ice

Descriptions

Subscribe to Discov ery of
Serv ice Descriptions based

on Serv ice Specification

IoT-A (257521)

Internet of Things - Architecture © - 208 -

C.2.1.2 Interaction Diagrams
The Interaction diagram related to the use cases of the IoT Service Resolution functional
component are depicted below.

Interaction Diagram: Resolution
For the resolution of a Service Identifier to the URL through which the service can currently be
accessed, an IoT-Service Client synchronously calls the IoT Service Resolution component,
using the resolveService operation with the ServiceID of the service as parameter. The IoT
Service Resolution resolves the ServiceID, providing the requested URL as the return value.

Figure 52: Resolve Service Identifier to URL.

Interaction Diagram: Subscribe to Resolution
For subscribing to asynchronously receive notifications about the current service URL of a
service identified by its service identifier, an IoT Service Client synchronously calls the IoT
Service Resolution, using the subscribeServiceResolution operation with the Service ID of the
service and the notification callback, to which notifications are to be sent, as parameters. The
notification callback identifies the endpoint on the IoT Service Client side that implements the
notifyServiceResolution operation. The IoT Service Resolution returns the subscription identifier
that can be used to map an incoming notification to the subscription it belongs to.

Subsequently, the IoT Service Resolution will call the notifyServiceResolution operation of the
IoT Service client, providing the service URL and the subscription ID as parameters.

When the IoT Service Client is no longer interested in receiving notifications pertaining to the
subscription, it will call the unsubscribeServiceResolution operation of the IoT Service

IoT-Service Client

(from WP4
Interactions)

IoT Service
Resolution

(from WP4
Interactions)

resolveService(ServiceID) :URL

IoT-A (257521)

Internet of Things - Architecture © - 209 -

Resolution using the subscription identifier as parameter. As a result, the IoT Service Resolution
will stop sending notifications pertaining to the identified subscription.

Figure 53: Subscribe Resolution of Service Identifier to URL

IoT-Service Client

(from WP4
Interactions)

IoT Service
Resolution

(from WP4
Interactions)

subscribeServiceResolution(ServiceID, notificationCallback) :SubscriptionID

notifyServiceResolution(SubscriptionID, ServiceURL)

notifyServiceResolution(SubscriptionID, ServiceURL)

unsubscribeServiceResolution(SubscriptionID)

IoT-A (257521)

Internet of Things - Architecture © - 210 -

Interaction Diagram: Lookup
For the lookup of a Service Description based on a Service Identifier, an IoT Service Client
synchronously calls the IoT Service Resolution component, using the lookupService operation
with the ServiceID of the service as parameter. The IoT Service Resolution looks up the Service
Description based on the ServiceID and provides it as the return value.

Figure 54: Lookup Service Description based on Service Identifier.

Interaction Diagram: Subscribe to Lookup
For subscribing to asynchronously receive notifications about the current service description of
a service identified by its service identifier, an IoT Service Client synchronously calls the IoT
Service Resolution, using the subscribeServiceLookup operation with the Service ID of the
service and the notification callback, to which notifications are to be sent, as parameters. The
notification callback identifies the endpoint on the IoT Service Client side that implements the
notifyServiceLookup operation. The IoT Service Resolution returns the subscription identifier
that can be used to map an incoming notification to the subscription it belongs to.

Subsequently, the IoT Service Resolution will call the notifyServiceLookup operation of the IoT
Service client, providing the service description and the subscription ID as parameters.

When the IoT Service Client is no longer interested in receiving notifications pertaining to the
subscription, it will call the unsubscribeServiceLookup operation of the IoT Service Resolution
using the subscription identifier as parameter. As a result, the IoT Service Resolution will stop
sending notifications pertaining to the identified subscription.

IoT-Service Client

(from WP4
Interactions)

IoT Service
Resolution

(from WP4
Interactions)

lookupService(ServiceID) :ServiceDescription

IoT-A (257521)

Internet of Things - Architecture © - 211 -

Figure 55 Subscribe Look-up of Service Description based on Service Identifier

IoT-Service Client

(from WP4
Interactions)

IoT Service
Resolution

(from WP4
Interactions)

subscribeServiceLookup(ServiceID, notificationCallback) :SubscriptionID

notifyServiceLookup(SubscriptionID, ServiceDescription)

notifyServiceLookup(SubscriptionID, ServiceDescription)

unsubscribeServiceLookup(SubscriptionID)

IoT-A (257521)

Internet of Things - Architecture © - 212 -

Interaction Diagram: Discovery
For the discovery of suitable services, an IoT Service Client synchronously calls the IoT Service
Resolution component, using the discoverService operation with the ServiceSpecification of the
service as parameter. The ServiceSpecification contains a specification of aspects the service
must fulfil, i.e., the type of service, the output to be provided, the post-conditions that need to be
valid, the inputs to be provided, the pre-conditions required, the geographical location covered
etc. [The details of the service specification have not been defined yet and will be covered as
part of future work.] The IoT Service Resolution finds the Service Descriptions fitting the Service
Specification and returns them in an array.

Figure 56: Discover Service based on Service Specification.

Interaction Diagram: Subscribe to Discovery
For subscribing to asynchronously receive notifications about the current service descriptions of
services fitting a given service specification, an IoT Service Client synchronously calls the IoT
Service Resolution, using the subscribeServiceDiscovery operation with the service
specification of the service and the notification callback, to which notifications are to be sent, as
parameters. The notification callback identifies the endpoint on the IoT Service Client side that
implements the notifyServiceDiscovery operation. The IoT Service Resolution returns the
subscription identifier that can be used to map an incoming notification to the subscription it
belongs to.

Subsequently, the IoT Service Resolution will call the notifyServiceDiscovery operation of the
IoT Service client, providing the service descriptions and the subscription ID as parameters. A
notification will be sent whenever a previously provided service description changes or is

IoT-Service Client

(from WP4
Interactions)

IoTServiceResolution

discoverService(ServiceSpecification) :ServiceDescription[]

IoT-A (257521)

Internet of Things - Architecture © - 213 -

deleted. A notification will also be sent if a new service description fitting the given service
specification becomes available.

When the IoT Service Client is no longer interested in receiving notifications pertaining to the
subscription, it will call the unsubscribeServiceDiscovery operation of the IoT Service Resolution
using the subscription identifier as parameter. As a result, the IoT Service Resolution will stop
sending notifications pertaining to the identified subscription.

Figure 57 Subscribe Discovery of Service Descriptions based on Service Specification

Interaction Diagram: Insert
An IoT Service inserts its Service Description into the IoT Service Resolution component. The
Service synchronously calls the IoT Service Resolution component using the
insertServiceDescription operation with its ServiceDescription as parameter. The IoT Service
Resolution component inserts the Service Description into its internal information base and
returns the ServiceID that uniquely identifies the stored Service Description. As a result, the
information required for resolution, lookup and discovery can efficiently be found.

IoT Service
Resolution

(from WP4
Interactions)

IoT-Service Client

(from WP4
Interactions)

subscribeServiceDiscovery(ServiceSpecification, notificationCallback) :SubscriptionID

notifyServiceDiscovery(SubscriptionID, ServiceDescription[])

notifyServiceDiscovery(SubscriptionID, ServiceDescription[])

unsubscribeServiceDiscovery(SubscriptionID)

IoT-A (257521)

Internet of Things - Architecture © - 214 -

Figure 58: Insert Service Description.

Interaction Diagram: Update
An IoT Service updates its Service Description in the IoT Service Resolution component. The
Service asynchronously calls the IoT Service Resolution component using the
updateServiceDescription operation with its updated ServiceDescription as parameter. The IoT
Service Resolution component updates the Service Description in its internal information base,
so the updated information required for resolution, lookup and discovery can efficiently be
found. The call to updateServiceDescription always returns with an OK status code, as the
processing of the ServiceDescription is done asynchronously.

Figure 59: Update Service Description.

IoT Service

(from WP4
Interactions)

IoT Service
Resolution

(from WP4
Interactions)

insertServiceDescription(ServiceDescription) :ServiceDescriptionID

IoT Service

(from WP4
Interactions)

IoT Service
Resolution

(from WP4
Interactions)

updateServiceDescription(ServiceDescription)

IoT-A (257521)

Internet of Things - Architecture © - 215 -

Interaction Diagram: Delete
An IoT Service deletes its Service Description from the IoT Service Resolution component. The
Service asynchronously calls the IoT Service Resolution component using the
deleteServiceDescription operation with the ServiceID (which is part of the ServicDescription) as
parameter. The IoT Service Resolution component deletes the Service Description identified by
the ServiceID from its internal information base. The call to deleteServiceDescription always
returns with an OK status code, as the processing of the deletion is done asynchronously.

Figure 60: Delete Service Description.

IoT Service

(from WP4
Interactions)

IoT Service
Resolution

(from WP4
Interactions)

deleteServiceDescription(ServiceDescriptionID)

IoT-A (257521)

Internet of Things - Architecture © - 216 -

C.2.1.3 Interface definitions
In this subsection we present the operations of the IoT Service Resolution functional
component, i.e., resolve service, look up service, discover service, insert service, update service
and delete service.

Interface Definition: Resolve Service

Input:
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Resolve
Service
Identifier to
URL” Use
Case

IoT Service
Client

IoT Service
Resolution

resolveService:
given the
ServiceID
provide the
URL required
for accessing
the service

ServiceID ServiceID
available

Output:
Functionality
Output

Impacted
Components

Return value Exception

URL of the
Service

- Service URL Service URL not
available

Interface Definition: Subscribe Service Resolution

Input:
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Subscribe
to
Resolution
of Service
Identifier to
URL” Use
Case

IoT Service
Client

IoT Service
Resolution

subscribeService-
Resolution: given
the ServiceID
asynchronously
notify the IoT
Service Client
about the service
URL required for
accessing the
service as a
result of the
subscription and
on any change

ServiceID

Notification-
Callback

ServiceID
available

Notification-
Callback and
notifyService-
Resolution
implemented
on the IoT
Service Client
side

IoT-A (257521)

Internet of Things - Architecture © - 217 -

Output:
Functionality
Output

Impacted
Components

Return value Exception

Subscription
identifier

- SubscriptionID Subscription
failed

Interface Definition: Notify Service Resolution

Input:
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Subscribe
to
Resolution
of Service
Identifier to
URL” Use
Case

IoT Service
Resolution

IoT Service
Client

notifyService-
Resolution: the
current service
URL required
for accessing
the service is
provided. The
subscription to
which the
notification
pertains is
identified by the
subscription
identifier

Subscriptio
nID,
ServiceUR
L

Notification-
Callback
available and
IoT Service
Client
reachable
using the
Notification-
Callback

Interface Definition: Unsubscribe Service Resolution

Input:
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Unsubscribe
to Service
Resolution”
Use Case

IoT Service
Client

IoT Service
Resolution

Unsubscribe-
Service-
Resolution:
given the
SubscriptionID
cancel the
respective
subscription

SubscriptionID SubscriptionID
available

IoT Service
Resolution
reachable

IoT-A (257521)

Internet of Things - Architecture © - 218 -

Interface Definition: Lookup Service

Input
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Look Up
Service
Description
Based On
Service
Identifier”
Use Case

IoT Service
Client

IoT Service
Resolution

lookupService:
given the
ServiceID
provide the
Service
Description of
the service

ServiceID ServiceID
available

Output:
Functionality
Output

Impacted
Components

Return value Exception

Service
Description of
the Service

- ServiceDescription Service
Description not
available

Interface Definition: Subscribe Service Look-up

Input
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Subscribe
to Look-up
of Service
Description
based on
Service
Identifier”
Use Case

IoT Service
Client

IoT Service
Resolution

subscribeService-
Lookup: given the
ServiceID
asynchronously
notify the IoT
Service Client
about the service
description as a
result of the
subscription and
on any change of
the service
description

ServiceID

Notification-
Callback

ServiceID
available

Notification-
Callback and
notifyService-
Lookup
implemented
on the IoT
Service Client
side

Output:
Functionality
Output

Impacted
Components

Return value Exception

IoT-A (257521)

Internet of Things - Architecture © - 219 -

Subscription
identifier

- SubscriptionID Subscription
failed

Interface Definition: Notify Service Look-up

Input
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Subscribe
to Look-up
of Service
Description
based on
Service
Identifier”
Use Case

IoT Service
Resolution

IoT Service
Client

notifyService-
Lookup: the
current service
description is
provided. The
subscription to
which the
notification
pertains is
identified by
the
subscription
identifier

SubscriptionID,
ServiceDe-
scription

Notification-
Callback
available and
IoT Service
Client
reachable
using the
Notification-
Callback

Interface Definition: Unsubscribe Service Look-up

Input
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Unsubscribe
to Look-up of
Service
Description”
Use Case

IoT Service
Client

IoT Service
Resolution

Unsubscribe-
Service-
Lookup: given
the
SubscriptionID
cancel the
respective
subscription

SubscriptionID SubscriptionID
available

IoT Service
Resolution
reachable

Interface Definition: Discover Service

Input:
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Discover
Service
Based On

IoT Service
Client

IoT Service
Resolution

discoverService:
given the
Service

Service
Specification

Service
Specification

IoT-A (257521)

Internet of Things - Architecture © - 220 -

Service
Specification”
Use Case

Specification
provide the
Service
Descriptions of
fitting services

available

Output
Functionality
Output

Impacted
Components

Return value Exception

Service
Descriptions of
Services fitting
the Service
Specification

- Array of
ServiceDescription

- [no fitting
services is a
normal case]

Interface Definition: Subscribe Service Discovery

Input
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Subscribe to
Discovery of
Service
Descriptions
based on
Service
Specification”
Use Case

IoT Service
Client

IoT Service
Resolution

subscribeService-
Discovery: given
a service
specification
asynchronously
notify the IoT
Service Client
about the fitting
service
descriptions as a
result of the
subscription and
on any change
regarding the set
of fitting service
descriptions as
well as the
content of a
previously
notified service
description

Service-
Specification

Notification-
Callback

Service-
Specification
available

Notification-
Callback and
notifyService-
Discovery
implemented
on the IoT
Service Client
side

Output:
Functionality Impacted Return value Exception

IoT-A (257521)

Internet of Things - Architecture © - 221 -

Output Components

Subscription
identifier

- SubscriptionID Subscription
failed

Interface Definition: Notify Service Discovery

Input
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Subscribe to
Discovery of
Service
Descriptions
based on
Service
Specification”
Use Case

IoT Service
Resolution

IoT Service
Client

notifyService-
Discovery: the
changed
service
descriptions
fitting the
service
specifications
are provided.
The
subscription to
which the
notification
pertains is
identified by
the
subscription
identifier

SubscriptionID,
ServiceDe-
scription[]

Notification-
Callback
available and
IoT Service
Client
reachable
using the
Notification-
Callback

Interface Definition: Unsubscribe Service Discovery

Input
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Unsubscribe
to Discovery
of Service
Descriptions”
Use Case

IoT Service
Client

IoT Service
Resolution

Unsubscribe-
Service-
Discovery:
given the
SubscriptionID
cancel the
respective
subscription

SubscriptionID SubscriptionID
available

IoT Service
Resolution
reachable

IoT-A (257521)

Internet of Things - Architecture © - 222 -

Interface Definition: Insert Service

Input:
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Insert
Service
Description”
Use Case

IoT Service IoT Service
Resolution

insertService
Description:
insert the
given service
description
into the
information
base of the
IoT Service
Resolution

Service
Description

Service
Description
available

Output:
Functionality
Output

Impacted
Components

Return value Exception

Service
description
identifier that
uniquely
identifies the
stored service
description

- ServiceDescriptionID Service
Description
could not be
inserted

Interface Definition: Update Service

Input:
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Update
Service
Description”
Use Case

IoT Service IoT Service
Resolution

updateService
Description:
update the
given service
description in
the
information
base of the
IoT Service
Resolution

Service
Description

Service
Description
available,
Service
Description to
be updated
stored in the
IoT Service
Resolution
information
base

IoT-A (257521)

Internet of Things - Architecture © - 223 -

Interface Definition: Delete Service

Input:
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Delete
Service
Description”
Use Case

IoT Service IoT Service
Resolution

deleteService:
given the
Service-
DescriptionID
delete the
Service
Description
from the
information
base of the
IoT Service
Resolution

Service-
DescriptionID

Service-
DescriptionID
available,
Service
Description
with Service-
DescriptionID
available in
the
information
base of IoT
Service
Resolution

C.3 Virtual Entity (VE)
C.3.1 Virtual Entity Resolution functional component

C.3.1.1 Use Cases
In this section, the Virtual Entity Resolution functional component, as identified in the functional
view (see Section 4.2.2), is described. It provides a Virtual Entity abstraction level, i.e., Virtual
Entities, which are the digital counterparts of Physical Entities, are modelled on this level. Virtual
entities and services are linked together using associations. Services provide access to
information about the corresponding Physical Entities through the resources, to which the
services are associated. The Virtual Entity service specification allows the specification of the
relation between a Virtual Entity and a service. Notice that the service is part of the association.
For example, a room and a temperature service may be related through the relation (e.g.,
modelled as an attribute) indoorTemperature. The association would contain the virtual identifier
of the room, the type of room, the relation indoorTermperature, and the identifier of the service.

The following use cases are depicted in Figure 61.

 Look up associations for Virtual Entity and Virtual Entity service specification.

o This use case is initiated by a user of the system, i.e. a hHuman User or an active
digital artefact like a software agent. The user wants to look up associations that
associate the identifier of the Virtual Entity with a service providing specific
information or allowing executing an actuation affecting the corresponding Physical
Entity.

o The assumption is that the user already knows the identifier of the Virtual Entity.

o In this use case, the Virtual Entity Resolution looks up the associations
corresponding to the identifier and filters them according to the Virtual Entity service
specification. As a result, the user receives associations containing identifiers of
relevant services.

IoT-A (257521)

Internet of Things - Architecture © - 224 -

o If the lookup is successful, the user gets the associations containing the identifiers
of the relevant services whose description can then be looked up through the IoT
Service Resolution.

 Subscribe to look-up of Associations based on VE Identifier and VE Service
Specification

o The use case is initiated by a user of the system, i.e., a hHuman User or an Active
Digital Artefact. The user wants to be asynchronously notified about Associations
between the Virtual Entity identified by the VE Identifier and services fitting the VE
Service Specification. A new notification will be sent whenever a new fitting
association becomes available, is removed or there is a change to an Association
that was previously sent.

o The assumption is that the user already knows the VE Identifier of the Virtual Entity.

o In this use case, the VE Resolution asynchronously notifies the subscribing user
about fitting Associations and sends a new notification whenever a new fitting
Association has become available, an Association has been removed or a
previously sent Association has changed.

o If the subscription is successful, the user will always get an updated set of
Associations fitting the subscription.

 Unsubscribe to look-up of Associations

o The use case is initiated by a user of the system. The user has previously
subscribed to receive notifications about Associations between the Virtual Entity
identified by its VE Identifier and services fitting the VE Service Specification.

o The assumption is that the user knows the subscription identifier of the subscription
assigned by the VE Resolution.

o In this use case, the subscription to the VE Resolution identified by the subscription
identifier is cancelled.

o If the unsubscription is successful, the user will no longer receive notifications
concerning the Associations between the Virtual Entity identified by its VE Identifier
and services fitting the VE Service Specification.

 Discover associations based on Virtual Entity specification and Virtual Entity service
specification

o This use case is initiated by a user. The user wants to discover Physical Entities
through their corresponding Virtual Entities. These Virtual Entities can provide
information about the Physical Entity or trigger actuations on the physical
counterpart of the Virtual Entity.

o The assumption is that the user does not know the virtual identities of these Virtual
Entities, but knows what kind of Virtual Entities and what kind of associated
services are required.

o In this use case, Virtual Entity Resolution enables the user to discover relevant
associations. Virtual entities are specified through a virtual-entity specification, and
the requirements for the associated service are specified in the virtual-entity-service
specification. As a result, the user then receives fitting associations.

IoT-A (257521)

Internet of Things - Architecture © - 225 -

o If the discovery is successful, the use gets the virtual identities of fitting Virtual
Entities together with the identifiers of required services, whose description can
then be looked up through the IoT Service Resolution.

 Subscribe to discovery of Associations based on VE Specification and VE Service
Specification

o The use case is initiated by a user of the system, i.e., a hHuman User or an Active
Digital Artefact. The user wants to be asynchronously notified about Associations
between the Virtual Entities fitting the VE Specification and services fitting the VE
Service Specification. A new notification will be sent whenever a new fitting
association becomes available, is removed or there is a change to an Association
that was previously sent.

o The assumption is that the user does not know the virtual identities of these Virtual
Entities, but knows what kind of Virtual Entities and what kind of associated
services are required.

o In this use case, the VE Resolution asynchronously notifies the subscribing user
about fitting Associations and sends a new notification whenever a new fitting
Association has become available, an Association has been removed or a
previously sent Association has changed.

o If the subscription is successful, the user will always get an updated set of
Associations fitting the subscription.

 Unsubscribe to discovery of Associations

o The use case is initiated by a user of the system. The user has previously
subscribed to receive notifications about Associations between the Virtual Entities
fitting the VE Specification and services fitting the VE Service Specification.

o The assumption is that the user knows the subscription identifier of the subscription
assigned by the VE Resolution.

o In this use case, the subscription to the VE Resolution identified by the subscription
identifier is cancelled.

o If the unsubscription is successful, the user will no longer receive notifications
concerning the Associations between the Virtual Entities fitting the VE Specification
and services fitting the VE Service Specification.

 Manage Virtual Entity/service associations (insert, update, delete)

o The use case is initiated by a service or the Virtual Entity & IoT-service Monitoring.

o The assumption is that an association between a virtual identity and a service
needs to be inserted, updated, or deleted.

o The use case is about the management of associations in the Virtual Entity
Resolution.

• A service or the Virtual Entity & IoT Service Monitoring unit inserts a new
association, so that it can be looked up and discovered.

• A service or the Virtual Entity & IoT Service Monitoring unit updates an existing
association, so that any changes are reflected.

IoT-A (257521)

Internet of Things - Architecture © - 226 -

• A service or the Virtual Entity & IoT Service Monitoring unit deletes an existing
association, indicating that the formerly associated service does no longer
provide the specified functionality.

If the management of associations is successful, the associations that can be looked up or
discovered reflect the status as reported by the services or the Virtual Entity & IoT Service
Monitoring.

Figure 61: Virtual Entity Resolution.

Virtual Entity Resolution

Look up Associations based on
Virtual Entity ID & VE Serv ice

Specification

Manage Assoication

Insert Association

Update Association

Delete Assoication

Resolution
Infrastructure User

IoT Serv ice / VE &
IoT Serv ice
Monitoring

Unsubscribe to look-up of
Associations

Subscribe to look-up of Associations
based on VE Identifier and VE Serv ice

Specification

Unsubscribe to
discov ery of
Associations

Subscribe to discov ery of
Associations based on VE

Specification and VE Serv ice
Specification

Discov er Associations based on VE
Specification and VE Serv ice

Specification

IoT-A (257521)

Internet of Things - Architecture © - 227 -

C.3.1.2 Interaction Diagrams
The Interaction diagram related to the use cases of the Virtual Entity Resolution functional
component are depicted below.

Interaction Diagram: Lookup Associations

For the lookup of associations based on the identifier of the Virtual Entity and the specification
of the service associated with the Virtual Entity, an IoT Service Client synchronously calls the
Virtual Entity Resolution component, using the lookupAssociations operation with the VE-ID and
the VEServiceSpecification as parameters. The VEServiceSpecification contains the attribute of
the Virtual Entity with which the required service needs to be associated and potentially other
information, i.e., if the value of the attribute should be returned by the service or if the service
should influence this value as in the case of actuation. An association is the relation between a
VE-ID and a Service Identifier and is described by the attribute name and additional information.
The Virtual Entity Resolution looks up fitting associations based on the VE-ID and the
VEServiceSpecification and provides the resulting array as the return value.

Figure 62: Look up Associations based on VE-ID and VEServiceSpecification.

Interaction Diagram: Subscribe Associations Look-up

For subscribing to asynchronously receive notifications about Associations between a Virtual
Entity and services fitting the given VE Service Specification, an IoT Service Client
synchronously calls the VE Resolution, using the subscribeAssociationsLookup operation with
the Virtual Entity ID, the VE Service Specification and the notification callback, to which
notifications are to be sent, as parameters. The notification callback identifies the endpoint on

Virtual Entity
Resolution

(from WP4
Interactions)

IoT-Service Client

(from WP4
Interactions)

lookupAssociations(VE-ID, VEServiceSpecification) :Association[]

IoT-A (257521)

Internet of Things - Architecture © - 228 -

the IoT Service Client side that implements the notifyAssociationLookup operation. The IoT
Service Resolution returns the subscription identifier that can be used to map an incoming
notification to the subscription it belongs to.

Subsequently, the VE Resolution will call the notifyAssociationLookup operation of the IoT
Service client, providing the Associations and the subscription ID as parameters.

When the IoT Service Client is no longer interested in receiving notifications pertaining to the
subscription, it will call the unsubscribeAssociationLookup operation of the VE Resolution using
the subscription identifier as parameter. As a result, the VE Resolution will stop sending
notifications pertaining to the identified subscription.

Figure 63 Subscribe Look-up of Associations for VE Identifier and VE Service Specification

Interaction Diagram: Discover Associations

For the discovery of associations based on a specification of the Virtual Entity and the
specification of the service associated with the Virtual Entity, an IoT Service Client
synchronously calls the Virtual Entity Resolution component, using the discoverAssociations
operation with the VESpecification and the VEServiceSpecification as parameters. The
VESpecification specifies the Virtual Entities that are of interest. The VEServiceSpecification
contains the attribute of the Virtual Entity with which the required service needs to be associated
and potentially other information, i.e., if the value of the attribute should be returned by the
service or if the service should influence this value as in the case of actuation. An association is
the relation between a VE-ID and a Service Identifier and is described by the attribute name and

IoT-Service Client

(from WP4
Interactions)

Virtual Entity
Resolution

(from WP4
Interactions)

subscribeAssocationsLookup(VE-ID, VEServiceSpecification, notificationCallback) :SubscriptionID

notifyAssociationLookup(SubscriptionID, Association[])

notifyAssociationLookup(SubscriptionID, Association[])

unsubscribeAssociationLookup(SubscriptionID)

IoT-A (257521)

Internet of Things - Architecture © - 229 -

additional information. The Virtual Entity Resolution discovers fitting associations based on the
VESpecification and the VEServiceSpecification and provides the resulting array as the return
value. All fitting associations must refer to a Virtual Entity that fits the VESpecification and for
this Virtual Entity, the VEServiceSpecification has to fit as well.

Figure 64: Discover Associations based on VE Specifications and VEServiceSpecifications.

Interaction Diagram: Subscribe Associations Discovery

For subscribing to asynchronously receive notifications about the current set of associations
fitting a VE Specification and a VE Service Specification, an IoT Service Client synchronously
calls the VE Resolution, using the subscribeAssociationDiscovery operation with the VE
Specification specifying the Virtual Entities of interest, the VE Service Specification identifying
the services associated to the Virtual Entities that are of interest and the notification callback, to
which notifications are to be sent, as parameters. The notification callback identifies the
endpoint on the IoT Service Client side that implements the notifyAssociationDiscovery
operation. The VE Resolution returns the subscription identifier that can be used to map an
incoming notification to the subscription it belongs to.

Subsequently, the VE Resolution will call the notifyAssociationDiscovery operation of the IoT
Service client, providing the associations and the subscription ID as parameters. A notification
will be sent whenever a previously provided association changes or is deleted. A notification will
also be sent if a new association fitting the given VE Specification and VE Service Specification
becomes available.

IoT-Service Client

(from WP4
Interactions)

Virtual Entity
Resolution

(from WP4
Interactions)

discoverAssociations(VESpecification, VEServiceSpecification) :Association[]

IoT-A (257521)

Internet of Things - Architecture © - 230 -

When the IoT Service Client is no longer interested in receiving notifications pertaining to the
subscription, it will call the unsubscribeAssociationDiscovery operation of the VE Resolution
using the subscription identifier as parameter. As a result, the VE Resolution will stop sending
notifications pertaining to the identified subscription.

Figure 65 Subscribe Discovery of Associations based on VE Specification and VE Service
Specification

Interaction Diagram: Insert Associations

An IoT Service, the VE & IoT Service Monitoring or even another component in the system
inserts an Association into the Virtual Entity Resolution component. An association is the
relation between a VE-ID and a Service Identifier and is described by the attribute name and
additional information. The call to the Virtual Entity Resolution component is synchronous and
uses the insertAssociation operation with the Association as parameter. The Virtual Entity
Resolution component inserts the Association into its internal information base and returns the
AssociationID that uniquely identifies the stored Association. As a result, the updated
information required for lookup and discovery can efficiently be found.

IoT-Service Client

(from WP4
Interactions)

Virtual Entity
Resolution

(from WP4
Interactions)

subscribeAssociationDiscovery(VESpecification, VEServiceSpecification, notificationCallback) :SubscriptionID

notifyAssociationDiscovery(SubscriptionID, Association[])

notifyAssociationDiscovery(SubscriptionID, Association[])

unsubscribeAssociationDiscovery(SubscriptionID)

IoT-A (257521)

Internet of Things - Architecture © - 231 -

Figure 66: Insert Association.

Interaction Diagram: Update Associations

An IoT Service, the VE & IoT Service Monitoring or even another component in the system
updates an Association into the Virtual Entity Resolution component. An association is the
relation between a VE-ID and a Service Identifier and is described by the attribute name and
additional information. The call to the Virtual Entity Resolution component is asynchronous and
uses the updateAssociation operation with the Association as parameter. The Virtual Entity
Resolution component updates the Association in its internal information base, so the
information required for lookup and discovery can efficiently be found.

IoT Service

(from WP4
Interactions)

Virtual Entity
Resolution

(from WP4
Interactions)

In an alternative use
case, the VE & IoT
Service Monitoring
calls insertAssociation,
see T4.3

insertAssociation(Association) :AssociationID

IoT-A (257521)

Internet of Things - Architecture © - 232 -

Figure 67: Update Associations.

Interaction Diagram: Delete Associations

An IoT Service, the VE & IoT Service Monitoring or even another component in the system
deletes an Association from the Virtual Entity Resolution component. An association is the
relation between a VE-ID and a Service Identifier and is described by the attribute name and
additional information. The call to the Virtual Entity Resolution component is asynchronous and
uses the deleteAssociation operation with the AssociationID as parameter. The Virtual Entity
Resolution component deletes the Association identified by the AssociationID from its internal
information base.

IoT Service

(from WP4
Interactions)

VE & IoT Service
Monitoring

(from WP4
Interactions)

In an alternative use
case, the VE & IoT
Service Monitoring calls
updateAssociation, see
T4.3

updateAssociation(Association)

IoT-A (257521)

Internet of Things - Architecture © - 233 -

Figure 68: Delete Association.

C.3.1.3 Interface Definitions
In this subsection we present the operations of the Virtual Entity Resolution functional
component, i.e., look up association, discover association, insert association, update
association and delete association.

Interface Definition: Look Up Association

Input:

Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Look Up
Associations
for Virtual
Entity & VE
Service
Specification”
Use Case

IoT Service
Client

Virtual
Entity
Resolution

lookupAssociation:
given the Virtual
Entity ID and the
VE Service
Specification
provide the fitting
associations

VE-ID,
VEService-
Specification

VE-ID,
VEService-
Specification
available

Output:

Functionality
Output

Impacted
Components

Return value Exception

Provide the
associations
that fit the VE-ID

- Array of
Associations

- [no fitting
services is a

IoT Service

(from WP4
Interactions)

VE & IoT Service
Monitoring

(from WP4
Interactions)

In an alternative use
case, the VE & IoT
Service Monitoring
calls deleteAssociation,
see T4.3

deleteAssociation(AssociationID)

IoT-A (257521)

Internet of Things - Architecture © - 234 -

and the VE-
Service-
Specification

normal case]

Interface Definition: Subscribe Association Look-Up

Input:

Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Subscribe
to look-up of
Associations
based on VE
Identifier and
VE Service
Specification
” Use Case

IoT Service
Client

Virtual
Entity
Resolution

subscribeAssociation
Lookup: given the VE
Entity ID and the VE
Service Specification
asynchronously
notify the IoT Service
Client about the
fitting associations –
as a result of the
subscription and on
any change of the
service description

VE-ID

VE Service
Specificatio
n

Notification-
Callback

VE-ID
available

VE Service
Specification
available

Notification-
Callback and
notify-
Association-
Lookup
implemented
on the IoT
Service
Client side

Output:

Functionality
Output

Impacted
Components

Return value Exception

Subscription
identifier

- SubscriptionID Subscription
failed

Interface Definition: Notify Association Look-Up

Input:

Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Subscribe
to look-up of
Associations
based on VE
Identifier and
VE Service
Specification

Virtual
Entity
Resolution

IoT Service
Client

notifyAssociation-
Lookup: an update
with those
Associations is
provided, which, on
the one hand, fit the
subscription and, on
the other hand, have

Subscriptio
nID,
Association
[]

Notification-
Callback
available
and IoT
Service
Client
reachable
using the

IoT-A (257521)

Internet of Things - Architecture © - 235 -

” Use Case changed or have not
previously been
provided. The
subscription to which
the notification
pertains is identified
by the subscription
identifier

Notification-
Callback

Interface Definition: Unsubscribe Association Look-Up

Input:

Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Unsubscrib
e to look-up
of
Associations
” Use Case

IoT Service
Client

Virtual
Entity
Resolution

Unsubscribe-
AssociationLookup:
given the
SubscriptionID
cancel the respective
subscription

Subscriptio
nID

SubscriptionI
D available

VE
Resolution
reachable

Interface Definition: Discover association

Input:

Illustrative
Action

Calling
Componen
t

Called
Componen
t

Name of the
functionality

Parameters Prerequisite

“Discover
Associations
based on VE
Spefication
and VE
Service
Specification
” Use Case

IoT Service
Client

Virtual
Entity
Resolution

discoverAssociation
: given the VE
Specification and
the VE Service
Specification
provide the fitting
associations

VE
Specification
, VE Service
Specification

VE
Specification
, VE Service
Specification
available

Output:

Functionality
Output

Impacted
Components

Return value Exception

Provide the
associations
that fit the VE
Specification
and the VE-
Service-

- Array of
ServiceDescription

- [no fitting
services is a
normal case]

IoT-A (257521)

Internet of Things - Architecture © - 236 -

Specification

Interface Definition: Subscribe Association Discovery

Input:

Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Subscribe
to discovery
of
Associations
based on VE
Specification
and VE
Service
Specification
” Use Case

IoT Service
Client

Virtual
Entity
Resolution

subscribeAssociatio
nDiscovery: given
the VE
Specification and
the VE Service
Specification
asynchronously
notify the IoT
Service Client
about the fitting
associations – as a
result of the
subscription and on
any change of the
fitting associations

VE
Specification

VE Service
Specification

Notification-
Callback

VE
Specification
available

VE Service
Specification
available

Notification-
Callback and
notify-
Association-
Discovery
implemented
on the IoT
Service
Client side

Output:

Functionality
Output

Impacted
Components

Return value Exception

Subscription
identifier

- SubscriptionID Subscription
failed

Interface Definition: Notify Association Discovery

Input:

Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Subscribe
to discovery
of
Associations
based on VE
Specioficatio
n and VE
Service
Specification

Virtual
Entity
Resolution

IoT Service
Client

notifyAssociation-
Discovery: an update
with those
Associations is
provided, which, on
the one hand, fit the
subscription and, on
the other hand, have
changed or have not

Subscriptio
nID,
Association
[]

Notification-
Callback
available
and IoT
Service
Client
reachable
using the
Notification-

IoT-A (257521)

Internet of Things - Architecture © - 237 -

” Use Case previously been
provided. The
subscription to which
the notification
pertains is identified
by the subscription
identifier

Callback

Interface Definition: Unsubscribe Association Discovery

Input:

Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Unsubscrib
e to
discovery of
Associations
” Use Case

IoT Service
Client

Virtual
Entity
Resolution

Unsubscribe-
AssociationLookup:
given the
SubscriptionID
cancel the respective
subscription

Subscriptio
nID

SubscriptionI
D available

VE
Resolution
reachable

Interface Definition: Insert Association

Input

Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Insert
Association”
Use Case

IoT Service /
VE & IoT
Service
Monitoring

Virtual
Entity
Resolution

insertAssociation:
insert the given
association into
the information
base of the
Virtual Entity
Resolution

Association Association
available

Output

Functionality
Output

Impacted
Components

Return value Exception

Association
identifier that
uniquely
identifies the
stored
Association

- AssociationID Association
could not be
inserted

IoT-A (257521)

Internet of Things - Architecture © - 238 -

Interface Definition: Update Association

Input

Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Update
Association”
Use Case

IoT Service /
VE & Iot
Service
Monitoring

Virtual
Entity
Resolution

Update-
Association:
update the
given
association in
the
information
base of the
Virtual Entity
Resolution

Association Association
available,
Association to
be updated
stored in the
Virtual Entity
Resolution
information
base

Interface Definition: Delete Association

Input

Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Delete
Association”
Use Case

IoT Service /
VE & Iot
Service
Monitoring

Virtual
Entity
Resolution

Delete-
Association
given the
AssociationID
delete the
Association
from the
information
base of the
Virtual Entity
Resolution

AssociationID AssociationD
available,
Association in
the
information
base of the
Virtual Entity
Resolution

IoT-A (257521)

Internet of Things - Architecture © - 239 -

C.3.2 Virtual Entity and IoT Service Monitoring functional component

C.3.2.1 Use Cases
This section covers the Virtual Entity and IoT Service Monitoring use cases. The Virtual Entity &
IoT Service functional component is responsible for finding and monitoring dynamic
associations between Virtual Entities and services. Static associations between Virtual Entities
and services are valid all the time, e.g., in cases where the device providing the service is
embedded in the Physical Entity which is the physical counterpart of the Virtual Entity. For
dynamic entities this is not the case, i.e., they can become invalid. A dynamic association may
for example be valid when the device providing the service and the Physical Entity are in close
proximity and become invalid if one of them moves away.

Figure 692 covers the following use cases:

 Assert static Virtual Entity to IoT service association

o This use case is internally triggered by the Virtual Entity & IoT Service Monitoring
functional component.

o The assumption is that the functional component was configured with respect to the
aspects that need to be monitored in order to assert static associations.

o The Virtual Entity & IoT Service Monitoring unit asserts a static association between
a Virtual Entity and a service.

o As the result of asserting a new static association, the Insert Association use case
of the Virtual Entity Resolution is triggered (see B.3). Due to the static nature of the
association, it does not have to be monitored.

 Discover associations between Virtual Entities and services

o The use case is internally triggered by the Virtual Entity & IoT Service Monitoring
functional component.

o The assumption is that the component was configured with respect to aspects that
need to be monitored in order to discover dynamic associations (see Annex B.3).
Important aspects include the location, proximity, and other context information that
is modelled for Physical Entities and devices hosting resources.

o The Virtual Entity & IoT Service Monitoring discovers new dynamic associations by
which Virtual Entities and services are related.

o As the result of discovering a new dynamic association, the insert association use
case of the Virtual Entity Resolution is triggered (see B.3). Also, as the association
is dynamic, it needs to be monitored.

 Monitor existing associations between Virtual Entities and services

o The use case is internally triggered by the Virtual Entity & IoT Service Monitoring
functional component.

o The assumption is that it the aspects that were relevant for the discovery of the
dynamic association can change so the dynamic association becomes invalid.

IoT-A (257521)

Internet of Things - Architecture © - 240 -

o The Virtual Entity & IoT Service Monitoring function monitors the aspects that were
relevant for the discovery of the dynamic association (see Annex B.3) to determine
whether the association has changed or has become invalid.

o As the result of monitoring an existing dynamic association, the “update
association” use case or the “delete association” use case of the virtual-entity
resolution can be triggered.

Figure 69: Virtual Entity & IoT Service Monitoring.

Virtual Entity Resolution

VE & IoT Service Monitoring

Discov er Dynamic Associations
between Virtual Entities and

Serv ices

Monitor Existing Dynamic
Associations between Virtual

Entities and Serv ices

Assert Static Virtual Entity to IoT
Serv ice Association

(from Domain Agnostic
Use Cases)

Insert Association

(from Domain Agnostic
Use Cases)

Update Association

(from Domain Agnostic
Use Cases)

Delete Assoication

«invokes»

«invokes»

«invokes»

«invokes»

IoT-A (257521)

Internet of Things - Architecture © - 241 -

C.3.2.2 Interaction Diagrams
The Interaction diagram related to the use cases of the Virtual Entity and IoT Service Monitoring
functional component are depicted below.

Interaction Diagram: Assert Static Association

The VE & IoT Service Monitoring component monitors possible static associations between
Virtual Entities and IoT Services based on relevant information that may for example include
location, ownership or other context parameters. Once a static association has been found, the
VE & IoT Service Monitoring asynchronously calls the Virtual Entity Resolution using the
insertAssociation operation with the newfound Association as parameter.

Figure 70: Assert Static VE-IoT Service Association.

VE & IoT Service
Monitoring

(from WP4
Interactions)

Virtual Entity
Resolution

(from WP4
Interactions)

assertStaticAssociation(Association)

insertAssociation(Association)

IoT-A (257521)

Internet of Things - Architecture © - 242 -

Interaction Diagram: Discover Dynamic Associations

The VE & IoT Service Monitoring component monitors possible dynamic associations between
Virtual Entities and IoT Services based on relevant information that may for example include
location, ownership or other context parameters. Once a dynamic association has been found,
the VE & IoT Service Monitoring asynchronously calls the Virtual Entity Resolution using the
insertAssociation operation with the newfound Association as parameter. The difference to the
case of the Static Association is that the validity of the dynamic associations has to be
constantly monitored.

Figure 71: Discover Dynamic Associations between VEs and Services.

VE & IoT Service
Monitoring

(from WP4
Interactions)

Virtual Entity
Resolution

(from WP4
Interactions)

discoveredDynamicAssociation(Association)

insertAssociation(Association)

IoT-A (257521)

Internet of Things - Architecture © - 243 -

Interaction Diagram: Monitor Existing Dynamic Associations - Update

The VE & IoT Service Monitoring component monitors existing dynamic associations between
Virtual Entities and IoT Services based on the information that lead to establishing the
association. If a change in an existing association has been found, the VE & IoT Service
Monitoring asynchronously calls the Virtual Entity Resolution using the updateAssociation
operation with the updated Association as parameter.

Figure 72: Monitor and Update Existing Dynamic Associations.

VE & IoT Service
Monitoring

(from WP4
Interactions)

Virtual Entity
Resolution

(from WP4
Interactions)

associationUpdate(Association)

updateAssociation(Association)

IoT-A (257521)

Internet of Things - Architecture © - 244 -

Interaction Diagram: Monitor Existing Dynamic Associations - Delete

The VE & IoT Service Monitoring component monitors existing dynamic associations between
Virtual Entities and IoT Services based on the information that lead to establishing the
association. If a change in the information is found that invalidates the association, the VE & IoT
Service Monitoring asynchronously calls the Virtual Entity Resolution using the
deleteAssociation operation with the AssociationID as parameter.

Figure 73: Monitor and Delete Existing Dynamic Associations.

VE & IoT Service
Monitoring

(from WP4
Interactions)

Virtual Entity
Resolution

(from WP4
Interactions)

associationNoLongerValid(AssociationID)

deleteAssociation(AssociationID)

IoT-A (257521)

Internet of Things - Architecture © - 245 -

C.3.2.3 Interface Definitions
In this subsection we present the operations of the VE & IoT Service Monitoring functional
component, i.e., assert static association, discovered dynamic association, association no
longer valid and association update.

Interface Definition: Assert Static Association

Input

Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameter
s

Prerequisit
e

“Assert
Static
Virtual
Entity to IoT
Service
Association
” Use Case

VE & IoT
Service
Monitoring
(Monitoring
)

VE & IoT
Service
Monitoring
(Adaptation
)

assertStaticAssociation
: a static association
was discovered, update
information accordingly

Association Discovered
static
association

Interface Definition: Discovered Dynamic Association

Input

Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Discover
Dynamic
Associations
between
Virtual
Entities and
Services”
Use Case

VE & IoT
Service
Monitoring
(Monitoring)

VE & IoT
Service
Monitoring
(Adaptation)

discoveredDynamic-
Association: a
dynamic association
was discovered,
update information
accordingly and
start monitoring the
validity of the
dynamic association

Association Discovered
dynamic
association

IoT-A (257521)

Internet of Things - Architecture © - 246 -

Interface Definition: Association No Longer Valid

Input

Illustrative
Action

Calling
Compone
nt

Called
Componen
t

Name of the
functionality

Parameters Prerequisite

“Monitor
Existing
Dynamic
Association
s between
Virtual
Entities
and
Services”
Use Case

VE & IoT
Service
Monitoring
(Monitorin
g)

VE & IoT
Service
Monitoring
(Adaptatio
n)

associationNoLongerVal
id: it was discovered
that the association with
given AssociationID is
no longer valid

AssociationI
D

AssociationI
D
given

Interface Definition: Association Update

Input

Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Monitor
Existing
Dynamic
Associations
between
Virtual
Entities and
Services”
Use Case

VE & IoT
Service
Monitoring
(Monitoring)

VE & IoT
Service
Monitoring
(Adaptation)

associationUpdate:
it was discovered
that the given
Association needs
to be updated

Association Updated
Association

IoT-A (257521)

Internet of Things - Architecture © - 247 -

C.4 Security
C.4.1 IoT Service Resolution functional component

C.4.1.1 Use Cases
In this section we present two use cases that illustrate the utilisation of security-related
functional components.

Both use cases extend the “Discovery of an IoT-Service based on Service Specification” by
adding additional steps before and after ensuring security and privacy related aspects. It has to
be emphasised that this use case “discovery of an IoT service based on service specification” is
just a place holder for any of those use cases identified in the previous Appendix (B.2, B.3).

Use Case 1: Secure Discovery of an IoT Service
This use case illustrates how the discovery of services has to be restricted to those users or
applications that are authorised to know about it, including the creation of a new pseudonym (to
ensure the privacy of a user). In this use case, it is assumed that the communication between
functional components is not limited.

The actor in the use case shown in Figure 747 is a user who utilises a service client to discover
an IoT-Service or a high-level service composition or orchestration. An example for such a
service is discovery. The following use cases are all depicted in Figure 74.

 Authenticate the user: The user is authenticated and an assertion of his identity is
provided4.

 Discover person-related IoT services for authorised personnel: This use case extends
the original discovery IoT service by adding security and privacy protection functionality.
The use case includes:

o Authorise general access to discovery: Apply access restriction to the authenticated
user. Such restriction may include further obligations like pseudomisation of the
result.

o Discover service based on service specification.

o As mentioned above this use case is just a place holder.

o Filter discovery results: The original result list of the previous use case is limited to
those results the authenticated user is allowed to see.

o Create and deploy new pseudonym: An optional use case, in which the identifier
which is discovered will be replaced by a pseudonym and provided to the user.

It is assumed as a pre-condition that the user is known and can be authenticated (e.g. through a
password or asymmetric key). The authentication use case only has to be executed once for the
validation period of the given assertion. In addition, the policies regarding the discovery of
services with respect to privacy are deployed at the respective component. As a post-condition

4 As an example, an OASIS SAML Authentication Assertion could be provided.

IoT-A (257521)

Internet of Things - Architecture © - 248 -

of the secure discovery of an IoT service, the user only receives those services that he is
entitled to see due to privacy restrictions.

Figure 74: Secure discovery of IoT services.

IoT-A (257521)

Internet of Things - Architecture © - 249 -

Use Case 2: Secure Direct Discovery of IoT-Services
The discovery of IoT-Services that may reveal personal information, e.g. those used for health
monitoring, needs to be secured also in those cases, in which the discovery is not able to
access additional security information on the fly. Thus the related credentials have to be
processed prior to the discovery.

Figure 75: Secure Direct Discovery of IoT Services.

The actor in the uses case shown in Figure 758 is again a user who utilises a service client. In a
first phase, during which the related components are available, the following actions take place:

IoT-A (257521)

Internet of Things - Architecture © - 250 -

 Authenticate the user: The user is authenticated and an assertion of this identity is
provided.

 Retrieve credentials: Based on the identity of the user, a list of credentials is provided,
which prove the privileges of the user in a self-contained manner. This proof can also
be based on simultaneously deployed information.

During a second phase, the service client may only communicate directly with an isolated
discovery component. This includes the actions:

 Discover an IoT service directly for authorised personnel: This use case extend the
original Discover IoT-service, by applying access restrictions. It includes:

o Present credentials: The credentials are verified and the related privileges will be
retrieved.

o Discover service based on service specification

o As mentioned above, this use case is just a place holder.

o Restrict access based on credentials: Applies the privileges of the user to the result
of the previous use case, especially removes those services that the user is not
allowed to see.

It is assumed as a pre-condition that the user is known and that the user can be authenticated
(e.g., through password or asymmetric key). Authentication only has to be executed once for
the validation period of the given assertion. These assertions allow the user to retrieve the
access credentials for further processing during the second phase. In addition, the policies
regarding the discovery of services (with respect to privacy) are deployed at the respective
component realizing the “retrieve credential” use case.

It is assumed that during the second phase, the service client as well as the component
realising the discovery service is unable to communicate with any of the components realising
the use case of the first phase.

As a post-condition of the secure discovery of an IoT Service, the user only receives those
services that he is entitled to see according to privacy restrictions.

C.4.1.2 Interaction Diagrams
The Interaction diagram related to the use cases above are depicted below.

Interaction Diagram: Restricted Discovery
Before interacting with the IoT System, the User has to authenticate with the Authentication
component of the IoT System. The User synchronously calls the authenticate operation of the
Authentication component, providing his/her credentials. The Authentication component verifies
the credentials and provides an Assertion that provides the basis for the interaction between the
User and the IoT System.

The User utilizes an IoT Service client for interacting with the system. As part of that a
discoverService operation may be called by the IoT Service client as described in B.2.1.2.In
addition to what is described there, the Assertion is passed to the IoT Service Resolution
component as a new parameter. As the first step, the IoT Service Resolution verifies the
Assertion calling the verify operation of the Authentication component, providing the Assertion
as its parameters. If the Assertion can successfully be verified the operation returns true and the
IoT Service Resolution can proceed with the discovery as described in Section B.2.1.2.

IoT-A (257521)

Internet of Things - Architecture © - 251 -

Figure 76: Restricted discovery.

The IoT Service Resolution component then has to check whether the requesting User is
allowed to see each Service Description returned by the discovery operation. For this purpose,
it calls the authorize operation of the Authorization component, providing the assertion, the
Service Description, and the Action Type "discovery". The results can further be pseudonymized
by calling the createPseudonym operation of the Pseudonymization component. The result is a
new ServiceID. In the next step the IoT Service Resolution can replace the original ServiceID
with the pseudonym ServiceID. Finally the array of discovered Service Descriptions is returned
to the IoT Service Client as described in the original process in Section B.2.1.2.

U
se

r

(fr
om

 W
P

4
In

te
ra

ct
io

ns
)

Io
T

-S
er

vi
ce

 C
lie

nt

(fr
om

 W
P

4
In

te
ra

ct
io

ns
)

Io
T

S
er

vi
ce

R
es

ol
ut

io
n

A
ut

he
nt

ic
at

io
n

A
ut

ho
riz

at
io

n
P

se
ud

on
ym

iz
at

io
n

au
th

en
tic

at
e(

U
se

rC
re

de
nt

ia
l)

:A
ss

er
tio

n

us
e

ap
pl

ic
at

io
n(

A
ss

er
tio

n)

di
sc

ov
er

S
er

vi
ce

(A
ss

er
tio

n,
 S

er
vi

ce
S

pe
ci

fic
at

io
n)

 :S
er

vi
ce

D
es

cr
ip

tio
n[

]

ve
rif

y(
A

ss
er

tio
n)

 :b
oo

le
an

di
sc

ov
er

S
er

vi
ce

(S
er

vi
ce

S
pe

ci
fic

at
io

n)
 :S

er
vi

ce
D

es
cr

ip
tio

n[
]

au
th

or
iz

e(
A

ss
er

tio
n,

 S
er

vi
ce

D
es

cr
ip

tio
n,

 A
ct

io
nT

yp
e)

 :b
oo

le
an

cr
ea

te
P

se
ud

on
ym

(S
er

vi
ce

ID
) :

S
er

vi
ce

ID

ad
op

tS
er

vi
ce

D
es

ci
pt

io
n(

S
er

vi
ce

ID
, S

er
vi

ce
D

es
cr

ip
tio

n)
 :S

er
vi

ce
D

es
cr

ip
tio

n

IoT-A (257521)

Internet of Things - Architecture © - 252 -

Interaction Diagram: Restricted Lookup
In a similar way as the discovery, the service lookup must be controlled in order to protect the
privacy of the targeted system (see Figure 770).

Again, the user authenticates to the Authentication components and receives and authentication
assertion. In addition to the ServiceSpecification, this assertion is passed to the lookup IoT
Service Resolution. The Resolution component verifies the Assertion at the Authentication
component and – in case of positive result – the actual look-up process can start. If the
ServiceID is a pseudonym (see Section B.2.1.2), then the pseudonym must be resolved first
using the Pseudonymization component. Then, it is checked if the user is allowed to lookup that
resulting ServiceID. Finally, the ServiceID is used by the actual look-up and the
ServiceDescription is returned.

Figure 77: Restricted Lookup.

U
se

r

(fr
om

 W
P

4
In

te
ra

ct
io

ns
)

Io
T

-S
er

vi
ce

 C
lie

nt
Io

T
S

er
vi

ce
R

es
ol

ut
io

n
A

ut
he

nt
ic

at
io

n
A

ut
ho

riz
at

io
n

P
se

ud
on

ym
iz

at
io

n

au
th

en
tic

at
e(

U
se

rC
re

de
nt

ia
l)

:A
ss

er
tio

n

us
e

ap
pl

ic
at

io
n(

A
ss

er
tio

n)

lo
ok

up
S

er
vi

ce
(S

er
vi

ce
ID

, A
ss

er
tio

n)
 :S

er
vi

ce
D

es
cr

ip
tio

n

ve
rif

y(
A

ss
er

tio
n)

 :b
oo

le
an

re
so

lv
eP

se
ud

on
ym

(S
er

vi
ce

ID
) :

S
er

vi
ce

ID

lo
ok

up
S

er
vi

ce
(S

er
vi

ce
ID

) :
S

er
vi

ce
D

es
cr

ip
tio

n

au
th

or
iz

e(
A

ss
er

tio
n,

 S
er

vi
ce

ID
, A

ct
io

nT
yp

e)
 :b

oo
le

an

IoT-A (257521)

Internet of Things - Architecture © - 253 -

C.4.1.3 Interface Definitions
In this subsection we present the operations of the security-related functional components that
are relevant for IoT Service Resolution, Virtual Entity Resolution and VE & IoT Service
Monitoring. The functional components are Authentication, Authorization and
Pseudonymization.

Interface Definition: Authentication
authenticate

Input
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Restricted
Discovery/
Lookup”
Use Cases

User Authentication authenticate:
check the
users
“identity” by
validating his
credentials

UserCredential -

Output
Functionality
Output

Impacted
Components

Return value Exception

Authentication
Assertion to be
presented to
services

- Assertion Authentication
failed

IoT-A (257521)

Internet of Things - Architecture © - 254 -

verify

Input
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Restricted
Discovery/
Lookup” Use
Cases

IoT Service
Resolution

Authentication verify: check
the validity of
the assertion

Assertion -

Output
Functionality
Output

Impacted
Components

Return value Exception

is the assertion
valid?

- Boolean -

Interface Definition: Authorization

Input
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

“Restricted
Discovery/
Lookup” Use
Cases

IoT Service
Resolution

Authorization authorize:
check if the
assertion
allows to
perform the
operation on
the resource

Assertion
Resource
ActionType

-

Output
Functionality
Output

Impacted
Components

Return value Exception

is the access
allowed?

- Boolean -

Interface Definition: Pseudonymization
createPseudonym

Input
Illustrative
Action

Calling
Component

Called
Component

Name of the
functionality

Parameters Prerequisite

IoT-A (257521)

Internet of Things - Architecture © - 255 -

“Restricted
Discovery/
Lookup”
Use
Cases

IoT Service
Resolution

Pseudonymization createPseudonym:
create a
Pseudonym for a
ServiceID

ServiceID -

Output
Functionality
Output

Impacted
Components

Return value Exception

Pseudonym for
the ServiceID

- ServiceID -

IoT-A (257521)

Internet of Things - Architecture © - 256 -

resolvePseudonym

Input
Illustrative
Action

Calling
Componen
t

Called
Component

Name of the
functionality

Parameter
s

Prerequisit
e

“Restricte
d
Discovery/
Lookup”
Use
Cases

IoT Service
Resolution

Pseudonymizatio
n

resolvePseudonym
: get the “real”
ServiceID for the
pseudonymized
ServiceID

ServiceID Pseudonym
was
created
before

Output
Functionality
Output

Impacted
Components

Return value Exception

ServiceID for
the
pseudonymized
ServiceID

- ServiceID ServiceID not
found

	Overview of the IoT-A project partners
	Table of content
	List of abbreviations
	Table of figures
	1 Executive Summary
	1.1 Objectives
	1.2 Document structure
	1.3 Project-internal inputs

	2 Introduction
	2.1 Usage of architectural reference models
	2.1.1 Cognitive aid
	2.1.2 IoT-A Reference Model as a common grounding
	2.1.3 Generation of architectures
	2.1.4 Identifying differences
	2.1.5 Benchmarking

	2.2 Process and Methodology
	2.2.1 Introduction
	2.2.2 Reference model and reference architecture
	2.2.3 Actions and inputs
	2.2.4 Overall process
	2.2.4.1 ARM development
	2.2.4.2 Generation of architectures
	2.2.4.3 Choice of design and development methodology
	2.2.4.4 Requirements process

	2.3 Business Scenarios
	2.3.1 Rationale and Introduction
	2.3.2 Fields of Application
	2.3.3 Business Case Methodology
	2.3.4 Retail Business Case

	3 Reference model
	3.1 Interaction of all sub-models
	3.2 Domain Model
	3.2.1 Definition and Purpose
	3.2.2 Main abstractions and relationships
	3.2.2.1 Interpreting the model diagram
	3.2.2.2 The core IoT Domain Model

	3.2.3 Detailed explanations and related concepts
	3.2.3.1 Devices and Device capabilities
	3.2.3.2 Resources
	3.2.3.3 Services
	3.2.3.4 Identification of Physical Entities
	3.2.3.5 Context and location

	3.3 Information model
	3.3.1 Relation of Information Model to Domain Model
	3.3.2 Data in IoT systems
	3.3.3 Other information-related models in IoT-A

	3.4 Functional model
	3.4.1 Functional decomposition
	3.4.2 Functional Model Diagram
	3.4.2.1 IoT Business Process Management
	3.4.2.2 Service Organisation
	3.4.2.3 Virtual Entity & IoT Service
	Virtual Entity
	IoT Service

	3.4.2.4 Communication
	3.4.2.5 Management
	3.4.2.6 Security

	3.5 Communication model
	3.5.1 Communication stack
	3.5.2 Actors in IoT communication
	3.5.3 Channel model for IoT communication
	3.5.4 IoT Communication model as seen from the application level

	3.6 Trust, Security and Privacy
	3.6.1 Trust
	3.6.1.1 Trust models
	3.6.1.2 Interoperability

	3.6.2 Security
	3.6.2.1 Communication Security

	4 Reference architecture
	4.1 Short definition of views and perspectives
	4.2 Views
	4.2.1 Usage for the IoT-A Reference Architecture
	4.2.2 Functional
	4.2.2.1 Functional View Process
	4.2.2.2 IoT Business Process Management
	Business Process Modelling
	Default function set

	Business Process Execution
	Default function set

	4.2.2.3 Service Organisation
	Service Orchestration
	Default function set

	Service Composition
	Default function set

	4.2.2.4 Virtual Entity
	Virtual-Entity (VE) Resolution
	Default function set

	Virtual-Entity & IoT Service Monitoring
	Default function set

	Virtual-Entity Service
	Default function set

	4.2.2.5 IoT Service
	IoT Service Resolution
	Default function set

	IoT Service

	4.2.2.6 Communication
	Gateway
	Default function set

	Flow Control & Reliability
	Default function set

	Routing & Addressing
	Default function set

	Energy Optimization
	Default function set

	QoS
	Default function set

	Error Detection & Correction
	Default function set

	4.2.2.7 Security
	Authorization (AuthZ)
	Default function set

	Authentication (AuthN)
	Default function set

	Identity Management (IM)
	Default function set

	Key Exchange and Management (KEM)
	Default function set

	Trust and Reputation Architecture (TRA)
	Default function set

	4.2.2.8 Management
	QoS Manager
	Default function set

	Device Manager
	Default function set

	4.2.3 Information
	4.2.3.1 Information Description
	Description of Virtual Entities
	Viewpoint for modelling entity type hierarchies
	Service descriptions
	Associations between Virtual Entities and services

	4.2.3.2 Information Handling
	4.2.3.3 Information Life Cycle

	4.2.4 Deployment & Operation

	4.3 Perspectives
	4.3.1 Evolution and interoperability
	4.3.2 Performance and scalability
	4.3.3 Trust, Security and privacy
	4.3.3.1 Trust
	4.3.3.2 Security
	4.3.3.3 Privacy

	4.3.4 Availability and resilience

	5 Best practices
	5.1 Overview
	5.2 Usage of the IoT Reference Model
	5.2.1 Guidelines for using the IoT Domain Model
	5.2.1.1 Deployment configurations
	5.2.1.2 Modelling of non-IoT-specific aspects
	5.2.1.3 Identifiers and addresses
	5.2.1.4 Granularity of concepts
	5.2.1.5 Common patterns
	Augmented Entities
	Multiple Virtual Entities
	Smart phones
	Simple interactions
	M2M interaction
	RFID gate in logistics

	5.2.2 Examples for IoT Domain Model objects
	5.2.2.1 User
	Application
	Human User

	5.2.2.2 Physical Entity
	Environment
	Living being
	Structural Asset

	5.2.2.3 Resource
	On-Device Resource
	Network Resource

	5.2.2.4 Service
	Interacting services
	Service associated with a Virtual Entity
	Service accessing a resource

	5.2.2.5 Device
	Hierarchical devices

	5.3 Usage of the IoT Reference Architecture
	5.3.1 Design choices
	5.3.1.1 Functional view
	IoT business process management
	Business process modelling according to BPMN 2.0 standard (DC1.1)
	Business process execution by BPMN 2.0 execution engine (DC2.2)

	Service organisation
	Service Orchestration with mandatory security (DC2.1)
	Service Orchestration with optional security (DC2.2)

	Virtual Entity
	Virtual Entity Resolution with mandatory security (DC3.1)
	Virtual Entity Resolution with optional security (DC3.2)
	Virtual Entity Resolution with QoS (DC3.3)
	Virtual Entity Resolution domain-oriented (DC3.4)
	Virtual Entity Resolution location-oriented (DC3.5)
	Virtual Entity Resolution Semantic Web-oriented (DC3.6)
	Virtual Entity Resolution Peer-to-Peer-oriented (DC3.7)
	Virtual Entity Resolution Federation-based (DC3.8)
	Virtual Entity & IoT Service Monitoring with mandatory security (DC3.9)
	Virtual Entity & IoT Service Monitoring with optional security (DC3.10)

	IoT Service Resolution
	IoT Service Resolution with mandatory security (DC4.1)
	IoT Service Resolution with optional security (DC4.2)

	IoT Service
	IoT Service with mandatory security (DC4.3)
	IoT Service with optional security (DC4.4)

	Identification and Authentication
	Identifier based identification (DC5.1)
	Crypto -based authentication over open channel (DC5.2)
	Authentication over encrypted channel (DC5.3)
	Service Access Control
	Unrestricted access to service (DC6.1)
	Authentication based service access (DC6.2)
	Policy-based service access (DC6.3)
	Capability-based service access (DC6.4)

	Sharing Public Keys/Certification
	Manually/Out of Band shared Public Keys (DC7.1)
	Leap-of-faith shared Public keys (DC7.2)
	Certificate Authority (DC7.3)
	Web of Trust (DC7.4)

	Public Keys exchange format
	Raw Public Keys (DC8.1)
	Explicit Certificate (DC8.2)
	Implicit Certificate (DC8.3)

	Communication Confidentiality
	No encryption (DC9.1)
	End-to-end Encryption (DC9.2)
	Hop-to-hop Encryption (DC9.3)
	Onion routing-like encryption (DC9.4)
	Tunnelling (DC9.5)

	Identity Scope
	Local Identity (DC10.1)
	Global Identity (DC10.2)

	5.3.1.2 Information view
	Storage of history
	Storage of history locally (DC11.1)
	Storage of history remotely (DC11.2)
	Storage of history locally and remotely (DC11.3)
	Implementation of semantics
	Implementation of semantics in RDF (DC12.1)
	Implementation of semantics in OWL (DC12.2)
	Implementation of semantics in RDFa (DC12.3)

	5.3.1.3 Deployment and operation view
	Smart object connectivity
	Sensor & Actuator networks (DC13.1)
	RFID and smart tags (DC13.2)
	WiFi (DC13.3)
	Cellular networks (DC13.4)

	“Last mile” communication protocols
	IoT-A protocol suite (DC14.1)
	Ad hoc proprietary stack (DC14.2)
	Other standards not in the IoT-A suite (DC14.3)

	Service hosting
	On smart objects (DC15.1)
	On gateways (DC15.2)
	In the cloud (DC15.3)

	Service engine
	Internal (DC16.1)
	External provider (DC16.2)

	Information storage
	Local only (DC17.1)
	Web only (DC17.2)
	Local and web cached (DC17.3)

	5.3.2 Risk analysis
	5.3.2.1 Elements to protect
	5.3.2.2 Risk Sources
	5.3.2.3 Risk Assessment

	6 Conclusions and Outlook
	References
	Appendix
	A Terminology
	B Requirements
	B.1 Requirements Gathering Methodology
	B.1.1 Gathering external requirements from stakeholders
	B.1.1.1 First Stakeholder Workshop (SW1)
	B.1.1.2 Second and third Stakeholder Workshop 2 (SW2 + SW3)

	B.1.2 Gathering internal requirements
	B.1.3 Unification process

	B.2 Unified requirements list

	C Use cases, sequence charts and interfaces
	C.1 IoT Business Process Management and Service Organisation
	C.1.1 IoT Business Process Management
	C.1.1.1 Use Cases

	C.1.2 Service Organisation
	C.1.2.1 Use Cases
	C.1.2.2 Interaction Diagrams

	C.2 IoT Services
	C.2.1 IoT Service Resolution functional component
	C.2.1.1 Use Cases
	C.2.1.2 Interaction Diagrams
	Interaction Diagram: Resolution
	Interaction Diagram: Subscribe to Resolution
	Interaction Diagram: Lookup
	Interaction Diagram: Subscribe to Lookup
	Interaction Diagram: Discovery
	Interaction Diagram: Subscribe to Discovery
	Interaction Diagram: Insert
	Interaction Diagram: Update
	Interaction Diagram: Delete

	C.2.1.3 Interface definitions
	Interface Definition: Resolve Service
	Input:
	Output:

	Interface Definition: Subscribe Service Resolution
	Input:
	Output:

	Interface Definition: Notify Service Resolution
	Input:

	Interface Definition: Unsubscribe Service Resolution
	Input:

	Interface Definition: Lookup Service
	Input
	Output:

	Interface Definition: Subscribe Service Look-up
	Input
	Output:

	Interface Definition: Notify Service Look-up
	Input

	Interface Definition: Unsubscribe Service Look-up
	Input

	Interface Definition: Discover Service
	Input:
	Output

	Interface Definition: Subscribe Service Discovery
	Input
	Output:

	Interface Definition: Notify Service Discovery
	Input

	Interface Definition: Unsubscribe Service Discovery
	Input

	Interface Definition: Insert Service
	Input:
	Output:

	Interface Definition: Update Service
	Input:

	Interface Definition: Delete Service
	Input:

	C.3 Virtual Entity (VE)
	C.3.1 Virtual Entity Resolution functional component
	C.3.1.1 Use Cases
	C.3.1.2 Interaction Diagrams
	C.3.1.3 Interface Definitions

	C.3.2 Virtual Entity and IoT Service Monitoring functional component
	C.3.2.1 Use Cases
	C.3.2.2 Interaction Diagrams
	C.3.2.3 Interface Definitions

	C.4 Security
	C.4.1 IoT Service Resolution functional component
	C.4.1.1 Use Cases
	Use Case 1: Secure Discovery of an IoT Service
	Use Case 2: Secure Direct Discovery of IoT-Services

	C.4.1.2 Interaction Diagrams
	Interaction Diagram: Restricted Discovery
	Interaction Diagram: Restricted Lookup

	C.4.1.3 Interface Definitions
	Interface Definition: Authentication
	Input
	Output
	Input
	Output

	Interface Definition: Authorization
	Input
	Output

	Interface Definition: Pseudonymization
	Input
	Output
	Input
	Output

