

IoT-A (257521)

Internet-of-Things Architecture © - 1 -

Internet-of-Things Architecture

IoT-A

Project Deliverable D1.2 – Initial Architectural
Reference Model for IoT

Project acronym: IOT-A
Project full title: The Internet-of-Things Architecture
Grant agreement no.: 257521

Doc. Ref.: D1.2
Responsible Beneficiary : Siemens AG
Editor(s): Joachim W. Walewski (Siemens)
List of contributors: Martin Bauer (NEC), Nicola Bui (CFR), Pierpaolo Giacomin

(HEU), Nils Gruschka (NEC), Stephan Haller (SAP), Edward Ho
(HSG), Ralf Kernchen (UniS), Mario Lischka (NEC) ; Jourik De
Loof (ALU BE), Carsten Magerkurth (SAP), Stefan Meissner
(UniS), Sonja Meyer (SAP), Andreas Nettsträter (FHG IML),
Francisco Oteiza Lacalle (TID), Alexander Salinas Segura
(UniW), Alexandru Serbanati (CATTID), Martin Strohbach (NEC),
Vincent Toubiana (ALBLF), Joachim W. Walewski (Siemens)

Reviewers: Stephan Haller (SAP)
Contractual Delivery Date: 2011-05-31
Actual Delivery Date: 2011-06-16
Status: Draft
Version and date Changes Reviewers / Editors
V0, 2011-04-04

Table of Contents (up to
second layer)

Joachim W. Walewski

V1, 2011-05-27 All Sections populated. Proof-
reading by peers.

All

V2, 2011-05-28 Editorial proof reading Joachim W. Walewski
V3, 2011-06-01 Proof reading of entire

document.
Stephan Haller

V4, 2011-06-10 Feedback to all proof-reading
comments provided and all
Sections improved as per the
provided criticism.

All

V5, 2011-06-10 Second proof reading of entire
document.

Stephan Haller

V6, 2011-06-16 Feedback to all proof-reading
comments provided and all
Sections improved as per the
provided criticism.

All

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

PU
PP
RE
CO

Dissemination level
Public
Restricted to other programme participants (including the Commission Services)
Restricted to a group specified by the Consortium (including the Commission Services)
Confidential, only for members of the Consortium (including the Commission Services)

PU

IoT-A (257521)

Internet-of-Things Architecture © - 2 -

Executive summary
One of the main outputs from the IoT-A project is an architectural reference model for the
Internet of Things. This project deliverable provides an initial version of this model, viz. version
0.9.
In this report we discuss the motivation behind this effort, the aspirations of the wider
community, and what procedure we followed when drafting the architectural reference model
presented here. We also explain how our IoT Reference Model, the IoT Reference Architecture,
and concrete IoT architectures relate to each other.
The overview Section is followed by a detailed discussion of the IoT Reference Model. This
discussion covers the main building blocks of the IoT Reference Model, i.e., the domain model,
the information model, and the communication model.
In the next Section we provide a first look at the IoT Reference Architecture, focusing on the
functional view and also security and privacy aspects.
In the appendix, the reader can find the requirements that guided the inference of the reference
architecture, and we also provide an overview of use cases that will be used in our future work
for defining interfaces between functionality groups of the reference architecture and for
validating the reference architecture itself.

IoT-A (257521)

Internet-of-Things Architecture © - 3 -

 Table of Content
List of abbreviations...- 4 -
1. Vision of the architectural reference model ...- 6 -

1.1 Uses of an architectural reference model..- 8 -
1.2 Project-internal input ...- 9 -
1.3 Architecture methodology...- 9 -

1.3.1 Reference model and reference architecture ..- 9 -
1.3.2 Structure of the IoT Reference Architecture description - views and perspectives. -
11 -
1.3.3 How we meet requirements...- 13 -

1.4 Business scenarios ...- 14 -
1.5 Results...- 17 -

2. IoT Reference model...- 19 -
2.1 Discourse about the IoT domain ..- 20 -
2.2 Domain model...- 21 -

2.2.1 Purpose ...- 21 -
2.2.2 Main abstractions an relationships ..- 22 -
2.2.3 Definitions ..- 26 -

2.3 Information model ..- 30 -
2.4 Communication model...- 32 -

2.4.1 Communication stack ..- 32 -
2.4.2 Actors in IoT communication ...- 33 -
2.4.3 Channel model for IoT communication..- 34 -
2.4.4 IoT Communication model as seen from the application level- 36 -

3. Reference architecture ...- 38 -
3.1 Functional view ..- 38 -

3.1.1 Functionality groups...- 39 -
3.1.2 Components and functionalities of longitudinal functionality groups.................- 43 -
3.1.3 Components and functionalities of transversal functionality groups- 47 -

3.2 Security perspective ..- 49 -
3.2.1 Communication security ..- 49 -
3.2.2 Infrastructure services for enabling security and privacy- 50 -

4. Summary and outlook ..- 58 -
4.1 Roadmap toward D1.3..- 59 -

References ..- 61 -
Annex A – Requirements ...- 64 -

A.1 Requirements from stakeholders..- 64 -
A.2 Requirements from Internal Partners ...- 71 -

Annex B – System use cases ..- 83 -
B.1 Process execution and service orchestration ...- 83 -
B.2 Resolution of IoT service ...- 88 -
B.3 Resolution of virtual entities..- 90 -
B.4 Monitoring of virtual entities and IoT services ..- 92 -
B.5 Security ..- 94 -

IoT-A (257521)

Internet-of-Things Architecture © - 4 -

List of abbreviations

API Application-programming interface
AuthN Authentication
AuthS Authorisation
CA Certification authority
CCTV Closed-circuit television
CD Constrained device
CDSecFeat Security feature for constrained device
CIM Common information model
CP Control point
Dn.m IoT-A deliverable n.m
DNS Domain-name system
DP Data processor
DS Data sink
EMR Electronic medical record
EPC Electronic Product Code
EPCIS Electronic Product Code Information Services
ERP Enterprise resource planning
GPS Global positioning system
GW Gateway
ICT Information and communication technology
ID Identity
IoT Internet of Things
IoT-A Internet-of-Things Architecture
ISO International Organization for Standardization
IT Information technology
KEM Key exchange and key management
OASIS Organization for the Advancement of Structured Information Standards
QR Quick response
M2M Machine to machine
ONS Object-naming service
OPEX Operational expenditure
OS Operation system
OSI Open -ystem interconnection
QoS Quality of service
PE Physical entity
PN Pseudonymisation
R&D Research and development
RF Radio frequency
RFID Radio-frequency identification
RMD Remote monitoring device
SID Shared information & data model
SoTA State of the art
SWn Stakeholder workshop n
TRA Trust and reputation
UCD Unconstrained device
UDDI Universal Description, Discovery and Integration
UNI.n Unified requirement, number n
USDL Unified service-description language
VE Virtual entity

IoT-A (257521)

Internet-of-Things Architecture © - 5 -

WP Work package
WSN Wireless sensor network
ZigBee Specification for a suite of high-level communication protocols

IoT-A (257521)

Internet-of-Things Architecture © - 6 -

1. Vision of the architectural reference model

A commonly observed trend in the Internet-of-Things (IoT) domain is the emergence of a variety
of communication solutions targeted at specific application domains. While this situation persists
in present times, it is commonly believed that the advent of power-efficient protocols for low-cost
communication will even enhance this trend by enabling a plethora of cost-effective, rapidly
evolving connected devices. But there is a high risk that application developments provide
limited interoperability, if there is no common standardisation and understanding of the IoT
domain. In some fields such as manufacturing and logistics, communication and tagging
solutions are well established (they provide a clear business benefit in terms of asset tracking
and supply-chain management). In other fields, such as home automation, only recently new
families of products have shown that economic and social benefits can be achieved. Yet, these
domain-specific solutions have mostly been based on protocols developed with a single
application or scenario in mind. Many of these solutions are not interoperable at the
communication layer, and often not even at the service layer. They thus represent closed
vertical silos that co-exist in parallel, but do not promote integration. Although many technology
and system providers label their solutions as Internet-of-Things technologies, in reality they
form disjoint Intra-nets of Things. Furthermore, the existing solutions do not address the
scalability requirements of a future IoT, both in terms of communication between and the
manageability of devices. Additionally, many of these solutions are based on inappropriate
models of governance and fundamentally neglect privacy and security in their design.

In our vision of the Internet of Things, the interoperability of solutions at the communication
level, as well as at the service level, has to be ensured across various platforms. This motivates,
first, the creation of a reference model for the IoT domain in order to promote a common
understanding. Second, businesses that want to create their own compliant IoT solutions should
be supported by a reference architecture that describes essential building blocks and that
defines security, privacy, performance, and similar needs. Interfaces should be standardised,
best practices in terms of functionality and information usage need to be provided.

The central choice of the IoT-A project was to base its work on the current state of the art,
rather than using a clean-slate approach. Due to this choice, common traits are derived to form
the base line of the architectural reference model. This has the major advantage of ensuring
backward-compatibility of the model and also the adoption of established, working solutions to
aspects of the IoT. With the help of end users, organised into a stakeholders group, new
requirements for IoT have been collected and introduced in the main model building process.
This work was conducted according to the architecture methodology defined within Section 1.

Figure 1 shows an overview of the process we used for defining the different parts that make
the IoT-A architectural reference model. Notice that definitions of terms such as reference
architecture, etc. can be found in an external glossary [IoT-A, 2011]. Starting with existing
architectures and solutions, generic baseline requirements can be extracted and used as an
input to the design. The IoT-A architectural reference model consists of four parts:

- The vision summarises the rationale for providing an architectural reference model for
the IoT. At the same time it discusses underlying assumptions, such as motivations. It
also discusses how the architectural reference model can be used, the methodology
applied to the architecture modelling, and the business scenarios and stakeholders
addressed. The vision is described in Section 1.

- Business scenarios & stakeholders are the drivers of the architecture work. With the
knowledge of businesses aspirations, a holistic view of IoT architectures can be
derived. Furthermore, a concrete instance of the architectural reference architecture

IoT-A (257521)

Internet-of-Things Architecture © - 7 -

can be validated against selected business scenarios. A stakeholder analysis
contributes to the understanding which aspects of the architectural reference model
need to be described for the different stakeholders and their concerns. More information
on the Business Scenarios & Stakeholders is provided in Section 1.4. According to
common usage, this part constitutes a subset of the vision [Open Group, 2009], which is
why it is folded into Section 1. This dependency is also reflected in Figure 1.

- The IoT reference model provides the highest abstraction level for the definition of the
IoT-A architectural reference model. It promotes a common understanding of the IoT
domain. The description of the reference model includes a general discourse on the IoT
domain, a domain model as a top-level description, an information model explaining
how IoT knowledge is going to be modelled, and a communication model in order to
understand interaction schemes for smart objects. The definition of the IoT reference
model is conforming to the OASIS reference model definition [MacKenzie, 2006]. A
more detailed description of the IoT reference model is provided in Section 2.

- The IoT reference architecture is the reference for building compliant IoT architectures
(see Section 3). As such, it provides views and perspectives on different architectural
aspects that are of concern to stakeholders of the IoT. The terms view and perspectives
are used according to the general literature and standards [ANSI, 2000; Woods, 2005].
Definitions of these terms are also provided in Section 1.2.2. The creation of the IoT
Reference Architecture focuses on abstract sets of mechanisms rather than concrete
application architectures.

IoT-A Architectural Reference Model

Vision

Multiple
Organisations

Compliant
(New) IoT

Architectures

IoT Reference
Architecture

IoT Reference
Model

Business
Scenarios &
Stakeholders

SOTA Existing
architectures
& solutions

Implementation

Figure 1: IoT-A architectural reference model building blocks.

To organisations, an important aspect is the compliance of their technologies with standards
and best practices, so that interoperability across organisations is ensured. If such compliance
is given, an ecosystem forms, in which every stakeholder can create new businesses that
“interoperate” with already existing businesses. The IoT-A architectural reference model
provides best practices to the organisations so that they can create compliant IoT architectures
in different application domains. Where application domains are overlapping, the compliance to
the reference architecture ensures the interoperability of solutions and allows the formation of
new synergies across those domains.

Section 1 started with a general overview of the motivation and structure of the IoT-A
architectural reference model. In Section 1.1, the different uses for this model are introduced.
Section 1.2 describes the dependencies on other IoT-A project deliverables. In Section 1.3, the

IoT-A (257521)

Internet-of-Things Architecture © - 8 -

methodology for building a reference architecture is explained. Section 1.4 introduces the
relevant business scenarios and stakeholders. And finally in Section 1.5, the results reported in
this deliverable are summarised.

1.1 Uses of an architectural reference model

This Section describes the beneficial uses of the IoT-A architectural reference model, with focus
on the contained IoT Reference Architecture. These uses are described in the following list.

Generation of architectures
One benefit is the use of the reference architecture (together with best practices that are use-
case specific) for the generations of compliant architectures for specific systems. This is done
by enabling tool support. The benefit of such a generator for IoT architectures is not only the
automatism of this process, and thus the saved R&D efforts, but that the generated architecture
will intrinsically provide interoperability of IoT systems that are built according to such derivative
architectures [Shames, 2003; Usländer, 2007].

Identifying differences
When using the aforementioned system-generation tools based on the architectural reference
model, any differences in the derived architectures can be attributed to the particularities of the
pertinent use case [Shames, 2003]. When applying the architectural reference model
predictions of system complexity, system cost, etc. are available for the general system parts to
be implemented. That makes judging the overall implementation effort for use case
implementation easier, and some projects that might not have been realised due to uncertainty
might become possible. The overall implementation effort is most certainly less than developing
the use case without the help of an architectural reference model.

Benchmarking
Another important use is benchmarking. For example, NASA used a reference architecture of its
new exploration vehicle to better benchmark tenders it was going to receive during a public
bidding process [Tamblyn, 2007]. In other words, while the reference model prescribes the
language to be used in the systems/architectures to be assessed, the reference architecture
states the minimum (functional) requirement on the systems/architectures. By so doing it also
provides a high level of transparency to the benchmarking process.

Cognitive aid
When it comes to product development and other activities, an architectural reference model is
of fourfold use.
First, it aids in guiding discussions, since it provides a language everyone involved can use, and
which is intimately linked to the architecture, the system, the usage domain, etc.
Second, the high-level view provided in such a model is of high educational value, since it
provides an abstract but also rich view of the domain. Such a view can help people new to the
field with understanding the intricacies of IoT and related technical aspects.
Third, the architectural reference model can assist project leaders when planning the work
ahead and the teams needed. For instance, the functionality groups identified in the functional
view of the IoT system can also be understood as a list of independent teams working on an IoT
system implementation.
Fourth, the architectural reference model aids in identifying independent building blocks for IoT
systems. This constitutes very valuable information when dealing with questions like system
modularity, third-vendor options, re-use of already developed components, etc.

IoT-A (257521)

Internet-of-Things Architecture © - 9 -

1.2 Project-internal input

This document draws heavily on the following public IoT-A deliverables:

• D6.1, which contains a summary of the IoT-A requirements-engineering process and a
first list of requirements inferred from stakeholder aspirations provided during the first
IoT-A stakeholder workshop in Paris in October 2010 [Pastor, 2010]. This requirements
list was analysed and views and perspectives were assigned to all requirements. A list
of these requirements and the assigned views/perspectives can be found in Annex A.1.

• D1.1, which contains a summary of the state of the art of IoT-related architectures,
service interfaces, communication layers, resolution infrastructures, and hardware [Bui,
2011]. Each of the aforementioned topics is divided into input gathered from
standardisation, commercial applications, and EU and other research projects. This
document was used for the inference of technical requirements pertaining to the IoT
architectural reference model (see Annex A.2)

Furthermore, as already mentioned, IoT-A provides a webpage on which all the IoT terminology
that is used in this deliverable (and will be used in forthcoming IoT-A deliverables) is listed [IoT-
A, 2011].

1.3 Architecture methodology

The IoT-A project follows a spiral design and development model. Describing architectures is a
modelling exercise. Through this exercise, a better understanding of the IoT domain is reached.
Also, this exercise allows for iterations in the architecture building process, so that the stability
of models, as part of the architecture, is increased. Each iteration generates updates and
additional content for the architecture description, as the understanding of the application IoT
domain increases. An architecture methodology is defined to ensure consistency of the
architecture description during each iteration. The architectural reference model mainly
describes dependencies between models (i.e., the IoT Reference Model guides the definition of
the IoT Reference Architecture). Once a change is proposed in one modelling aspect, a clear
chain of dependencies can be followed. By so doing, an overall consistency of the IoT-A
architectural reference model is achieved.
This Section outlines our architecture methodology.

1.3.1 Reference model and reference architecture

Reference models and reference architectures provide a description of greater abstraction than
what is inherent to actual systems and applications. They are both more abstract than system
architectures that have been designed for a particular application. From the literature, we can
extrapolate the dependencies of reference architecture, architectures, and actual systems (see
depicted in Figure 2). Architectures do help in designing, engineering, building, and testing
actual systems. At the same time, understanding systems constraints better can provide input to
the architecture design, and in turn this allows identifying future opportunities. The structure of
the architecture can be made explicit through an architecture description, or it is implicit through
the system itself. By extracting essentials of existing architectures, like mechanisms or usage of
standards, a reference architecture can be defined. A reference architecture can provide
guidance in form of best practices. Such guidance can, for instance, make new architectures
and systems compliant to each other. These general architecture dependencies apply to the
modelling of the IoT domain as well.

IoT-A (257521)

Internet-of-Things Architecture © - 10 -

Reference
Architecture Architectures Actual

Systems

extracting essentials

architect

constraints, opportunities and feedback

design, engineer, build, test

Figure 2: Relationship between a reference architecture, architectures, and actual

systems (adapted from Mueller [Mueller, 2008])

While the model presented in Figure 2 stops at thereference architecture, the IoT-A architectural
reference model goes one step beyond and also defines an reference model. As already
discussed earlier, a reference model provides a common understanding of the IoT domain by
modelling its concepts and their relationships. A detailed description of our IoT Reference Model
can be found in Section 2.
In Figure 3, the inputs and dependencies of the IoT reference model and the IoT reference
architecture are depicted.

IoT Reference
Model

IoT Reference
Architecture

Application-
Specific

Requirements

Unified
Requirements

extrapolate

Compliant
Domain-Specific

Architectures

Business
Scenarios, Existing

Architectures &
Stakeholders

guides

define

steer

define

guides with
Best Practices

understand

Figure 3: High-level taxonomy of the IoT reference model and IoT reference architecture
dependencies and model influences.

The IoT Reference Model provides guidance for the description of the IoT reference
architecture. The IoT reference architecture in turn guides the definition of compliant domain-
specific architectures. Essential inputs for the definition of the IoT reference model are
stakeholder concerns, business scenarios, and existing architectures. Important here is to
create a common understanding of the IoT domain from the different inputs. This is mainly a
modelling exercise, during which experts have to work together and extract the main concepts
and their relations of the IoT domain from available knowledge. Furthermore, business

IoT-A (257521)

Internet-of-Things Architecture © - 11 -

scenarios, existing architectures, and stakeholder concerns can be transformed into application-
specific requirements. When extrapolated, these requirements lead to a set of unified
requirements. Unified requirements in turn steer the definition of the IoT Reference Architecture.
A more detailed explanation of what guides the IoT-A architecture-modelling process is
provided in the next Section.

1.3.2 Structure of the IoT Reference Architecture description - views and
perspectives

The IoT reference model by itself (see Section 2) does not specify the technical particularities of
an IoT system. For example, how are things identified and addressed in an IoT context? Or:
how are these things associated with services? Such particularities are addressed in the
reference architecture (see Section 3). In order to build such a reference architecture, we not
only need the domain model, as provided in the reference model, but also technical
requirements that can be used for inferring particularities of the architecture. For this step a
comprehensive list of (technical) requirements is needed.
First, it is explained how the requirements for the IoT-A architectural reference model are
inferred. Second, it is described how the IoT Reference Architecture is derived from such a list
of requirements.
The collection of requirements was done in a three-pronged process:

1. The rich experience and knowledge of the project partners guided the derivation of a
minimum requirement list, which also had a major influence when drafting the reference
model.

2. The state of the art concerning thing-centric communication and Internet technologies
was considered, and a list of internal requirements is inferred. The state of the art was
collected in Deliverable D1.1 [Bui, 2011]. The unabridged requirements derived from
this (plus some additional requirements based on the experience of the project
partners) will be published in a future version of the architectural reference model. In the
current version of this deliverable, an initial list of such requirements is listed in Annex
A.2.

3. For the third activity, a group of IoT stakeholders was established and queried for their
visionary IoT use cases and their expectations toward IoT. They were also asked for
their objectives, concerns, and business goals. As far as feasible, these overarching
aspirations were broken down into additional requirements (see Annex A.1).

Stakeholder aspirations can be diverse because of different application domains and
differences in related business models. Nevertheless, there are some common themes when it
comes to stakeholder aspirations.

o Many stakeholders see IoT as a means of improving their current business, for instance

logistics. IoT will thus serve various business goals and strategic objectives, such as
future-proofness, lowered costs, etc.

o Other stakeholders see IoT as a disruptive technology, which will aid them in creating
new applications and thus new business opportunities (selling access to sensor data,
etc.).

o In order to achieve a maximum of flexibility of IoT technology and its use, short product-
development cycles, and a maximum leverage of existing and new solutions to common
problems is needed. For that reason, many stakeholders advocate open IoT platforms
and frameworks. The underlying business goal for this advocacy is to lower costs in
product development. Strategic objectives are to enhance product interoperability and
to shorten the development cycles. The latter is important for responding to customers’
emerging needs in an agile manner.

IoT-A (257521)

Internet-of-Things Architecture © - 12 -

o Since active supervision of IoT interactions is even more elusive than monitoring
today’s Internet traffic, security and privacy were, as expected, identified as a core
topic. Privacy also equates to the overall acceptance of IoT. If individuals and other
users cannot experience a sufficient level of privacy when utilising IoT technology, this
might critically challenge the acceptance of this novel technology. Security equates of
course not only to privacy, but also to the protection of the IoT against interferences,
such as service attacks, Trojans, viruses, etc.

Requirements steer the design of the IoT reference architecture and support its respective
description (see Section 3). For the definition of the IoT reference architecture, we are following
standardised architecture structuring mechanisms as defined in the literature [Open Group,
2009; Rozanski, 2005]. The three main terms in this respect are viewpoints, views and
perspectives, which are introduced in the following

“A view is the representation of a related set of concerns. A view is what is seen from
a viewpoint. An architecture view may be represented by a model to demonstrate to
stakeholders their areas of interest in the architecture. A view does not have to be
visual or graphical in nature”. [Open Group, 2009]

“A viewpoint is a definition of the perspective from which a view is taken. It is a
specification of the conventions for constructing and using a view (often by means of
an appropriate schema or template). A view is what you see; a viewpoint is where you
are looking from - the vantage point or perspective that determines what you see”.
[Open Group, 2009]

“Architectural perspective is a collection of activities, checklists, tactics and guidelines
to guide the process of ensuring that a system exhibits a particular set of closely
related quality properties that require consideration across a number of the system’s
architectural views.” [Rozanski, 2005]

Following these definition the requirements analysis identified several views and perspectives
that serve as the basis for the IoT Reference Architecture structuring approach. The views and
their definition are provided in the following list.

• Functional - Describes the system's runtime functional elements and their
responsibilities, interfaces, and primary interactions

• Information - Describes the way that the architecture stores, manipulates, manages,
and distributes data and information.

• Deployment - Describes the environment into which the system will be deployed,
including the dependencies the system has on its runtime environment

• Operational - Describes how the system will be operated, administered, and supported
when it is running in its production environment

Quality aspects of the IoT reference architecture are addressed through definitions of
perspectives. The perspectives and their definition are provided in the following list:

IoT-A (257521)

Internet-of-Things Architecture © - 13 -

• Security and privacy – Provides and analysis of the security threads in the
functionality groups of the architecture and gives an explanation how security and
privacy concerns should be addressed.

• Performance and scalability – Provides the ability of the system to handle a large
number of devices, services and processes in an efficient way. Further more, the
fluctuation of requests towards those has to be handled in a scalable way.

• Availability and resilience – The ability of the system to be fully or partly operational
as and when required, and to effectively handle failures that could affect system
availability

• Evolution and interoperability – The ability of the system to be flexible in the face of
the inevitable change that all systems experience after deployment; the ability of two or
more systems or components to exchange and use information.

This deliverable provides the initial architectural reference model for the IoT. For the current
version not all views and perspectives are addressed, but restricted to the functional view and
the security and privacy perspective. These will be introduced in Section 3 as part of the IoT
reference architecture.

Usually, stakeholder aspirations are not made in the language of perspectives and views.
Therefore, each stakeholder aspiration was thoroughly analysed, and suitable views and/or
perspectives were identified. Stakeholder aspirations can be rather general (strategic
objectives, concerns, or business goals) or they can be very specific, i.e. a stakeholder spells
out what kind of functionality or performance she/he needs. An example for the former is the
functionality of the IoT systems. For instance, ETSI raised the following concern: “Today, due to
sub-optimal processes, a lot of time and money is wasted. This situation could be improved a lot
by tracking all the items/things, providing context data on them at any time and location,
allowing for automated evaluation of the collected data and reacting immediately on a
dangerous situation to protect against the break down of items.” [Pastor, 2010] This addresses
the functional view, but it does not clearly address what functionalities are needed in order to
meet this aspiration. In our requirement-engineering process (see [Pastor, 2010]), we broke this
concern down into two distinct functional requirements.

1. “The system shall provide functionality that allows the specification of business
processes that autonomously monitor information related to Physical entities and
controls the respective aspects of the Physical entity.” (UNI.31)

2. “The system shall provide means for IoT-entities to react autonomously on context data
(e.g. by using a rule language).” (UNI.32)

The above example was provided in order to illustrate our requirement process, and also how
we enable the traceability of requirements back to stakeholder aspirations. The unabridged list
of requirements derived from stakeholder aspirations are provided in Annex A.1. The functional
view is a recurring item in the list of unified requirements. This view is represented as a block-
diagram of the architecture, which in itself constitutes a central result of the architecture project
and an indispensable input for the development of a compliant IoT system. The IoT-A functional
view is addressed in detail in Section 3.1.

1.3.3 How we meet requirements

So far we have outlined how requirements are resolved. Next, the question arises how we will
meet those requirements and thus the stakeholder aspirations. The answer to this question has
several parts.

IoT-A (257521)

Internet-of-Things Architecture © - 14 -

First, as already pointed out, we have a requirements-engineering process in place which
provides a step-by-step traceability from aspirations to requirements. In other words, we ensure
that all aspirations are accounted for.
Second, the grouping of requirements by views and perspectives ensures that requirements of
the same type are put into the same group, so that all the architecture and reference-model
constraints for meeting all stakeholder aspirations are put in place in a coherent manner.
Third, our project-internal process foresees two reviews of the architectural reference model.
During these reviews the architectural reference model itself will be assessed, but also whether
it meets the stakeholder aspirations and requirements derived from the state of the art.

1.4 Business scenarios

In the future, all facets of the quotidian world will be influenced by IoT systems, in fact the whole
world will be a global IoT scenario in which we will live and interact. This global scenario will be
loosely compartmentalised, and its boundaries will be crossed by interaction processes and
information flows. An Example for such a cross over is that physical entities could exist in many
different social environments (work, family, personal, leisure...). Thus, the main difficulties arise
when it comes to determining clear boundaries among these possible scenarios.

In any case, in order to maximise the impact of our architectural reference model, we have to
identify those scenarios where IoT technologies have a special relevance, taking into account
that these scenarios frequently share the same applications, sensors, stakeholders and, of
course, users. We will base this identification on scenarios that have kindly been provided by
IoT-I [IoT-I, 2011].

Field of
application Impacts

Transportation/
Logistics

In transport logistics, IoT improves not only material flow systems, but also
global positioning and auto identification of freights. Additionally, it increases
energy efficiency and decreases thus energy consumption. In conclusion,
IoT is expected to bring profound changes to the global supply chain via
intelligent cargo movement. This will be achieved by means of continuous
process synchronisation of supply-chain information, and seamless real-time
tracking and tracing of objects. It will provide the supply chain a transparent,
visible and controllable nature, enabling intelligent communication between
people and cargo.

IoT-A (257521)

Internet-of-Things Architecture © - 15 -

Field of
application Impacts

Smart home Future smart homes will be conscious about what happens inside a building,
mainly impacting three aspects: resource usage (water conservation and
energy consumption), security, and comfort. The goal with all this is to
achieve better levels of comfort while cutting overall expenditure. Moreover,
smart homes also address security issues by means of complex security
systems to detect theft, fire or unauthorized entries. The stakeholders
involved in this scenario constitute a very heterogeneous group. There are
different actors that will cooperate in the user’s home, such as Internet
companies, device manufacturers, telecommunications operators, media-
service providers, security companies, electric-utility companies, etc.

Smart city While the term smart city is still a fuzzy concept, there is a general
agreement that it is an urban area which creates sustainable development
and high quality of life. Giffinger et al.’s model elucidates the characteristics
of a smart city, encompasing economy, people, governance, mobility,
environment and living [Giffinger, 2007]. Outperforming in these key areas
can be done through strong human or social capital and/or ICT
infrastructure. For the latter, a first business analysis concludes that several
sectors/industries will benefit from more digitalised and intelligent cities
(examples for a city of 1 million people [Nicholson, 2010]):
• Smart metering, 600.000 meters, US $ 120 million opportunity
• Infrastructure for charging electric vehicles, 45.000 electric vehicles,

US $ 225 million opportunity
• Remote patient monitoring (diabetes), 70.000 people, US $ 14 million

opportunity
• Smart retail, 4.000 stores, US $ 200 million opportunity
• Smart-bank branches, 3.200 PTMs, US $ 160 million opportunity

Smart factory Companies will be able to track all their products by means of RFID tags by
means of a global supply chain; as a consequence, companies will reduce
their OPEX and improve their productivity due to a tighter integration with
ERP and other systems. Generally, IoT will provide automatic procedures
that imply a drastic reduction in the number of employees needed. Workers
will be replaced by bar-code scanners, readers, sensors and actuators, and
in the end by complex robots, as much efficient as a human. Without any
doubt, these technologies will bring opportunities for white-collar workers
and a big number of technicians will be necessary to program and repair
these machines. This is synonymous to a transfer to maintenance jobs, but it
also constitutes a new challenge for providing all blue-collar workers with an
opportunity to move toward these types of jobs and to avoid unemployment.

Retail IoT realises both customer needs and business needs. Price comparison of
a product; or looking for other products of the same quality at lower prices,
or with shop promotions gives not only information to customers but also to
shops and business. Having this information in real time helps enterprises to
improve their business and to satisfy customer needs.
Obviously, big retail chains will take advantage of their dominant position in
order to enforce the future IoT retail market, as it happened with RFID
adoption, which was enforced by WalMart in 2004 [Field, 2008]. Particularly,
companies with controlling positions, such as WalMart, Carrefour, Metro
AG, etc. are able to push the adoption of IoT technology due to their sizable
market shares.

IoT-A (257521)

Internet-of-Things Architecture © - 16 -

Field of
application Impacts

eHealth Controlling and preventing is one of the main goals of future health care.
Already today, people can have the possibility of being tracked and
monitored by specialists even if both are not at the same place. Tracing
peoples’ health history is another aspect that makes IoT-assisted eHealth
very versatile. Business applications could offer the possibility of medical
service not only to patients but also to specialists, who need information to
proceed in their medical evaluation. In this domain, IoT makes human
interaction much more efficient because it not only permits localization, but
also tracking and monitoring of patients. Providing information about the
state of a patient makes the whole process more efficient, and also makes
people much more satisfied.
The most important stakeholders in this scenario will be public and private
hospitals and institutes such as, e.g., the Institute of Applied eHealth at
Edinburgh Napier University, which partook in the first stakeholder session
of IoT-A. It is worth mentioning that telecommunications operators are quite
active in e-health (for instance, O2 UK).

Environment From the aforementioned application we infer that environment has many
overlaps with other scenarios, such as smart home and smart city. The key
issue in these scenarios is to detect means that help to save energy. We are
basically referring to what is known as Smart Grid. Concerning this
application area one needs to highlight initiatives that imply a more
distributed energy production, since many houses have a solar panel today.
As a vital part, smart metering is considered as a pre-condition for enabling
intelligent monitoring, control, and communication in grid applications. The
use of IoT platforms in Smart Metering will provide the following benefits:
• An efficient network of smart meters allows for faster outage detection

and restoration of service. Such capabilities redound to the benefit of
customers

• Provides customers with greater control over their energy or water
consumption, providing them more choices for managing their bills.

• IoT deployment of smart meters is expected to reduce the need to build
power plants. Building power plants that are necessary only for
occasional peak demand is very expensive. A more economical
approach is to enable customers to reduce their demand through time-
based rates or other incentive programs, or to use automatic recording
of consumptions to turn off devices temporarily which are not in use.

Finally, combining the analysis of supply and demand, energy enterprises
will able to supply a more efficient demand shaping. They will not just give
incentives to consumers, but actually turning off devices that are not needed
(like the freezer for 20 minutes). Also most of this needs to happen
automatically.
Here we again face a heterogeneous scenario, in which diverse
stakeholders are involved. Main actors are of course energy utilities, but also
public entities will be important players.

Table 1: IoT business scenarios [IoT-I, 2011].

Societal Impact

Obviously, the introduction of IoT systems to our quotidian lives implies new revolutionary social
benefits, but also it brings challenging handicaps. A positive impacts we have identified are

IoT-A (257521)

Internet-of-Things Architecture © - 17 -

• A substantial improvement in health systems - we will live longer and healthy at home;

• daily activity (work and leisure) will be more rich, safety and comfortable and energy
savings that result in a better environment.

These are not all, but the most important benefits.

On the other hand, there are also challengers that come with IoT. One of the most important
challenges for society is to ensure that all citizens enjoy the benefits of IoT. Studies have
predicted the loss of jobs for blue-collar workers due to self-organising smart objects and the
problems of interaction and adoption of technology into society. An example for that former is
that companies will be able to track all their products by means of RFID tags in a global supply
chain. As a consequence, companies will be able to reduce costs and improve their productivity.
But this will also come with a potential reduction in the number of employees needed.
Therefore, private companies and administrations must be aware about the risk of a more
unequal society and social exclusion; current tendencies lead to a divided society, white collar
employees on one side and on the other side long-term unemployed.

As usual in ICT, the privacy provided by their platforms, or the lack thereof, is a big concern. IoT
will potentially allow capturing, storing, and analysing an incredible amount of personal
information, since we are speaking about mapping the physical world. Therefore, IoT platforms
need to provide reliable systems that guarantee the privacy rights and also adequate and
flexible access policies.

In the IoT-I project, a specific working group that analyses the societal impacts of IoT has been
created. They are planning to release an extended report about this crucial topic in the near
future.

1.5 Results

As already mentioned in the introduction, the architecture work follows a spiral design and
development model. This document includes results of the first of three iteration cycles. This
Section summarises the results presented in this document.

• The vision (Section 1) provides motivation, overview of the IoT-A architectural
reference model, architecture methodology, links to other input documents, and
business scenarios with identified stakeholders.

• The IoT reference model (Section 2) includes
o General discourse about abstract quality concepts in IoT;
o Domain model for the IoT, describing the main IoT concepts and their

relationships;
o Information model for information-storage and exchange;
o Communication model for communication behaviour.

• The IoT reference architecture (Section 3), includes
o Functional view, describing the grouping of IoT functions and their

components;
o Security & privacy perspective, describing architecture-quality aspects and

guidelines regarding security and privacy.
• Support material, includes

o Requirements (Annex A) as the basis for the functional view construction;

IoT-A (257521)

Internet-of-Things Architecture © - 18 -

o System use cases (Annex B) for describing the behaviour of selected
components in the functional view.

As the architecture work progresses, updates on the results are expected from both external
inputs in form of feedbacks and requirements, as well as from research findings made in the
IoT-A project. Each consecutive IoT-A architectural reference document will contain new
additional materials. A roadmap for the next iteration of the architecture document is provided in
Section 4.1.

IoT-A (257521)

Internet-of-Things Architecture © - 19 -

2. IoT Reference model

As discussed in Section 1, the IoT reference model is an integral part of the IoT-A architectural
reference model. The reference model provides the highest level of abstraction for the
description of the IoT domain. A reference model captures and defines invariant aspects of a
domain, viz. a set of unifying concepts, axioms and their relationships. It is important to stress
that a reference model needs to be independent of specific standards, technologies,
implementations, or other concrete details [MacKenzie, 2006].
The reference model also serves as a basis for the definition of the reference architecture (see
Figure 3).
Alongside the definition of the reference model, common definitions for domain model and
information model exist that substantially overlap with each other [IoT-A, 2011]. All models are
defining entities representing concepts of the domain, their relationships, potential rules, and
constraints. Yet, when looking carefully at the definitions, they do differ in scope. In our IoT
reference model, the information model is domain-model specific and contributes thus to the
domain model. In
Figure 4 the contributions of the above mentioned models to the reference model are depicted.

IoT Reference Model

Domain Model
Discourse /

General
Concerns

Information
Model

Communication
Model

Top-level

Knowledge

ContributesContributes

Behaviour

Figure 4: Contributions to the IoT reference model.

The IoT reference model, as presented in this Section, starts with a discourse about IoT. In this
discourse we identify abstract quality concepts that have to be taken into account for the
realisation of IoT systems (for instance, heterogeneity and interoperability). This discourse is
followed by the definition of the domain model. In the domain model, concepts and entities that
represent particular aspects of the IoT domain are summarised in a top-level domain description
and their relations are defined. The domain model also serves as a common lexicon for and
taxonomy of the IoT. Generally, entities in a domain model are either responsible for keeping
track of certain information and for doing certain things. This refers to knowledge and behaviour,
respectively [Oldfield, 2002]. In the IoT-A architectural reference model this knowledge is
represented through an information model, which follows the definition of AutoI project [AutoI,
2011]. Its purpose is to specify the data semantics of the domain model.
Finally, the communication model addresses high-level communication paradigms pertinent to
the IoT domain. The communication model presented describes how communication has to be
managed in order to achieve the features required in the IoT.

IoT-A (257521)

Internet-of-Things Architecture © - 20 -

A clear advantage for distinguishing between information, communication and domain model
stems from the fact that models develop and stabilise over time. Improving the understanding of
one model in turn allows validation of the dependent models. Where one model breaks the
other model it needs to be re-modelled in order to address those inconsistencies. In the project
this is enabled by different working groups contributing to the models, which establishes a
conflict-rich and therefore dynamic thinking environment.

This Section first presents the discourse about the IoT domain in Section 2.1. The domain
model is introduced in Section 2.2. Section 2.3 describes the related information model and
Section 2.4 the related communication model.

2.1 Discourse about the IoT domain

The novelty of IoT is that it provides an extension of the Internet into the physical world. In other
words, it makes the Internet aware about the physical world around it. Accepting this challenge
translates into the need of explicitly modelling the physical world. Other challenges have been
identified through earlier work in IoT related projects and others arise when thinking to extend
the reach of the IoT according to the vision of the architectural reference model. The IoT
reference architecture itself (see Section 3) can only partially address these challenges.
However, based on an evaluation of different ways of addressing these challenges, it will be
possible to define some best practices for developing specific IoT architectures and resulting
systems. The best practices guide this development by telling an enterprise how to make best
use of existing technologies and what additional software, hardware, and functionalities is
needed for implementation.

As part of the IoT Reference Model we aspire to capture salient high-level IoT challenges. The
list of challenges presented is non-exhaustive. The list will gradually be completed during the
course of the project. The basis for the list is the project description, the state-of-the-art
analysis, and the requirements analysis. Enhancements are expected in the course of the
architecture work, once better understanding is reached. This understanding will stem from
expected advances of the state-of-the-art. Gradually, understanding of challenges will mature
and be translated into best practices with regards to the IoT reference model, viewpoints, and
perspectives.

The heterogeneity of technologies in the IoT is significantly higher than in traditional computing
systems. They include RFID, sensor networks, embedded systems and mobile technologies,
and also a large variety of existing as well as emerging communication technologies. Therefore,
interoperability has to be supported in all functionality groups (and communication layers). For
communication, the co-existence of technologies, as well as bridges between different
technologies, needs to be supported. For services, their integration across different
technologies has to be achieved. This requires some form of common basis that has yet to be
defined. At a minimum, a common way of describing the services and their interfaces has to be
achieved. Interoperability not only has to be achieved across a single domain, but across
different administrative and application domains.

Scalability is an important challenge when the IoT leaves the confinement of small, isolated
vertical islands and becomes part of everyday life. The number of devices that need to be
managed and that communicate with each other will be at least an order of magnitudes larger
than the devices connected to the current Internet [Sundmaeker, 2010]. The ratio of
communication triggered by machines as compared to communication triggered by humans will
noticeably shift towards machine-triggered communication. Even more critical is the
management of the data generated and their interpretation for application purposes. This
relates to semantics of data, as well as the efficient handling of the resulting data streams.

IoT-A (257521)

Internet-of-Things Architecture © - 21 -

The manageability of such large numbers of devices, especially in environments that cannot
be centrally controlled, can only be addressed through autonomous behaviour including self-
management, self-configuration, self-healing, self-optimisation and self-protection.

Besides static scenarios, such as IoT-enabled sensors being mounted to fixed infrastructure,
physical entities, as well as devices, are assumed to be mobile. Therefore, they will encounter
different mobility situations. As a result, associations between device information and services
affecting physical entities need to be constantly monitored and updated in order to ensure the
usability of the overall system.

Addressing security and privacy concerns becomes paramount due to the increasing
pervasiveness and complexity of mostly wireless IoT system setups. Different IoT technologies
have to be interoperable, and depending on computational power and energy constraints, tailor-
made security mechanisms for communication have to be defined. Once data is captured and
stored in an IoT system and maybe made available on the Internet, appropriate privacy
mechanisms are needed. Information processing and reasoning may produce new information
from “raw” data, so the system must also be able to resolve privacy settings for evolving data.

Reliability is a major factor for the acceptance of any system. For example, when looking at the
nature of wireless sensor networks, it becomes apparent that the availability of information
might vary over time, yet an end-user service that depends on this information still needs to
respond in an appropriate way according to its initial purpose. A system has to provide
functionalities that handle connectivity losses in various ad-hoc-like ways, such as caching
information or finding other reliable sources of information. Due to the inherent unreliability of
the IoT, which seems contradictory to the goal of reliability, new ways of making reliability issues
transparent to the user have to be looked at.

In addition, the definition of the architectural reference model for the IoT as provided in this
document has to consider future technology shifts, such as the appearance of new
communication protocols. In order to facilitate these and related changes, an overall evolution
of IoT systems future has to be addressed by an appropriate definition of the IoT reference
model and the IoT reference architecture.

2.2 Domain model

2.2.1 Purpose

The IoT-A project defines a domain model as a description of objects belonging to a particular
area of interest. The domain model also defines attributes of these objects, such as name and
identifier. The domain model defines relationships between objects, for instance “instruments
produce data sets.” Domain models also help to facilitate correlative use and exchange of data
between domains [CCSDS, 2006]. Besides this official definition, and looking at our
interpretation of it, our domain model also provides a common lexicon and taxonomy [Mueller,
2008]. The domain model is therefore an important part of any reference model. It includes a
definition of the main abstract concepts (abstractions), their responsibilities, and their
relationships. Regarding the level of detail, the domain model should separate out what doesn’t
vary much from what does [Oldfield, 2002]. For example, in the IoT domain, the device concept
will likely stay around, while the types of devices used will change over time or vary depending
on the application context. For instance, there are many technologies to identify objects –RFID,
bar codes, image recognition etc. But which of these will still be in use 20 years from now? And

IoT-A (257521)

Internet-of-Things Architecture © - 22 -

which is the best-suited technology for a particular application? For these and related issues,
the domain model does not include particular technologies, but rather abstractions thereof.
The main purpose of a domain model is to generate a common understanding of the problem
domain in question. In our case the question is what defines the IoT.
Such a common understanding is important, not just project-internally, but also for the scientific
discourse. Only with a common understanding of the main concepts it becomes possible to
argue about architectural solutions and to evaluate them. As has been pointed out in the
literature, the IoT domain suffers already from an inconsistent usage and understanding of the
meaning of many central terms [Haller, 2010].

2.2.2 Main abstractions an relationships

This Section describes the IoT domain model used in the IoT-A project. It was developed by
refining and extending two models found in the literature [Haller, 2010; Serbanati, 2011]. It is
meant to capture the main concepts and the relationships that are relevant for stakeholders
concerned with the IoT. In this and the next Section we use italics to refer to abstractions in the
domain model. Concepts depicting hardware are shown in blue, software in green, animated
objects in yellow, and concepts that fit into either multiple or no categories in brown.
The generic IoT scenario can be identified with that of a generic user that needs to interact with
a (possibly remote) physical entity of the physical world (see Figure 5). In this short description
we have already introduced the two key actors of the IoT. The user is a human person or some
kind of active digital entity (e.g., a Service, an application, or a software agent) that has a goal.
The completion of goal is achieved via interaction with the physical environment. This
interaction is mediated by the IoT. The physical entity is a discrete, identifiable part of the
physical environment which is of interest to the user for the completion of his goal. Physical
entities can be almost any object or environment; from humans or animals to cars; from store or
logistic chain items to computers; from electronic appliances to closed or open environments.

 class Basic IoT Interaction

Physical EntityUser

*

interacts with

*

Figure 5: Basic abstraction of an IoT interaction

Physical entities are represented in the digital world via a virtual entity. This term is also referred
to as „virtual counterpart“ in the literature [Römer, 2002], but using the same root term „entity“ in
both concepts clearer shows the relationship of these concepts. There are many kinds of digital
representations of physical entities: 3D models, avatars, data-base entries, objects (or
instances of a class in an object-oriented programming language), and even a social network
account could be viewed as such a representation. However, in the IoT context, virtual entities
have two fundamental properties:

• They are digital entities that are associated to a single physical entity that they
represent. While ideally there is only one physical entity for each virtual entity, it is
possible that the same physical entity can be associated to several virtual entities, e.g.,
a different representation per application domain or per IT system. Each virtual entity
must have one and only one ID that identifies the represented object. Digital entities can
be either active elements (e.g., software code) or passive elements (e.g., a data-base
entry).

IoT-A (257521)

Internet-of-Things Architecture © - 23 -

• Ideally, digital entities are a synchronised representations of a given set of aspects (or
properties) of the physical entity. This means that relevant digital parameters
representing the characteristics of the physical entity can be updated upon any change
of the former. In the same way, changes that affect the virtual entity could manifest
themselves in the physical entity.

We define an augmented entity as the composition of a physical entity and its associated virtual
entity. Any changes in the properties of an augmented entity have to be represented in both the
physical and digital world. This is what actually enables everyday objects to become part of
digital processes.
The relationship of augmented, physical and virtual entities is shown in Figure 6, together with
all other terms and concepts that will be introduced in the remainder of this Section.
This association between virtual and physical entity usually is achieved by embedding into, by
attaching to, or by simply placing in close vicinity of the physical entity one or more ICT devices
that provide the technological interface for interacting with or gaining information about the
physical entity. By so doing the device actually enhances the physical entity and allows the
latter to be part of the digital world. These devices can be of the same technology, as in the
case of body-area network nodes, or they can be of different technology, as in the case of an
RFID tag and reader. A device thus mediates the interactions between physical entities (that
have no projections in the digital world) and virtual entities (which have no projections in the
physical world), generating a paired couple that can be seen as an extension of either one.
Devices are thus technical artefacts for bridging the real world of physical entities with the digital
world of the Internet. This is done by providing monitoring, sensing, actuation, computation,
storage and processing capabilities. It is noteworthy that a device is also a physical entity and
can be regarded as such, especially in the context of certain applications. An example for such
an application is device management, whose main concern is devices themselves and not the
entities or environments that these devices monitor.

From a functional point of view, devices can belong to either of three types.

• Sensors provide information about the physical entity they monitor. Information in this
context ranges from the identity of the physical entity to measures of the physical state
of the physical entity. Like other devices, they can be attached or otherwise embedded
in the physical structure of the physical entity, or be placed in the environment and
indirectly monitor entities. An example for the latter is a camera that recognises
people’s faces. Information from sensors can be recorded in a storage for later retrieval.

• Tags are used by specialised sensor devices, which are usually called readers. Their
sole purpose is to facilitate an identification process. This process can be optical, as in
the case of barcodes and QR code, or it can be RF-based, as in the case of microwave
car-plate recognition systems and RFID.

• Actuators can modify the physical state of a physical entity. Actuators can move
(translate, rotate, ...) simple physical entities or activate/deactivate functionalities of
more complex ones.

Notice though, that actual devices can be an aggregation of several of these types. For
instance, a sensor node often contains both sensors (e.g., movement sensing) as well as
actuators (e.g., room-light switch). In some cases, virtual entities that are related to large
physical entities might need to rely on several, possibly heterogeneous, resources and devices
in order to provide a meaningful representation of the physical entity.
Resources are software components that provide information about physical entities or enable
the controlling of devices. Resources typically have native interfaces. There is a distinction
between on-device resources and network resources. On-device resources are hosted on
devices, viz. software that is deployed locally on a device. They include executable code for
accessing, processing, and storing sensor information, as well as code for controlling actuators.
On the other hand, network resources are resources available somewhere in the network, e.g.,
back-end or cloud-based data bases. A virtual entity can also be associated with one or more
resources that enable interaction with the physical entity that the virtual entity represents. This
association is important in look-up and discovery processes.

IoT-A (257521)

Internet-of-Things Architecture © - 24 -

Storage is a special type of resource that stores information coming from resources and that
thus provides information about physical entities. This may include location and state-tracking
information (history), static data like product type information, and many other properties. Since
storages are resources, they can be deployed either on-device or in the network. On-device
storages typically store information about one or only a few physical entities, e.g., the physical
entity they observe. Network-based storages, such as an EPCIS repository (Electronic Product
Code Information Services [EPCGlobal, 2007]), aggregate information about a large number of
physical entities. Note that also human users can update the information in a storage, since not
all known information about an entity is, or even can be, provided by devices.
In contrast to heterogeneous resources –implementations of which can be highly dependent on
the underlying hardware of the device–, a service provides a well-defined and standardised
interface, offering all necessary functionalities for interacting with physical entities and related
processes. All this is done via the network. On the lowest level –closest to the actual device
hardware– , services expose the functionality of a device by accessing its hosted resources
(access). Other services may invoke such low-level services for providing higher-level
functionalities, for instance executing an activity of a specified business process.

IoT-A (257521)

Internet-of-Things Architecture © - 25 -

Figure 6: IoT Domain Model. All object names are explained in the main text. Hardware
concepts are shown in blue, software in green, animated objects in yellow, and concepts

that fit into either multiple or neither categories in brown.

Figure 7 depicts the relationship between services, resources, and devices and shows several
deployment options. Network-based resources are not shown, as they can be regarded as
being hidden behind cloud-based services.

IoT-A (257521)

Internet-of-Things Architecture © - 26 -

Figure 7: Devices, resources and services.

2.2.3 Definitions

The following table summarises the terms used in, or related to the domain model.

IoT-A (257521)

Internet-of-Things Architecture © - 27 -

Abstraction Definition Examples
Active digital entity Any type of active code or software

program, usually acting according to a
business logic.

• Application
• Service
• Software agent

Actuator Mechanical device for moving or controlling
a mechanism or system. It takes energy,
usually transported by air, electric current,
or liquid, and converts them into a state
change, thus affecting one or more physical
entities. (Definition based on the literature
[Sclater, 2007].)

• Light switch
• Robot

Address An address is used for locating and
accessing –“talking to”– a device, a
resource, or a service. In some cases, ID
and address can be the same, but
conceptually they are different.

• IPv6 address
• URL

Application Software that implements business logic.
Applications access resources that are
needed to achieve the goal of the business
logic through services. Applications can also
provide services.

Applications, for instance, can be
implemented on a device, in an enterprise
systems, or in the cloud.

On-device applications are hardware-
dependent. In some cases, their
implementation can be minimal, i.e. only an
extension of the OS/firmware of the device.

• Home-automation
application

• The firmware of an
RFID tag

• Software that
aggregates the
information collected
from active GPS
navigators in order
to provide traffic
information

Augmented entity The composition of a physical entity and its
associated virtual entity.

See
• Physical entity
• Virtual entity

Business logic Goal or behaviour of a system involving
things. Business logic serves a particular
business purpose. Business logic can also
define the behaviour of a single or multiple
physical entities, or a complete business
process.

• Regulate the
temperature of an
environment

• Check that only
authorised
personnel can
access a building

Device Technical physical component (hardware)
with communication capabilities to other IT
systems. A device can be either attached to,
or embedded inside a physical entity, or
monitor a physical entity in its vicinity.

• Mobile Phone
• Embedded system

or sensor node with
multiple sensors
and/or actuators

• Any sensor,
actuator, or gateway

IoT-A (257521)

Internet-of-Things Architecture © - 28 -

Abstraction Definition Examples
Digital entity Any computational or data element of an IT-

based system.
See
• Active/passive

digital entity
• Virtual entity

Discovery Discovery is a service for finding unknown
resources/services, based on a (rough)
specification of the desired result. It may be
utilised by a human or another service.

Credentials for authorisation are considered
when executing the discovery.

• Bluetooth, device
and service
discovery

• UDDI
• Google

Gateway Device that provides protocol translation
between peripheral trunks of the IoT that are
provided with lower parts of the
communication stacks (see Section 2.4).
For efficiency purposes, gateways can act
at different layers, depending on which is
the lowest layer in a common protocol
implementation. Gateways can also provide
support for security, scalability, service
discovery, geo-localisation, billing, etc.

WSN gateway,
connecting local
sensor-node devices to
the Internet

Human A human that either physically interacts with
physical entities or records information
about them, or both.

Any person

Identity Properties of an entity that makes it
definable and recognizable.

Who am I?

Identifier (ID) Artificially generated or natural feature used

to disambiguate things from each other.
There can be several IDs for the same
Physical Entity. This set of IDs is an
attribute of a physical entity.

• EPC
• URN
• Biometric feature set

Infrastructure services Specific services that are essential for any
IoT implementation in order to work
properly. Such services provide support for
essential features of the IoT.

• Resolution services
• Look-up services
• Discovery services

Interface Named set of operations that characterise
the behaviour of an entity. [OGS, 2002]

Any kind of API

Look-up In contrast to discovery, look-up is a service
that finds existing known resources by using
a key or identifier.

Data-base look-up

Network resource Resource hosted somewhere in the
network, e.g., in the cloud.

• Data repositories
• See also storage

On-Device resource Resource hosted inside a device and
enabling access to the device, and thus to
the related physical entity.

• Device driver
• Programming API
• See also storage

IoT-A (257521)

Internet-of-Things Architecture © - 29 -

Abstraction Definition Examples
Passive digital entity A digital representation of something stored

in an IT-based system.
• Data-base entry
• File

Physical entity Any physical object that is relevant from a
user or application perspective.

Pallets, boxes
containing consumer
goods, cars, machines,
fridges etc., as well as
animate objects like
animals and humans.

Resolution Query response process by which a given
ID is associated with a set of addresses of
information and interaction services.
Information services allow querying,
changing and adding information about the
thing in question, while interaction services
enable direct interaction with the thing by
accessing the resources of the associated
devices. Resolution is based on a-priori
knowledge.

• EPC ONS
• DNS

Resource Computational element that gives access to
information about, or actuation capabilities
on a physical entity.

See
• On-device resource
• Network resource

Sensor A device identifying or recording features of
a given physical entity.

• Temperature sensor
• RFID reader
• Camera

Service Software component enabling interaction
with resources through a well-defined
interface, often via the Internet. Can be
orchestrated together with non-IoT services
(e.g., enterprise services).

Web service

Storage Special type of resource that stores
information coming from resources and
provides information about physical entities.
They may also include services to process
the information stored by the resource. As
storages are resources, they can be
deployed either on a device or in the
network.

• On device: data
cache on gateway,
data on an RFID tag

• Network-based:
EPCIS repository,
ERP data base

Tag Label or other physical object used to
identify the physical entity to which it is
attached.

• RFID tag
• QR code label

Thing Generally speaking, any physical object. In
the term ‘Internet of Things’ however, it
denotes the same concept as a physical
entity.

See physical entity

IoT-A (257521)

Internet-of-Things Architecture © - 30 -

Abstraction Definition Examples
User A Human or some active digital entity that is

interested in interacting with a particular
physical object.

See
• Human
• Active digital entity

Virtual entity Computational or data element representing
a physical entity. Virtual entities can be
either active or passive digital entities.

See active/passive
digital entity

Table 2: Terminology pertaining to the domain model.

Table 3 summarises the differences between discovery, look-up, and resolution.

 Input Output Output

cardinality
Central
Directory

Process

Discovery Set of
properties
to be
matched

Set of
devices /
resources /
services
matching the
properties

Multiple Usually not Typically
broadcast/multicast
within the network
within a predefined
range

Look-up ID (or set
of
attributes)

Information
about one
physical
entity /
service /
resource /
device

Single Yes Simple query-
response to a directory

Resolution ID Address Multiple Usually
multiple
directories
involved

Multi-step process with
known starting point
(i.e., initial resolution
server)

Table 3: Summary of differences between discovery, look-up, and resolution.

Note that only services, devices, and possibly resources, are discoverable, not physical entities.
However, services that have information about a physical entity can be discovered. Once such
a service (or alternatively a central directory/repository) is known, it can be used to look up
information about the physical entity.

2.3 Information model

In this deliverable, the information model is used for demonstrating how to communicate (i.e.,
retrieve and store information) with a VirtualEntity. It is also demonstrated how the pertinent
data and metadata is saved. The information model is powerful enough to express device-level
information and entity-level information, and to link this information together. For instance,
several temperature sensors in a room can be modelled as entities with an attribute
hasTemperatureMeasurement. The corresponding virtual entity “room” could then be modelled
with an attribute hasTemperature that contains the aggregate values of the temperature sensor
entities. The (potentially dynamic) association between the sensor devices and the entities is

IoT-A (257521)

Internet-of-Things Architecture © - 31 -

solved by the resolution infrastructure. The information model could support capturing these
associations in two ways:

1. By keeping a history of the associations, e.g. by adding metadata to the
hasTemperature values that link to the device entity (data provenance);

2. By recording the current association, e.g. by introducing an attribute metadata object
that links the entity to the resources that are currently able to contributed to the values
of this attribute.

 class Information Model

Attribute

attributeName
attributeType

ValueContainer

Object

MetaData

metadataName
metadataType
metadataValue

VirtualEntity

identifier
entityType

Serv iceDescription

Serv iceEntityAssociation

Value

0..* 1..*

0..*

metadata

1

Figure 8: Information model

The information in Figure 8 shows seven components with their internal data, metadata, and
their connections between each other. On the left is the VirtualEntity which represents the
observed entity. Every VirtualEntity has several standard attributes. Examples for such
attributes are a unique identifier or entityType, defining the type of the entity representation, e.g.
a human, a car, or even a temperature sensor. The entityType may refer to concepts in an
ontology that may further define additional attributes (see, for instance, [OWL2, 2009]). A
VirtualEntity can have zero to n different attributes (Attribute). Each attribute has a name
(attributeName), a type (attributeType) and one to n values (Value). This way one could, for
instance, model an attribute nearbyDevices, which itself has several values. Each value is
connected with zero to n metadata information (MetaData). Each attribute has a name
(attributeName), a type (attributeType), and one to n values (ValueContainer). This way, one
can, for instance, model an attribute nearbyDevices, which itself has several values. Each
ValueContainer is connected to one Value and to zero to n metadata information units

IoT-A (257521)

Internet-of-Things Architecture © - 32 -

(MetaData). The metadata can, for instance, be used to save the timestamp of the value, or
other quality parameters, such as precission. The VirtualEntity is also connected to the
ServiceDescription via the ServiceEntityAssociation. The modelling of the service description
using the information model is currently in process.

In the future, the the information model will expanded to two additional usage areas:

1. Service description: Services provide access to resources and are used to access
information or to control physical entities. A service description describes a service,
using, for instance, a service description language such as USDL. The information a
service provides is associated to a VirtualEntity. The association also captures whether
the service is used for accessing information or controlling information, or both.

2. Actuation Control: The information model will be further reviewed to capture how
entities can be controlled, for instance via actuators.

2.4 Communication model

The communication model aims at defining the main communication paradigms for connecting
entities, as defined in the domain model. We provide a reference communication stack, together
with insight about the main interactions among the actors in the domain model. We developed
a communication stack similar to the ISO OSI 7-layer model for networks, mapping the needed
features of the domain model unto communication paradigms. We also describe how
communication schemes can be applied to different types of networks in IoT.

2.4.1 Communication stack

This model aims at mimicking the ISO/OSI stack [ISO, 1994], but it puts the focus IoT systems
requirements and characteristics.

Data Layer

End‐to‐End Layer

Network Layer

ID Layer

Link Layer

Physical Layer

Figure 9 – IoT Communication stack

IoT-A (257521)

Internet-of-Things Architecture © - 33 -

The model, as depicted in Figure 9, stresses the relevance of the layers above the link layer. In
fact, the main strength of this communication model is the interoperability between
heterogeneous networks.
In the following, details of the different layers are provided; viz. how each of them is designed to
satisfy one or more particular requirements of the reference model.

Physical layer: The physical layer remains unchanged from the OSI definition. This is
necessary in order to neither exclude any available technology, nor to prevent emerging
solutions from being integrated into the reference model. The convergence of the different
solutions taking part in the communication stack will be managed in the upper layer.

Link layer: In order to address the heterogeneousness of networking technologies represented
in the IoT universe, the link layer requires special attention. In fact, most networks implement
similar, but customised communication schemes and security solutions. In order for IoT systems
to achieve full interoperability, as well as the support of heterogeneous technologies and a
comprehensive security framework, this layer must allow for diversity. But, at the same time, it
needs to provide upper layers with uniform interfaces.

Network layer: Here, again, the layer provides the same functionalities as the correspondent
OSI stack. However, in order to support global manageability, interoperability, and scalability,
this layer needs to provide a common communication paradigm for every possible networking
solution.

ID layer: The virtual-entity identifier (VE-ID), split from the locator, is the centre of the first
convergence point in the communication stack, i.e. the ID layer. Leveraging on uniform
interfaces provided by the link layers, the ID Layer allows for a common resolution framework
for the IoT. Also, security, authentication, and high-end services will exploit this layer for
providing uniform addressing to the many different devices and technologies in IoT networks.

End-to-end layer: This layer takes care of translation functionalities, proxies/gateways support
and of tuning configuration parameters when the communication crosses different networking
environments. By building on top of the ID and the network layers, the end-to-end layer provides
the final building block for achieving a global M2M communication model.

Data layer: at the top of the communication stack, the data layer interfaces with the data layer.
A high-level description of the data pertinent to IoT is provided by the information model (see
Section 2.3).

2.4.2 Actors in IoT communication

For the communication model of IoT systems, it is important to identify the communicating
system elements and/or the communicating users. One, if not the main peculiarity of the IoT is
that users can belong to many disjoint categories: human or services; virtual, digital or physical
entities. While the same picture is emerging in today’s Internet use, the percentage of human-
invoked communication will be even lower in the IoT. Moreover, entities can be physical, digital,
or virtual.
The communication between these users needs to support different paradigms: unicast is the
mandatory solution for one-to-one connectivity. However, multicast and anycast are needed for
fulfilling many other IoT-application requirements, such as data collection and information
dissemination, etc.
Although the actual communication interaction is performed between two or more devices, it is
important for the communication model to track the differences between communication

IoT-A (257521)

Internet-of-Things Architecture © - 34 -

pertaining to human interaction, and those that only happen between services and other non-
human entities. In the former case, viz. human interaction, it is important to address the quality
of the communication, both in terms of quality of service and quality of data. Hereby, the degree
of quality is judged by by humans (human-centred QoS and quality of experience). In the latter
case, M2M communication requirements do not involve quality-of-experience but QoS
requirements.

2.4.3 Channel model for IoT communication

This model aims to detail and model the content of the “channel box” in the Shannon-Weaver
model in the context of the IoT domain [Shannon, 1984].

Information
Source

Transmitter Channel Receiver Destination

Noise
Source

Figure 10: Schematic diagram of a general communication system.

Figure 10 depicts end-to-end communication between distant devices. The pair “information
source” and “transmitter” is embodied by the digital entity (see Section 2.2), and the pair
“receiver” and “destination” is embodied by a user, which could be a service, a human or, a
distinct digital entity.

In the IoT context the channel can assume a multiplicity of forms. The channel is generally
formed by a series of network devices coupled with software.
It is important to point out that there is a distinction between the channel model in the current
Internet and that of the IoT. The former is depicted in Figure 11, where the Internet provides an
almost transparent “glue” between two gateways.

Network Gateway Internet Gateway Network

Figure 11: Channel model for the current Internet.

The picture is much different in the IoT. In the simplest IoT case, namely a WSN island, the
channel consists of a single constrained network, as depicted in Figure 12.

Constrainted
Network

Figure 12: IoT channel for a single constrained network

IoT-A (257521)

Internet-of-Things Architecture © - 35 -

In a slightly more complicated case, the IoT channel can consist of several constrained
networks, which can rely on different network technologies (see Figure 13).

Gateway
Constrainted

Network
Constrainted

Network

Figure 13: IoT channel for communication over two constrained networks.

A different case consists of a channel embodied by a constrained network and an
unconstrained one (see Figure 14).

Gateway
Constrainted

Network
Unconstrainted

Network

Figure 14: IoT channel for communication constrained to unconstrained networks.

An additional case consists in a channel formed by two constrained networks intermediated by
an unconstrained one (see Figure 15).

Gateway Gateway
Constrainted

Network
Constrainted

Network
Unconstrainted

Network

Figure 15: IoT channel for communication over two constrained networks intermediated

by an unconstrained one.

The case we consider the most important in the IoT is the one involving two constrained
networks linked by the Internet (see Figure 16).

Gateway Internet Gateway
Constrainted

Network
Constrainted

Network

Figure 16: IoT channel for communication over two constrained networks intermediated

by the Internet.

What makes IoT very peculiar is the nature of the constrained networks it relies on. Such
networks are formed by constrained devices, and the communication between the devices can:

1. Be based on different protocols;
2. Require additional processing in the gateways.

It is important to point out that the characteristics of each network can have a noticeable impact
on the overall end-to-end communication.

IoT-A (257521)

Internet-of-Things Architecture © - 36 -

2.4.4 IoT Communication model as seen from the application level

Complex IoT applications will typically encompass the orchestration of a number of digital
entities. Due to the highly distributed nature of the IoT, we can assume that the orchestration
will too happen in a distributed way. An application-centred cartoon of IoT communication can is
provided in Figure 17, where we outline which components can initiate communication with
other components. A digital entity itself can, without introducing any lack of generality, be seen
as a group of conceptual distributed components.

CP DS

Device

Actuator Sensor

GW

Data Processor

AppNode

Figure 17: Communication layer of the IoT domain model from an application point of
view. AppNode: application node; GW: gateway; CP: control point; DS: data sink.

In this Section we attempt to outline the interactions between atomic “conceptual components”
of the IoT applications. We can imagine a digital entity to be formed by a group of sensors and
actuators. Furthermore, we can imagine a digital entity to consist of a group of data processors,
data sinks, and control points, with at least an AppNode implementing the behaviour of the
digital entity.

Application node (AppNode): An application node is a software agent implementing an
application or part of it. AppNodes orchestrate different digital entities. The application doesn’t
deal directly with sensors and actuators but it requires communication with control points and
data sinks. AppNodes can obviously communicate among themselves, and in this way create a
distributed application.

Control point (CP): A control point is a software agent that controls actuators and sensors, and
sends related messages to sensors and actuators. A CP will communicate with sensors,
actuators, and data processors, sending them configuration and control messages. A CP can
handle bidirectional communication with an AppNode. The CP is usually called by AppNodes,
but it is also enabled to call AppNodes after certain events, for instance an error.

IoT-A (257521)

Internet-of-Things Architecture © - 37 -

Data sink (DS): A data sink is a software agent that receives data -which it will consume or
store- directly from a sensor or a data processor. This communication is event-driven and
initiated by either the sensor or the data processor. Data sinks are controlled by AppNodes, but
they also can initiate communications to the AppNodes on given events, like crossing a
threshold .

Data processor (DP): A data processor is a software agent receiving data directly from sensors
or from other data processors, performing operations like filtering or aggregation, before
sending data to a data sink.

Gateway (GW): A Gateway is a forwarding element, enabling various local networks to be
connected. In this model, sensors and actuators cannot communicate directly with a gateway.
Therefore, a control point, a data processor, or a data sink need to be hosted in the same
network. A gateway can obviously communicate with other gateways and forward traffic from
control points, data sinks, data processors, and AppNodes.

IoT-A (257521)

Internet-of-Things Architecture © - 38 -

3. Reference architecture

As discussed in Section 1, the IoT Reference Architecture consists mainly of views and
perspectives. What views and perspectives depends on the unified requirements that are
inferred from application-specific requirements. By aid of our requirements-engineering process
(see Section 1.3.2) we identified a reference architecture that contains the views and
perspectives shown in Figure 18.

IoT-A Reference Architecture

* Usage-independent aspects

View

Functional

Information

Deployment*

Operation

Perspective

Security and
Privacy

Performance and
Scalability

Availability and
Resilience

Evolution and
Interoperability

Figure 18: Detailed view of the IoT reference architecture. Green boxes: addressed in this

deliverable.

Of the views identified in our requirements process, only the functional view is addressed in this
report (see Section 3.1). Of the perspectives identified only security and privacy are addressed
(see Section 3.2). The other views and perspectives will be dealt with in future deliverable
addressing the architectural reference model (see Section 4.1).

3.1 Functional view

To define a functional view for the IoT-A reference architecture, we first identified the key
functional groups such an architecture needs to provide in order to meet the requirements
identified during our requirements-engineering process. In total, seven functional groups were
identified.

• From the four central abstractions identified in the domain model (physical entities,
devices, resources, and services), we derived the ‘virtual entity (VE) and information’
and the ‘IoT service & resource’ functionality groups. The former provides
functionalities for accessing VEs and devices, while the latter provides functionalities for
accessing resources and services.

IoT-A (257521)

Internet-of-Things Architecture © - 39 -

• With regards to the plethora of communication technologies that the IoT-A reference
architecture needs to support, we identified the need for a ‘device connectivity and
communication‘ functionality group.

• Requirements expressed by stakeholders regarding the possibility to build services and
applications on top of the IoT are covered by the ‘process execution and service
orchestration’ and ‘application’ functionality groups.

• To address consistently the concern expressed about IoT security and privacy, we
grouped the required functionalities in a ‘security’ functionality group.

• Finally, a ‘management’ functionality group is required to manage the different
functionality groups.

Furthermore, for diverse reasons, such as interoperability and system modelling, each
functionality group was subdivided into functional components. Also, each link between
functionality groups is equipped with two interfaces.

3.1.1 Functionality groups

The functional decomposition of the IoT-A reference architecture is depicted in Figure 19. As
discussed before, functional components are grouped in seven functionality groups. These
seven groups are briefly described bellow. More detailed descriptions of these groups
components are provided in Sections 3.1.2 and 3.1.3.

1. Applications: This group describes the functionalities provided by applications that are
built on top of an implementation of the IoT-A architecture.

2. Process execution and service orchestration: This functionality group organises and
exposes IoT resources so that they become available to external entities and services.
Through this set of functionalities, and the APIs that expose them, IoT Services become
available to external entities and can be composed by them.

3. Virtual entity (VE) and information: This group maintains and organises information
related to physical entities, enabling search for services exposing resources associated
to physical entities. It also enables the search for services based on the physical entity
they are associated to. When queried about a particular physical entity, this functionality
group will return addresses of the service related to this particular physical entity.

4. IoT service & resource: When queried about a specific service, this group will return
its description, providing links to the exposed resources. This group also provides the
functionalities required by services for processing information and for notifying
application software and services about events related to resources and corresponding
physical entities.

5. Device connectivity and communication: This functional block provides the set of
methods and primitives for device connectivity and communication (the first referring to
the possibility for a device to be part of a network, the second to the possibility for this
device to be source or destination of messages). Also, this group contains methods for
content-based routing.

In addition to these ”longitudinal” functionality groups, two sets of “transversal” groups were
identified. These transversal groups provide functionalities that are required by each of the
previously discussed longitudinal groups. The policies governing the transversal groups will not
only be applied to the groups themselves, but do also pertain to the longitudinal groups. Indeed,
for a security policy to be effective, it must ensure that there is no functionality provided by a

IoT-A (257521)

Internet-of-Things Architecture © - 40 -

component that would circumvent the policy and provide an unauthorised access. The same
applies to quality-of-service expectations that should not be too high on certain components and
too lax on others.

6. Management: In order to manage computational resources efficiently, management
has to be handled by a single group of functionalities.

7. Security: Security functions have to be consistently applied by the different groups of
functionalities. Specifically, access-control policies shall consistently be applied in order
to prevent unauthorised applications from obtaining access to sensitive resources.
Privacy will also be enforced through pseudonymity, i.e. different (generic) identities can
be used by a user when accessing IoT services.

The rest of this Section details the above functionality groups and describes their components,
as well as the interfaces that link them. First we start by depicting the global functional
decomposition (see Figure 19), and then describe the functionality-group components, starting
with the longitudinal functionality groups (Section 3.1.2). Finally, we detail the transversal
functionality groups (Section 3.1.3).

IoT-A (257521)

Internet-of-Things Architecture © - 41 -

Device Connectivity and Communication

WSNZigBeeRFID others

IoT Services and Resources

Applications

Tag Reader

Communication Unification

IF.CON.1

IF.RES.1

IoT Service
Resolution

IF.SOAW.1

Management

IF
.R

ES
.3

IF
.M

AN
AG

.2

IF
.C

O
N

.3

IF
.M

AN
AG

.1

Service
Composition and

Orchestration

IF.C
O

N
.2

IF.SO
AW

.4Process
Execution

Security

IF
.M

A
N

A
G

.3

Resource History
Storage

IoT
 Service

IF.S
E

C
.1

IF.EOIINF.2

VE & IoT Service
Monitoring

Virtual Entity History
 Storage

VE
 Resolution

QR-Code

Device
Traceability

Communication
Reliability

Communication
Trigger

IF.RES.2

Business Model
Processing

IF.S
O

AW
.5

IF.R
ES.4

IF.E
O

IIN
F.4

IF.EOIINF.1

Virtual Entity (VE) and Information
IF

.S
O

AW
.3

IF
.S

O
AW

.6

IF.SOAW.2

Process Execution and Service Orchestration

IF
.E

O
IIN

F.
3

IF.APP.1

IF.C
O

N
.4

IF
.M

A
N

A
G

.4

IF
.S

EC
.3

IF
.S

E
C

.2
IF

.S
E

C
.4

IF
.R

ES
.5

QoS
Manager

Device
Manager

Authorisation

Key
 Exhange

Certification
Authority

Pseudonymisation

Trust
 Authority

Authentication
Authority

Production-
Rule System

Figure 19: Diagram depicting the functional view of the IoT reference architecture. Each major box represents a functionality group, while the

smaller boxes represent functional components. The lines between functionality groups –terminating in ellipses- represent interfaces.

IoT-A (257521)

Internet-of-Things Architecture © - 42 -

Process execution & service orchestration Virtual entity & information IoT service & resource Device connectivity & communication
Service composition and orchestration Virtual-entity resolution IoT service resolution Communication unification

Execute IoT-aware process models defined by
process-modelling applications in the application
layer. This is achieved by utilising IoT services
orchestrated according to the service-composition and
orchestration component. General tasks are:
• Deploy process models for planning service

executions,
• Instantiate these services.

This functional component provides
functionalities for retrieving lists of
services that expose resources related
to particular virtual entities. If the VE is
not clearly identified by the user, this
block will also provide the functionality
to retrieve a VE based on a
description.

Maintain and provide information regarding
an identified service:
• This component can be used to

update the description of a service,
• Retrieve this description,
• Provide the address of the identified

service.

This functional component provides an access to
IoT devices that is agnostic of the devices
technology. It also ensures that all devices can
interoperate. The main solution for reaching this will
be to provide bridges between different protocol
stacks and to identify convergence points.

Process execution Virtual-entity & IoT-service
monitoring

Resource history storage Communication reliability

This functional component maintains
associations between VEs, resources,
and exposed services.

Provides storage capabilities for
measurements generated by resources
(resource history). It also provides
additional services associated to the
processing of stored information. For
deployment consideration, it should be
noted that this component and the virtual-
entity history storage can be hosted by the
same hosted in the same storage.

Given the heterogeneity of information flowing
through the IoT, this functional block will provide
uniform interfaces for retrieving data from different
sources. It will use the most efficient communication
protocol according to delay-sensitivity
communication.

Virtual-entity history storage IoT service Device traceability
Most IoT devices are subject to different availability
(duty-cycling, passive RFID, etc.). This functional
component provides methods for enhancing device
traceability. Examples for such methods are hand-
over, access logs, etc.

Communication trigger
Triggers the establishment of communications
based on policies, events, or schedules.

Tag reader

Make use of the functionalities provided by the IoT-
services-and-resources functionality group to:
• Increase quality of information,
• Support flexible services,
• Orchestrate IoT services.

Publish integrated context information
(PE context information - dynamic and
static), PE state information, PE
capabilities. For deployment
consideration, it should be noted that
this component and the Resource
History storage could be hosted by the
same entity.

Interpret and process information based
on rules or processes defined by a
user/application. This might even include
data-mining processes that periodically
analyse information and send notifications
to consumer of the service.

Read tag values and act as a communication
interface to the tags.

Table 4: Description of longitudinal functionality groups.

IoT-A (257521)

Internet-of-Things Architecture © - 43 -

3.1.2 Components and functionalities of longitudinal functionality groups

Once we identified the functionality groups shaping the high level functional decomposition of
the IoT reference architecture, we subdivided them into functional components and depicted a
more accurate picture of the architecture (see Figure 19). In a next step, the functionalities that
shall be provided by the group, i.e. its functional components, were defined in more detail. The
result of our analysis is provided below.

3.1.2.1 Application

Component: business-process modelling
Purpose: Provides an environment for the modelling of IoT-aware business processes that will
be serialised and executed in the process-execution functional component. The business-
process-modelling component is located within the application layer, as it is an external, but
necessary, tool used to build applications based on the IoT-A architecture.

Fulfils requirements: UNI.6, UNI.31
Process-models designer

The application provides the capabilities of creating executable
model representations, e.g. in a BPMN-2.0-derived format, that
can be executed in the process-execution component.

IoT business-processes
modeller

Provides the tools necessary for modelling business processes
using the standardised notation,2 i.e. using novel modelling
concepts specifically addressing the idiosyncrasies of the IoT
ecosystem.

3.1.2.2 Process execution and service orchestration

Component: service composition and orchestration
Purpose: Make use of service functionalities provided by the IoT-services & resources
functionality group to:
• Increase quality of information,
• Support flexible services,
• Orchestrate IoT services.

Fulfils requirements: UNI.8, UNI.10, UNI.43, UNI.64, UNI.87
Increase quality of
information

This functionality group can be used for increasing quality of information
by combining information from several sources. For example, an
average value –with an intrinsically lower uncertainty- can be calculated
based on the information accessed through several resources.

Support flexible
service compositions

Provides dynamic resolution of complex services, composed of other
services. These composable services are chosen based on their
availability and the access rights of the requesting user.

2 A such notation is currently been developed as part of the IoT-A project.

IoT-A (257521)

Internet-of-Things Architecture © - 44 -

Orchestrate IoT
services

This function resolves the appropriate services that are capable of
handling the IoT-user's request. If needed, temporary resources will be
set up to store intermediate results that feed into service composition or
complex event processing.

Set service priority Supports prioritisation of services.

Component: process execution
Purpose: Executes IoT-aware process models, which are defined by process-modelling in the
application layer. This execution is achieved by utilising IoT services that are orchestrated by
the service-composition-and-orchestration component.

Fulfils requirements: UNI.8, UNI.64
Deploy process
models to execution
environments

Activities of IoT-aware process models are applied to appropriate
execution environments, which perform the actual process execution by
finding and invoking appropriate IoT services.

Align application
requirements with
service capabilities

For the execution of applications, IoT service requirements must be
resolved before specific services can be invoked. For this step, the
process-execution component utilises the service-compositio-and-
orchestration component.

Run application

After resolving IoT services, the respective services are invoked using
the service-composition-and-orchestration component. The invocation of
a service leads to a progressive step forward in the process execution.
Thus, the next adequate process based on the outcome of a service
invocation will be executed.

3.1.2.3 Virtual entity and information

Component: virtual-entity (VE) resolution
Purpose: This functional component maintains the link between a virtual entity and the

resources that are associated to it. Through this component, it is possible to retrieve a list of
services exposing resources related to a virtual entity, which is either already known by the
requestor or might be discovered by providing specifications of the virtual entity.

Fulfils requirements: UNI.16
Discover VE-related
services

Discovers new (mostly dynamic) associations between VE and
associated services. For the discovery qualifiers such as location,
proximity, and other context information can be considered.

Lookup VE-related services Searches for services exposing resources related to a virtual
entity.

Update VE-associations Updates associations between a physical entity (and the related
virtual entities) and the IoT resources that are associated to this
entity.

Component: virtual-entity & IoT-service monitoring
Purpose: Maintains associations between virtual entity, resources, and exposed services related
to this physical entity.

Fulfils requirements: UNI.38, UNI.43
Monitor VE-resource
association

Monitors associations between VEs and the IoT resources hosted
by devices attached to this VE.

Monitor VE-Service
association

Monitor existing associations between VEs and services.

Assert VE-Service
association

Asserts a static association between a VE and a service. Due to
the static nature of the association, it does not have to be

IoT-A (257521)

Internet-of-Things Architecture © - 45 -

monitored.

Component: virtual-entity history storage

Purpose: Publishes integrated context information (PE context information - dynamic and static)
PE state information, PE capabilities. For deployment consideration, it should be noted that this
component and the Resource History storage could be hosted by the same entity.

Fulfils requirements: UNI.41, UNI.46
Get VE history Stores and retrieves information recorded about a virtual entity.

3.1.2.4 IoT service & resource

Component: IoT-service resolution
Purpose: Maintains and provides information regarding an identified service.

o This component can be used to update the description of a service,
o Retrieve this description,
o Provide the address of the identified service.

Fulfils requirements: UNI.4, UNI.30, UNI.74, UNI.75
Update service Description Modifies the description of the resource exposed by an IoT

service.
Resolve service Resolves the address of an IoT service.
Get service description Retrieves the description of an IoT service.
Get Service exposing a
resource

Retrieves a list of services exposing the searched resource.

Annotates resource from
device description

Semantically annotates information based on the device
description. This functionality provides the metadata required to
interpret the information that the device provides about the
physical entity.

Component: resource history storage
 Purpose: Provides storage capabilities for the measurements generated by resources
(resource history). It also provides additional services associated to the processing of the stored
information. For deployment consideration, it should be noted that this component and the
virtual-entity history storage could be hosted in the same storage.

Fulfils requirements: UNI.41, UNI.46
Get resource history Retrieves the list of information that has been recorded by a

resource (resource history).

Component: IoT service
Purpose: Interprets and processes information based on rules or processes defined by a
user/application. This might even include data-mining processes that periodically analyse
information and send notifications to consumer of the service.

Fulfilled Requirement: UNI.18, UNI.27, UNI.59, UNI.74
Process Information

Interprets and processes information based on the device
description.

IoT-A (257521)

Internet-of-Things Architecture © - 46 -

3.1.2.5 Device connectivity and communication

Component: communication unification

 Purpose: This functional component provides access to IoT devices. The component is
agnostic in respect to the devices technology. The main solution for reaching this will be to
provide bridges between different protocol stacks and to identify convergence points.

Fulfils requirements: UNI.3, UNI.16, UNI.47, UNI.48, UNI.49, UNI.71
Find a common gateway Finds for two devices the lowest layer (in the IoT stack) that

implements interoperable technologies and allows these two
devices to communicate.

Tag publishing Unlike active devices that are autonomous, tags need a reader in
order to send/provide information. This functionality exposes tags
as virtual entities.

Publish device associations

Informs the resource-and-information functionality group of the
current aggregation status at the device level.

Monitor device associations Monitors association and grouping of devices behind a gateway.
Assess device description Enforces the compliancy between semantic device descriptions,

so that information exchange between these devices is possible.
Indeed, for devices to be able to exchange information, a
common language needs to be used. This language is used for
describing the information and making sure that information is
consistently exchanged. This function ensures that the device
description is consistent with this language.

Component: communication reliability
Purpose: Given the heterogeneity of information flowing through the IoT, this functional block
provides uniform interfaces for retrieving data from different sources. It uses the most efficient
methods according to data sensitivity and delay tolerance of the requesting application.

Fulfils requirements: UNI.26, UNI.28, UNI.29, UNI.50, UNI.58
Get route for a specific
content

Routes the messages according to their content.

Transmit delay-sensitive
information

Transmits delay-sensitive information.

Setup time-sensitive
communication

Supports reliable communication between devices hosting time-
sensitive resources.

Component: device traceability
Purpose: Most IoT devices are subject to different availability (duty-cycling, passive RFID, etc.).
This functional block will provide methods for enhancing device traceability, such as hand-over,
access logs, etc.

Fulfils requirements: UNI.12, UNI.20, UNI.21, UNI.45, UNI.50, UNI.51
Check device authorisation

Verifies that the device is registered and authorised to
communicate on the network.

Check transmission activity Provides real-time status information of transmission activity.
Initialise device roaming Updates locator when a device changes network location.

Component: communication trigger

Purpose: Triggers the establishment of communications based on policies, events, or
schedules.

IoT-A (257521)

Internet-of-Things Architecture © - 47 -

Fulfils requirements: UNI.17, UNI.49

3.1.3 Components and functionalities of transversal functionality groups

3.1.3.1 Management

3.1.3.2 Security

Component: authorisation
Purpose: Based on the policies set by the owner/administrator of a resource/service, the
functional component authorisation decides about whether a requested access should be granted
or denied.

Fulfils requirements: UNI.1, UNI.2, UNI.22, UNI.24, UNI.40, UNI.62, UNI.67
Check access
authorisation

Controls access to functionalities and information in the different
functionality groups based on the requestor ID (e.g., directly/in SOA
services/applications).

Select secured
communication protocol

Selects a secured communication protocol supported by the device
and adapted to the resource sensitivity (device resources/supported
protocol/sensitive data).

Component: QoS manager
Purpose: Manages the QoS when using functionalities provided by the different components of
the architecture. This information is then provided to services and applications that make use of
this resource.

Fulfils requirements: UNI.59, UNI.60, UNI.61
Assess policy Manages consistency of the QoS requirements expressed and supported

by the different functionality components
Get QoS policy Informs the ‘process execution and service orchestration’ and ‘device

connectivity and communication’ of the QoS required/supported by the
requesting application.

Component: device manager
Purpose: Manages device at the hardware/firmware level

Fulfils requirements: UNI.14, UNI.15, UNI.19, UNI.55
Set device default
configuration

Provides device with a default configuration that can be used when the
device is initialising.

Update device
firmware Updates the firmware of the device.

Component: production-rule System
Purpose: This component will be used to express and enforce a set of conditions that, once
fulfilled, will automatically trigger some pre-defined action. Such rule could be used to verify the
integrity of a virtual entity, services, and the platform. Initialise signal failure by triggering an alarm
signal

Fulfils requirements: UNI.32,UNI.66

IoT-A (257521)

Internet-of-Things Architecture © - 48 -

Tag resource as
sensitive environment

Stores sensitive resources in a safe environment. The database
managing these sensitive resources duplicates the resources to
enforce reliability.

Component: key exchange
Purpose: This functional component is provided by a trusted entity. It distributes symmetric keys
for M2M communication. These keys can be of temporary nature for pseudonymisation and
concealed aggregation.

Fulfils requirements: UNI.22, UNI.24

Component: certification authority
Purpose: Provides certificates binding an Virtual Entity to defined attributes like :
• IP addresses
• Public keys
In addition, it can assert certificates provided by another certification authority.

Fulfils requirements: UNI.22, UNI.24

Component: authentication authority
Purpose: Authenticates the user and provides assertion of its identity or chosen pseudonym.
Additional attributes, e.g. roles, can be added to the assertion. It can use federation mechanisms
for authentication between different domains.

Fulfils requirements: UNI.22, UNI.24

Component: trust and reputation
Purpose: Maintains reputation of each device or service based on recommendations and
feedbacks received from other devices and direct observations of device behaviours and
measurement accuracy. This functionality might be centralised for a specific domain.

Fulfils requirement: UNI.40, UNI.62
Evaluate resource
reliability

Asserts that the device hosting the accessed resource is trustworthy enough
for this resource to be used by a critical service or application.

Component: pseudonymisation
Purpose: Provides functions required to support user privacy (mostly through
anonymity/pseudonymity); covers the creation and management of pseudonyms either for
• Users that activate a pseudonym during the authentication or at a later point in time;
• Resource/devices that utilise pseudonyms to protect the privacy of the user.

Fulfils requirements: UNI.1, UNI.2, UNI.40, UNI.61
Sanitise data set

Removes traces of the user ID in a given data set or during an access to the
service.

IoT-A (257521)

Internet-of-Things Architecture © - 49 -

3.2 Security perspective

This Section describes the security perspective of the reference architecture. The Section is
divided in two parts dealing with security and privacy at communication level and within the
infrastructure services, respectively. The general approaches to communication security and the
functional components and interactions needed for achieving system-level privacy and security
are described in the following.

3.2.1 Communication security

The communication security model is an architecture primer for enabling security features in IoT
communication solutions. As stated elsewhere [Bui, 2011], securing the communication at
protocol level is very difficult in the case of IoT, since resources are typically constrained. This
typically entails that bandwidth, power supply, processing capabilities, and security features
have to be balanced.
The model proposed hereafter has been designed under the assumption that the IoT device
space can be divided into two main categories: constrained devices and unconstrained devices.
The domain of constrained devices contains a great heterogeneity of communication
technologies (and related security solutions) and this poses a great problem in designing a
model encompassing all of them. Examples for such communication technologies can be found
elsewhere in the literature [Bui, 2011].
Moreover, there is also the problem of different functional and communication patterns between
connected devices and auto-ID devices, which adds to the complexity of the situation.
One solution can be to provide a security model with a very high degree of abstraction, so that
the above heterogeneities can be mitigated. A very high degree of abstraction is not useful
though, as it doesn’t provide enough constraints for defining a reference architecture. The same
issue may arise again when implementing a concrete architecture. As in the communication
model (see Section 2.4), we address the problem by separating domains of high heterogeneity
and demanding constraints from the more homogeneous domain. We are also providing a
standard interface between the two.

Figure 20: Providing the best security features for the lower layers in each IoT domain by
introducing Gateways with active functions. CD: constrained device; UCD:
unconstrained device. CDSecFeat: security feature for constrained device.

IoT-A (257521)

Internet-of-Things Architecture © - 50 -

The solution adopted is based on the extension of the functionalities of gateway devices. On the
edge between the domains of unconstrained and constrained devices, gateways have the role
of adapting communication between the two domains. This usually involves the adaptation
between different protocol-layer implementations up to the network layer (see Section 2.4). The
fact that gateways are generally unconstrained devices means that they can also be used for
scaling down functionalities (such as security) from the UCD domain to the CD domain. They
can also be used for managing security settings in peripheral (constrained-device) networks.
Gateways have to provide the following functionalities in order to hide underlying heterogeneity:

• Protocol adaptation between different networks (by definition).
• Tunnelling between itself and other nodes of the UCD domain. (Optional; impacts

on trust assessment.)
• Management of security features belonging to the peripheral network. (Optional)
• Description of security options related to outgoing traffic. (Authentication of source

node, cryptographic strength, ...)
• Filtering of incoming traffic according to user-defined policies, which take into

account security options of incoming traffic, destination-node preferences and so
on. (Optional)

Gateways are not relevant and thus invisible at the end-to-end layer level. Despite end-to-end
security, lower layers may use heterogeneous security features across network sub-domains or
for point-to-point communication. The security settings provided by these layers should be
available to the applications that need and manage the communication.
While gateways are the most suited element that could provide information about the security
settings of underlying networks, this solution poses some issues. Thus, other solutions will also
be take into account and analysed, especially in the way they will interact with existing
standards and protocols. This activity will be carried out during the next phase of the IoT-A
project.

3.2.2 Infrastructure services for enabling security and privacy

In order to achieve security and privacy at the application-layer level, a set of security features
must be provided on top of the security features provided:

• Trust of IoT infrastructure components (e,g. resolution/lookup, authorisation, or
certification authority)

• Trust of IoT actors (IoT-service invokers and providers)
• Accountability of actions performed through the IoT
• Privacy for data handled by the infrastructure
• Privacy related to sensitive resources when they are provided to users

Note that, while accountability and privacy features might be conflicting in some cases, the
mechanisms for providing both are needed, and concrete architectures derived from the
reference architecture should balance the specific tradeoffs.
The aforementioned privacy and security features require the provision of the following
mechanisms, which can be viewed as technical requirements.

• Access control for resolution/lookup services.
• Access control for IoT services, providing access to resources.
• Pseudonymisation of humans as well as IoT services (client and provider side); this also

applies to the related virtual entity.
• Authentication of users.
• Confidentiality, integrity, and freshness of exchanged messages. Freshness is a

communication-security concept, implying that replay attacks cannot be performed. This
has implications for the authentication of the endpoints of a communication path and the
encryption used for communication.

IoT-A (257521)

Internet-of-Things Architecture © - 51 -

In order to satisfy these requirements, the following components of the security domain have
been identified:

• Authorisation (AuthS)
• Trust and reputation (TRA)
• Authentication (AuthN)
• Pseudonymisation (PN)
• Key exchange and key management (KEM)
• Certification authority (CA)

Such components may be co-located and aggregated, or could be distributed geographically
and operate on their own. It is also likely that these components will be run by different
operators according to specific policies reflecting relative trust.

3.2.2.1 Authentication (AuthN)

A block diagram of this functional component can be found in Figure 21. It authenticates users
accessing resources in IoT-A based architectures through IoT service clients. Authentication
means are generic. In case authentication is certification-based, the authentication component
will leverage the certification authority.
In most cases, the request of information or resolution of a service is triggered on behalf of a
particular user. This scenario is also valid for application acting autonomously. This user has to
be authenticated and the related assertion that a service client is acting on behalf of a user has
to be provided. This functionality is provided by the authentication component and can be
invoked by:

• A user who needs an ID assertion for interacting with other components (e.g.,
authorisation, trust & reputation, ...) or for accessing resources through IoT-Services.
This can occur offline. In the later case, the user first requests an assertion of his
identity that will be used in a second step3 for requesting the needed credential from the
authorisation components (in conjunction with the key exchange). These credentials
can then be used offline.

• An IoT Service (provider side), which received a request from a user. The user provided
an ID assertion in the request. The IoT service is tasked to verify the ID assertion, and
for this purpose it contacts the authentication component. This component verifies the
assertion of the identity or of the chosen pseudonym.

• An IoT-service provider who becomes active and want to join a system secured through
a Kerberos-like protocol.

• The authorisation component that needs to verify the ID assertion that was provided by
a user when requesting offline authorisation credentials.

The authentication component might trigger an action on the key-exchange-management
component as a consequence of successful or unsuccessful authentication. This component
might use federation mechanisms for authentication between different domains according to
regional or enterprise-defined policies.

3 Assuming that the authentication component and authorisation component are not co-located
and cannot interact directly.

IoT-A (257521)

Internet-of-Things Architecture © - 52 -

AuthS

KEM

TRA

AuthN

PN

User

IoT Service (Client) IoT Service
(Provider)

Discovery

Resolution

Lookup

CA

External usage of a security
component

Required components

Figure 21: Usage and dependencies of the authentication component.

3.2.2.2 Authorisation (AuthS)

A block diagram of this functional component can be found in Figure 22. The authorisation
component controls the access to the information (including resolution and discovery
information) based on the policies set by the owner/administrator of a resource/service.
Authorisation decides on whether an access should be granted or denied.
Two general approaches have been identified

• On-the-fly: An enforcement point intercepts all access to the resources/services by an
authenticated user and triggers the authorisation component to evaluate the access
policies.

• Credential-based: The user presents credentials which legitimate an access.
Additionally, attributes (e.g. roles) might be included in the request. The authorisation
component is responsible for deciding what access privileges should be encoded in the
credential.

The first approach is a conventional solution for all kind of resource access including Web
services. The second approach is used in case the availability or communication with all entities
cannot be guaranteed. This case is relevant for nomadic users. In both approaches, additional
information or credentials (e.g. on trust) can also be taken into account when deciding about
granting or denying access.
The component is also used by IoT services that want to provide offline access to their
resources. This is done in order to obtain the (cryptographic) means for verifying the offline
credentials of potential users.
Storing and managing the changes to the access privileges is also a task for the authorisation
component, which is quite different for each approach. The authorisation component might be
split into sub-components related to policy enforcement, decision, and administration (PEP,
PDP, and PAP,4 respectively).
This component might use federation mechanisms for authentication between different domains
according to regional or enterprise-defined policies.

4 Policy-enforcement point, policy-decision point, policy-administration point; respectively.

IoT-A (257521)

Internet-of-Things Architecture © - 53 -

AuthS

KEM

TRA

AuthN

PN

User

IoT Service (Client)
IoT Service
(Provider)

Discovery

Resolution

Lookup

CA

External usage of a security
component

Required components

Figure 22: Requirements and usage of the authorisation component.

3.2.2.3 Trust and Reputation (TRA)

A block diagram of this functional component can be found in Figure 23. As different players
are interacting with each other, a method to establish trust is needed. This trust encompasses
legitimate behaviours of a player, as well as its reputation regarding its ability to judge the trust
of other players. Since a globally centralised system is not a viable option for the IoT, a
functional component that records maintains the reputation of each device or service is needed.
This reputation can be based on the recommendations and the feedback received from other
devices, infrastructure services (such as authentication), and direct observations of IoT
services. It can also be based on measurements of the precision of the data provided. The
presence of security features at lower protocol layers,5 as well as the strength of the security
features, are also taken into account.
This functionality can be embodied by a federated distributed architecture operating in smaller
domains, but it has to be fault tolerant within these domains.

5 Pertinent topics are: authentication features of RFID tags; confidentiality of the peripheral
network.

IoT-A (257521)

Internet-of-Things Architecture © - 54 -

AuthS

KEM

TRA

AuthN

PN

User

IoT Service (Client)
IoT Service
(Provider)

Discovery

Resolution

Lookup

CA

External usage of a security
component

Required components

Figure 23: Dependencies and usage of the trust-and-reputation component.

3.2.2.4 Pseudonymisation (PN)

A block diagram of this functional component can be found in Figure 24. This component covers
the creation and management of pseudonyms either for

• Users, who use a pseudonym for authentication purposes or at a later point in time to
interact with an IoT service; or

• IoT services providing access to resources that need to use pseudonyms to protect the
privacy of the owner or user of the augmented object;

The pseudonymisation component is also used by the authorisation component in order to
determine whether the user presenting a pseudonym assertion is entitled to access a given
resource/service.
During the creation of a certificated pseudonym, the key pair used for registering the related
certificate with the CA is created by the KEM.

IoT-A (257521)

Internet-of-Things Architecture © - 55 -

AuthS

KEM

TRA

AuthN

PN

User

IoT Service (Client)
IoT Service
(Provider)

Discovery

Resolution

Lookup

CA

External usage of a security
component

Required components

Figure 24: Dependencies and usage of the pseudonymisation component.

3.2.2.5 Key Exchange and Management (KEM)

A block diagram of this functional component can be found in Figure 25. This component
provides the functionality for creating, distributing, and managing keys. Such keys can either be
symmetric (M2M communication) or asymmetric (for pseudonymisation and concealed
aggregation). Generated keys might be temporary and thus used for single, limited-time-span
tasks. Keys with a greater longevity need to be registered at the certification authority.
Keys used for communication encryption are stored on the key-exchange-management
component, while those used for authentication are stored in the certification authority.

IoT-A (257521)

Internet-of-Things Architecture © - 56 -

AuthS

KEM

TRA

AuthN

PN

User

IoT Service (Client) IoT Service
(Provider)

Discovery

Resolution

Lookup

CA

External usage of a security
component

Required components

Figure 25: Dependencies and usage of the key-exchange and key-management

component.

3.2.2.6 Certification Authority (CA)

A block diagram of this functional component can be found in Figure 26. This component is a
legacy component, which provides almost the same features as certification authorities.
Specifically, it provides certificates that are binding a service (provider- or client-side) to defined
attributes like

• IP addresses;
• Public keys.

Based on such certificates, secure service-based communication can be established. Other
components, like trust and reputation, as well as authorisation, rely on this component to link
their activities to the correct subjects.

IoT-A (257521)

Internet-of-Things Architecture © - 57 -

AuthS

KEM

TRA

AuthN

PN

User

IoT Service
(Provider)

Discovery

Resolution

Lookup

CA

External usage of a security
component

Required components

IoT Service (Client)

Figure 26: Usage of the certification authority. The certification authority does not

depend on other components.

IoT-A (257521)

Internet-of-Things Architecture © - 58 -

4. Summary and outlook

In this public deliverable we presented an initial architectural reference model for the IoT. It is
apparent that this work is a comprehensive task that comes with many potential pitfalls. This risk
mandates a structured approach to this architecture exercise. With the vision in Section 1, our
structured approach is formulated and motivated. This defined architecture process makes the
modelling steps is traceable and in turn can be used in future iterations on the architectural
reference model.

The two other main contributions in this document are the IoT reference model in Section 2 and
the IoT reference architecture in Section 3.

With the IoT reference model, an abstract understanding of the IoT domain is achieved,
providing a discourse into challenges, domain model, information model, communication model.

The IoT reference architecture provides a summary of the derived views and perspective and
provides details on the functional view and the security and privacy perspective.

The depth of description of models included in this document varies due to different starting
points of the modelling tasks. For instance, the domain model has been worked on and refined
since the start of the project and it is thus already reaching a certain maturity level. In contrast,
the information and communication model is only in an initial state and needs to be extended
further. The aim for future releases of this architectural reference model is to refine models to
the extend that they reach the same maturity level. Furthermore, validation of the models has to
be achieved. Section 4.1 provides a roadmap for this effort, with detailed targets for all model
updates.

It should also be mentioned that a preview of this deliverable was provided during the IoT Week
event Barcelona in June 2011.6 During this event, many interested parties from industry,
standardisation organisations, and academia showed their interest in our work.

Publications on our overall approach and the models described here are planned. A major goal
of such publication is to generate the impact necessary for our work becoming be a major
contribution towards a prosperous Internet of Things.

6 See http://www.iot-week.eu/

IoT-A (257521)

Internet-of-Things Architecture © - 59 -

4.1 Roadmap toward D1.3

This deliverable is only a first step forward towards a stable and reviewed architectural
reference model. In this Section we outline what parts will be added to this deliverable during
the time ahead.

What? Description
Unified
requirements

New input from stakeholders will be provided in the future, and
this input will again be translated into unified requirements
according to the same process as was used for in D6.1 [Pastor,
2010].

Internal
requirements

The list of internal requirements inferred from D1.1 [Bui, 2011]
will be finalised and the same implies for internal requirements
that are provided by project partners (see Annex A.2). In the
meanwhile, we will also continually monitor the pertinent
literature and ad new requirements to this list whenever needed.

Update of the
functional view

The above new requirements will be used to update the
functional view (see Section 3.1), and the consistency of the
current functional view will be checked against these new
requirements. In case new functional components will be
identified, they will of course be added to the functional view.
Also, in light of these new requirements, it will be checked,
whether the location of a functional component in a specific
functionality group has to be reconsidered.

Views not covered
yet

In this document only the functional view has been covered. The
current information model (as part of the IoT reference model)
only provides a first basis for the information view. According to
the requirement process carried out by the pertinent IoT-A work
package, two more views are of importance for IoT: deployment
and operation. These three views will be addressed in the next
version of this deliverable.

Perspectives Currently, this document does not cover any architectural
principle or quality aspects besides security and privacy. In the
next version of the deliverable, we will also address already
identified perspectives, viz. performance and scalability;
availability and resilience; as well as evolution and
interoperability.

Metainformation
model

The information model presented in this deliverable has to be
developed further. The steps to be undertaken are:

• Collection of existing information models dealing with
software architecture, networks, and communication.
Examples are the Common Information Model (CIM) and
the Shared Information & Data Model (SID).

• Validation of collected information models for IoT.
• Identification of gaps regarding the areas described in

the IoT-A reference architecture and the IoT-A domain
model.

• Filling the gaps with new or adapted information models.

IoT-A (257521)

Internet-of-Things Architecture © - 60 -

What? Description
• Building a metainformation model that covers all the

different information models and links them to the IoT-A
reference architecture and the IoT-A domain model.

Interaction
sequences and
interface definition

What information is exchanged through the interfaces identified
in the functional view and what information models are used to
describe this information?

Use cases We will derive technical implications from the use cases defined
by the stakeholders (see D6.1 [Pastor, 2010]) and the usage
scenarios covered in the SoTA (see D1.1 [Bui, 2011]). These use
cases will be used for enriching the already presented business
scenarios, use cases, and the interface analysis (see above).

Best practices We will provide a selection of best practices of how to generate
compliant architectures from the reference architecture.

Challenges We will provide an update to the definition of challenges
definition with a focus on impact factors for the different
challenges. Questions such as what is relevant in order to
achieve scalability have to be elaborated further.

IoT-A (257521)

Internet-of-Things Architecture © - 61 -

References

[AuotI, 2011] “Autonomic Internet (an FP7 project)”, http://ist-autoi.eu/autoi/index.php#
(accessed 2011-06-10), 2011

[ANSI, 2000] ANSI/IEEE, "ANSI/IEEE 1471-2000 Standard for Systems and Software
Engineering - Recommended Practice for Architectural Description of
Software-Intensive Systems," ANSI/IEEE, 2000

[Bui, 2011] Nicola Bui (Ed.), “Project Deliverable D1.1 - SOTA report on existing
integration frameworks/architectures for WSN, RFID and other emerging
IoT related Technologies”, http://www.iot-a.eu/public/public-
documents/project-
deliverables/1/1/110304_D1_1_Final.pdf/at_download/file (accessed
2011-06-09), 2011

[Cantor, 2005] S. Cantor, J. Kemp, R. Philpott, E. Maler, “Assertions and Protocols for
the OASIS Security Assertion Markup Language (SAML) V2.0”, OASIS,
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
(accessed 2011-06-15), 15 March 2005

[CCSDS, 2006] The Consultative Committee for Space Data Systems, “Information
Architecture Reference Model”, CCSDS 312.0-G-0,
http://cwe.ccsds.org/sea/docs/SEA-
IA/Draft%20Documents/IA%20Reference%20Model/ccsds_rasim_20060
308.pdf (accessed: 2011-06-15), February 2006

[EPCGlobal, 2007] EPCGlobal, “EPC Information Services (EPCIS) Version 1.0.1
Specification”, EPCglobal standard specification, September 2007

 [Field, 2008] Field, A., “As Wal-Mart expands its requirements for RFID, others find
new uses for the technology”, Journal of Commerce, Vol. 9 Issue 16,
p.21, 2008

[Giffinger, 2007] R. Giffinger, C. Fertner, H. Kramar, R. Kalasek, N. Pichler-Milanovic, E.
Meijers, "Smart cities - Ranking of European medium-sized cities".
www.smart-cities.eu/download/smart_cities_final_report.pdf (accessed
2011-06-14), , 2007

[Haller, 2010] Haller, S., “The Things in the Internet of Things”, Poster at the Internet of
Things Conference, Tokyo (IoT 2010), http://www.iot-
a.eu/public/news/resources/TheThingsintheInternetofThings_SH.pdf,
(accessed Jan. 24, 2011), 2010

[IoT-A, 2011] Internet-of-Things Architecture, “Terminology”, http://www.iot-
a.eu/public/terminology (accessed 2011-06-14), 2011

[IoT-I, 2011] IoT-I, ”Survey on IoT scenarios”, private communication, 2011.

[MacKenzie, 2006] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, B. A.
Hamilton (Ed’s), “Reference Model for Service Oriented Architecture 1.0”,
OASIS, http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf, 2006

IoT-A (257521)

Internet-of-Things Architecture © - 62 -

[Mueller, 2008] G. Mueller, "A Reference Architecture Primer",
http://www.gaudisite.nl/referencearchitectureprimerpaper.pdf (accessed
Nov. 1, 2010), 2008

[Nicholson, 2010] R. Nicholson, “Smart Cities: Proving Ground for the Intelligent Economy”,
http://www.slideshare.net/rlnicholson2/smart-cities-proving-ground-for-
the-intelligent-economy (accessed 2011-06-15), 2010

[OGS, 2002] Open GeoSpatial Consotrium, “The OpenGIS abstract specification Topic
12: the OpenGIS Service architecture”,
http://portal.opengeospatial.org/files/?artifact_id=1221 (accessed 2011-
06-14), 2002

[Oldfield, 2002] P. Oldfield, "Domain Modelling"
http://www.aptprocess.com/whitepapers/DomainModelling.pdf, (accessed
Dec. 15, 2010), 2002

[Open Group, 2009] The Open Group, TOGAFTM, 9th edition, 3rd impression ed.: Van Haren
Publishing, Zaltbommel, 2009.

[OWL2, 2009] OWL 2 Web Ontology Language Definition, http://www.w3.org/TR/owl2-
overview/ (accessed 2011-06-14), 2009

[Pastor, 2010] A. Pastor, E. Ho, A. Salinas Segura, R. Kernchen, S. Meyer, J. Riedl, and
A. Bassi, “Project Deliverable D6.1 - Requirements List”, http://www.iot-
a.eu/public/public-documents/project-deliverables/1/1/IoT-
A_Deliverable_6.1.pdf/at_download/file (accessed 2011-06-09),
November 2010

[Römer, 2002] K. Römer, F. Mattern, T. Dübendorfer, J. Senn, “Infrastructure for Virtual
Counterparts of Real World Objects”, Technical Report ETHZ,
http://www.inf.ethz.ch/vs/publ/papers/ivc.pdf (accessed 2011-06-09),
2002

[Rozanski, 2005] N. Rozanski and E. Woods, “Software Architecture with Viewpoints and
Perspectives”, http://www.viewpoints-and-perspectives.info/doc/spa191-
viewpoints-and-perspectives.pdf (accessed 2011-06-15), 2005

[Salinas, 2010] A. Salinas Segura, R. Kernchen, S. Meyer, J. Riedl, F. Lopez Aguilar, A.
Bassi, “Project Deliverable D6.6 - Report on Stakeholder opinions”,
http://www.iot-a.eu/public/public-documents/project-deliverables/1/1/IoT-
A_Deliverable_6.1.pdf/at_download/file (accessed 2011-06-09) ,
November 2010

[Serbanati, 2011] Serbanati, A., Madaglia, C.M., Ceipidor, U.B, “Building Blocks of the
Internet of Things: State of the Art and Beyond”, in RFID / Book 3, ISBN
979-953-307-026-0, InTech, 2011

[Sclater, 2007] Sclater, N., “Mechanisms and Mechanical Devices Sourcebook”, 4th
Edition (2007), 25, McGraw-Hill

[Shames, 2003] P. Shames and T. Yamada, “Reference Architecture for Space Data
Systems”, JPL TRS 1992+, http://trs-
new.jpl.nasa.gov/dspace/handle/2014/7485 (accessed 2011-06-14), 2003

IoT-A (257521)

Internet-of-Things Architecture © - 63 -

[Sundmaeker, 2010] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé (Eds.), “Vision
and Challenges for Realising the Internet of Things. ISBN
9789279150883, 2010

 [Tamblyn, 2007] S. Tamblyn, H. Hinkel, D. Saley, “NASA CEV Reference GN&C
Architecture”, 30th Annual AAS Guidance and Control Conference, AAS
07-071,
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070005131_20070
04869.pdf (accessed 2011-06-14), 2007

[Usländer, 2007] T. Usländer (Ed.), “Reference Model for the ORCHESTRA Architecture
(RM-OA) V2”, Open Geospatial Consortium Inc., OGC 07-024, 2007

[Woods, 2005] E. Woods and N. Rozanski, “Using Architectural Perspectives“, Fifth
Working IEEE/IFIP Conference on Software Architecture, 2005

IoT-A (257521)

Internet-of-Things Architecture © - 64 -

Annex A – Requirements

The purpose of this Section is to describe the process in which requirements were created and
refined, so that they could serve as inputs for developing the views, perspectives and the
functional decomposition shown in this document.

The two sets of requirements used in developing the reference architecture are presented here
for the reader's reference.

1. An initial set of requirements coming from the stakeholders.
2. A set of requirements which come from internal partners in the IoT-A project

Schematically, can be shown as:

Figure 27: Overall process by which requirements were developed, so that they could
serve as inputs for the requirements to the Architecture Reference Model

A description of the requirements processes are as follows.

A.1 Requirements from stakeholders

The process began with collecting requirements from the 7 stakeholders during the first
stakeholder workshop in Paris, October 2010. The members of the stakeholder group were
representative of a wide range of business domains with an interest on Internet of Things: Logistics,
Health Care, Technology Integration, Retail, Automotive, Service Integrators, Telecom Operators,
Law, Standardization and Veterinary Medicine.

The requirements were then reviewed individually by WP1 and WP6, each providing input relevant to
their respective work packages. In WP1, after the requirements were reviewed, they were used to
develop the views and functional decomposition in the Draft Initial Architecture, IR1.3.

The inputs of WP1 and WP6 were then combined, so that a unified set of requirements were
obtained (as shown in Figure 27). These resulting sets of requirements were then used to refine the

IoT-A (257521)

Internet-of-Things Architecture © - 65 -

views and functional decomposition as found in this document, D1.2 Initial Architecture Reference
Model.

For the reader's reference, the process diagram describing how the unified stakeholder
requirements led to the architecture reference model is presented as follows:

Figure 28: The process by which stakeholder requirements were developed into inputs
for developing the architecture reference model

For the reader reference, the unified requirement list and the corresponding view, perspective and
relevant concepts from the Reference Model are presented here. Out of scope requirements have
been excluded from the document.

ID Unified Requirement View Perspective Reference
Model

Rationale (from
stakeholder)

Requirement
Type

UNI.1

The system shall provide a
means to allow people to use
Internet of Things Services
anonymously

 Security and
Privacy

Human
User,

Service

Citizens want to protect
their private data

Functional
Requirement

UNI.2
Human users have control how
their data is exposed to other

users
 Security and

Privacy

Human
User,

Service,
Resource

Citizens want to protect
their private data

Functional
Requirement

UNI.3 The system shall provide an
device-interaction protocol Functional

Device,
Control
Point,

Gateway

I would like a way to create
and exchange semantics
between objects in order to
design new applications

Functional
Requirement

UNI.4
The system shall provide a

model for describing Physical
entities semantically

Information
Physical
Entity,

MetaData

I would like a way to create
and exchange semantics
between objects in order to
design new applications

Functional
Requirement

UNI.5

The system shall provide
interfaces for accessing the
semantical descriptions of

entities

Functional Active
Digital Entity

The remote monitoring
device gathers patient
measurements, data and or
events. Data may be
communicated each time
the device gathers the data,
accumulated
measurements may be
communicated periodically
(e.g., hourly, daily), or data
may be delivered upon
request or upon certain
events

Functional
Requirement

IoT-A (257521)

Internet-of-Things Architecture © - 66 -

ID Unified Requirement View Perspective Reference
Model

Rationale (from
stakeholder)

Requirement
Type

UNI.6

The system shall propose means
to design applications taking into

account the semantical
decriptions of Devices/Physical

entities

Information MetaData,
Service

I would like a way to create
and exchange semantics
between objects in order to
design new applications

Functional
Requirement

UNI.8
The system shall be able to run

Applications and Services
concurrently

 Performance
and Scalability

Active
Digital
Entity,
Service

The problem is to provide a
framework, a set of
scenarios where these
applications could be
developed in harmony, in
an interoperable way and in
a way that responses to the
real needs of organization
and people

Functional
Requirement

UNI.10

The system shall enable
autonomous goal-driven (task-
driven) collaboration between

Devices or Services

Operational Device,
Service

I would expect that the
traffic lights collaborate for
a goal

Functional
Requirement

UNI.12

The system shall be able to
handle interference between IoT

Devices (avoidance and
detection)

Deployment Device

In order to achieve a
reliable eHealth service the
system must be
interference-free

Functional
Requirement

UNI.14
The system shall support

Devices to activate themselves
into a collaboration

Operational Device,
Service

The remote monitoring
device is prepared for use
and communication by the
action of the patient or
clinician. This may involve
physically attaching or
placing the device,
registering the device,
setting up the
communications channels
to M2M application entities,
setting up the
communications
capabilities of the device
and providing for secure
communications

Functional
Requirement

UNI.15
Devices shall have the possibility
to be remotely controlled and
configured

Operational
Device,
User,

Service

The remote monitoring
device may be configured
by via the M2M network by
the M2M application
entities. The configuration
capability could span
simple parametric changes,
such as, reporting rates,
event or alarm trigger
levels, and dosing levels to
downloading and securely
restarting new operating
software

Functional
Requirement

UNI.16

The system shall support
Physical entity location tracking

(geo spatial and/or logical
location)

Information
Physical
Entity,
Service

High value assets need to
be tracked in order to avoid
theft and also to know
where they are currently
located

Functional
Requirement

UNI.17

The system shall support event-
based, periodic, and/or

autonomous communication
between devices

Functional

Data Sink,
Control
Point,

Gateway

Citizens want to use
features of smart products

Functional
Requirement

UNI.18

The system shall support data
processing (filtering,

aggregation/fusion, ...) on
different IoT-system levels (for

instance device level)

Information

Active
Digital

Entity, Data
Processor

The remote monitoring
device gathers patient
measurements, data and or
events. Data may be
communicated each time
the device gathers the data,
accumulated
measurements may be
communicated periodically
(e.g., hourly, daily), or data
may be delivered upon
request or upon certain
events

Functional
Requirement

IoT-A (257521)

Internet-of-Things Architecture © - 67 -

ID Unified Requirement View Perspective Reference
Model

Rationale (from
stakeholder)

Requirement
Type

UNI.19
The system shall support
provider-based Device

management
Deployment Device

Providers can initiate
communication with the
patients health monitoring
device for a number of
reasons. Examples of this
include a provider querying
the device for a reading or
for configuring such a
device

Functional
Requirement

UNI.20
The system shall support the

real-time monitoring of the radio
usage of Devices and gateways

Operational Device,
Gateway

The application knows the
current radio transmission
activity of the M2M device

Functional
Requirement

UNI.21
The system shall support the

management of the radio
transmitting Devices in real-time

Operational Device The application can control
the radio transmission

Functional
Requirement

UNI.22
The system shall support secure
communications through secure

messaging tool
 Security and

Privacy
Resource,

Service

Patients are able to initiate
communication to the
providers Electronic
Medical Record (EMR) or
health database application
using the secure
messaging tool for a variety
of purposes. Examples
include providing manually
gathered information on
existing self-monitoring
and/or chronic care
regiments.

Functional
Requirement

UNI.23
The system shall provide access
to external information sources,

e.g. health databases
 Evolution and

Interoperability
Resource,
Storage

Patients are able to initiate
communication to the
providers Electronic
Medical Record (EMR) or
health database application
using the secure
messaging tool for a variety
of purposes. Examples
include providing manually
gathered information on
existing self-monitoring
and/or chronic care
regiments.

Functional
Requirement

UNI.24
The system shall provide secure
communication, e.g. for health

information
 Security and

Privacy

Service,
Resource,

Device

Patients are able to initiate
communication to the
providers Electronic
Medical Record (EMR) or
health database application
using the secure
messaging tool for a variety
of purposes. Examples
include providing manually
gathered information on
existing self-monitoring
and/or chronic care
regiments.

Functional
Requirement

UNI.26
The system shall support time
critical message handling and

delivery
 Performance

and Scalability

Service,
Resource,

Device

In case of emergency the
RMD has to send or receive
time critical messages

Functional
Requirement

UNI.27 The system shall support
priorization of Services Performance

and Scalability Service

In case of time-sensitive
services the system needs
to assure that important
services are prioritized

Functional
Requirement

UNI.28
The system shall support some

mechanism of messages
priorization

 Performance
and Scalability

Service,
Resource,

Device

Not every message has the
same priority

Functional
Requirement

UNI.29
The system shall provide a

support for routing of data based
on content

Functional

Service,
Resource,

Control
Point,

Gateway

A system may be provided
which is operable to
determine a routing node
for a data object. The
system can comprise an
identifier generator
operable to generate an
identifier for the data object
on the basis of data content
thereof, and a lookup
engine operable to
compare the identifier for
the data object to a routing
table to determine a routing
node for the data element.

Functional
Requirement

IoT-A (257521)

Internet-of-Things Architecture © - 68 -

ID Unified Requirement View Perspective Reference
Model

Rationale (from
stakeholder)

Requirement
Type

UNI.30

The system shall provide a
resolution infrastructure for

naming, addressing and
assignment of Virtual entities and

Services

Functional
Virtual
Entity,
Service

A system may be provided
which is operable to
determine a routing node
for a data object. The
system can comprise an
identifier generator
operable to generate an
identifier for the data object
on the basis of data content
thereof, and a lookup
engine operable to
compare the identifier for
the data object to a routing
table to determine a routing
node for the data element.

Functional
Requirement

UNI.31

The system shall provide
functionality that allows the
specification of business

processes that autonomously
monitor information related to

Physical entities and controls the
respective aspects of the

Physical entity

Functional
Physical
Entity,
Service

Today, due to sub-optimal
processes, a lot of time and
money is wasted. This
situation could be improved
a lot by tracking all the
items/things, providing
context data on them at any
time and location, allowing
for automated evaluation of
the collected data and
reacting immediately on a
dangerous situation to
protect against the break
down of items.

Design
constraint

UNI.32

The system shall provide means
for IoT-entities to react

autonomously on context data
(e.g. by using a rule language)

Functional

Sensor,
Data

Processor,
Data Sink,
Application

Node

Today, due to sub-optimal
processes, a lot of time and
money is wasted. This
situation could be improved
a lot by tracking all the
items/things, providing
context data on them at any
time and location, allowing
for automated evaluation of
the collected data and
reacting immediately on a
dangerous situation to
protect against the break
down of items.

Design
constraint

UNI.36

The system shall provide means
for linking entity specific user

data of many users to one
Physical entity

Information

Physical
Entity,

MetaData,
User,

Service

My wish is to retrieve the
capacity of a thing. Thus, I
can plan a change
maintenance of all my bulbs
if they can said when they
should be changed

Functional
Requirement

UNI.40
The system shall provide

technical ways to ensure security
and resilience

 Availability and
Resilience

Road users and energy
providers want to avoid
shortages/ blackouts

Non-
functional

Requirement

UNI.41
The system shall provide a
historical information of the
Physical entity monitoring

Information

Physical
Entity,

Storage,
MetaData

A method for clarification
whether the Cold/Hot Chain
has been violated or not is
required. To be able to do
this, the continuous context
information (e.g.,
temperature) of the things
needs to be collected. This
is for example of major
importance to avoid any
damage to the
pharmaceutics during the
transport and storage
process.

Functional
Requirement

UNI.42 The system shall inform the User
about its status and vice versa Information User,

MetaData

Both the M2M server and
the M2M device must be
able to provide information
about the current state

Functional
Requirement

IoT-A (257521)

Internet-of-Things Architecture © - 69 -

ID Unified Requirement View Perspective Reference
Model

Rationale (from
stakeholder)

Requirement
Type

UNI.43

The system shall enable the
composition of Augmented
entity-related Services on

devices and cloud services

Functional

Augmented
Entity,

Service,
Device,
Active

Digital Entity

The costs for complex
logistics and healthcare
processes need to be kept
on a low level. A modular
setup of the applications
and services is one
important indgredient to
achieve this. Therefore it
should be very easy to
integrate things together
with their atomic services
into other services, and it
should be easy for things to
use services provided by
others.

Functional
Requirement

UNI.45
The system shall provide

interfaces in order to allow the
access using Mobile Devices

Functional Service,
Device

The mobile phone of the
consumer can and should
be used for interacting with
product centric services

Functional
Requirement

UNI.46 The system shall support user
profiling Information

Service,
Storage,

MetaData,
User

The mobile phone of the
consumer can and should
be used for assisting the
user in all purchase
relevant aspects

Functional
Requirement

UNI.47

The system must enable
interoperability between

Devices/Resources/Services and
Applications

 Evolution and
Interoperability

Device,
Resource,
Service,
Active

Digital Entity

As an example, CCTV
system could inform traffic
management of the length
of the waiting queue at a
crossroad. Having smart
traffic lights receiving such
input from the CCTV
system could, could help
changing the schedule of
green/red light to optimize
the traffic.

Non-
functional

Requirement

UNI.48
The system shall provide an
interoperable solution at the
naming and addressing level

 Evolution and
Interoperability Virtual Entity

IoT-A will play a role in
terms of providing a kind of
novel resolution
infrastructure. We need to
understand how best IoT
could be served by scheme
regarding the naming of
objects, the addressing and
assigning problems.

Functional
Requirement

UNI.49 The system shall provide
interfaces with legacy systems Evolution and

Interoperability Service Citizens doesn't want to use
several city systems

Functional
Requirement

UNI.50 The system shall provide mobility
at the networking level Operational

The use of M2M Devices
for monitoring health
related information is not
confined to the residence of
the patient.

Functional
Requirement

UNI.51
The system shall support mobility

of Devices/Services/Physical
entities

Functional Citizens want to access all
areas of a city

Functional
Requirement

UNI.56 The system shall support an
energy aware architecture Functional

Road users and energy
providers want to avoid
shortages/ blackouts

Functional
Requirement

UNI.58
The system shall provide high

reliability and low latency
communications

 Performance
and Scalability

Communication blackouts
are not accepted from client
side and particularly if they
are paying for premium
services

Non-
functional

Requirement

UNI.59
The system shall provide

different types of Services with
different QoS associated to them

 Availability and
Resilience Service

Communication blackouts
are not accepted from client
side and particularly if they
are paying for premium
services

Non-
functional

Requirement

UNI.60 The system shall provide
different SLA Performance

and Scalability Service

Communication blackouts
are not accepted from client
side and particularly if they
are paying for premium
services

Non-
functional

Requirement

IoT-A (257521)

Internet-of-Things Architecture © - 70 -

ID Unified Requirement View Perspective Reference
Model

Rationale (from
stakeholder)

Requirement
Type

UNI.62

The system shall provide highly
trusted and secure

communications and information
management

 Security and
Privacy

A method for clarification
whether the Cold/Hot Chain
has been violated or not is
required. To be able to do
this, the detailed context
information (e.g.,
temperature) of the things,
which have been collected
in some database need to
be easily made available.
This is for example of major
importance to avoid any
damage to the
pharmaceutics during the
transport and storage
process.

Design
constraint

UNI.64 The system shall provide
replanning of service execution Availability and

Resilience Service

Security, why? Simply
because the IoT - I am sure
you will demonstrate it - is a
kind of critical information
infrastructure which means
that if ever for whatever
reason there is a failure
somewhere on the IoT the
impact will be so high that it
would be a social loss, like
if we do not have more
electricity.

Non-
functional

Requirement

UNI.65 The system shall be fault-tolerant
and support always-on Services Availability and

Resilience Service Citizens want to use a
reliable service

Functional
Requirement

UNI.66
The system shall provide

integrity validation of Virtual
entities, Services and Platforms

 Security and
Privacy

Virtual
Entity,
Service

In certain life-critical
applications the device may
be required to perform a
secure start-up procedure
that includes integrity
checking.

Functional
Requirement

UNI.67
The system shall provide

different access permissions to
the information

 Security and
Privacy MetaData

Sensitive data of patients
must be kept secure in
order to assure trust
between the patients and to
allow access to certain
people

Functional
Requirement

UNI.70

The system shall handle
semantic interoperability

between different semantical
levels

 Evolution and
Interoperability

Service,
MetaData

I would like a way to create
and exchange semantics
between objects in order to
design new applications

Functional
Requirement

UNI.71

The system shall provide
standard communication

between Augmented entity-
related Services

 Evolution and
Interoperability

Augmented
Entity,
Service

Standard communications
between objects, from a
communication channel
point of view but also from
a semantic point of view.
(Standardization of object
semantic is somehow
similar to the
standardisation of MIB
(Management Information
Base) of telecommunication
equipments).

Design
constraint

UNI.73
The system shall allow the

semantic description of Physical
entitys and Services by a user

Information

Physical
Entity,

Service,
MetaData,

User

I would like a way to create
and exchange semantics
between objects in order to
design new applications

Functional
Requirement

UNI.74

The system shall make
comprehensive semantic

information about Physical
entities and services accessable

to Human users and Active
digital entities

Information

Physical
Entity,

Service,
MetaData,

User, Active
Digital Entity

I would like to understand
the semantics brought by
the objects

Functional
Requirement

UNI.87 The system shall support Service
lifecycle management Operational

Service,
Resource,
Storage

Road users want to use
one service over a service
life cycle

Functional
Requirement

IoT-A (257521)

Internet-of-Things Architecture © - 71 -

ID Unified Requirement View Perspective Reference
Model

Rationale (from
stakeholder)

Requirement
Type

UNI.88
The system shall provide alarm

signalling to indicate initialization
failure on Services and Platforms

 Availability and
Resilience

Service,
Resource

Standard communications
between objects, from a
communication channel
point of view but also from
a semantic point of view.
(Standardization of object
semantic is somehow
similar to the
standardisation of MIB
(Management Information
Base) of telecommunication
equipments).

Design
constraint

UNI.89 The system shall support secure
time synchronization Availability and

Resilience

Services which depend on
a precise time need a
guarantee that the devices
they are communicating to
have the right time.

Functional
Requirement

A.2 Requirements from Internal Partners

A set of technical requirements were acquired from the partners spanning the entire IoT-A
project, in all of IoT-A's different aspects: this includes specialists in orchestration,
communication, discovery & lookup, and in IoT-objects.

The approach taken was to ask each work package (which corresponded to the areas of
orchestration, communication, discover and devices) to analyse the state-of-the-art work which
they carried out in D1.1, and formulate best practices by writing requirements for the IoT-A
reference model.

Additionally upon completion of the system use cases (see Annex B), each work package was
requested to extract the requirements for certain functionalities which an IoT system should
have.

The reader should be aware that for this deliverable, the requirements from the internal partners
are work in progress, and a complete list can be found in the subsequent D6.2 Updated
Requirements List.

ID Type Priority Description Rationale Fit Criterion

IR2.1 Functional
Requirement High The process editor must be

able to create BPMN 2.0.D25
BPMN 2.0 was evaluated to be the
most IoT-aware process notation.

A BPMN 2.0 file is
created by the editor.

IR2.2 Functional
Requirement High The process editor must be

extendable.
The reuse of a comprehensive tool
allows to focus the effort.

New capabilities can
be added to the
process editor.

IR2.3 Functional
Requirement Medium

The process editor must
provide facilities to model on
business level.

A business user is not able to
specify an executable process
model.

The editor provides a
special business view
on the process, which
excludes some
execution details.

IoT-A (257521)

Internet-of-Things Architecture © - 72 -

ID Type Priority Description Rationale Fit Criterion

IR2.4 Functional
Requirement Medium

The process editor must
provide facilities to model on
technical level.

A technical user is not able to
specify the business frame of a
processes.

The editor provides a
special technical view
on the process, which
enables to specify all
execution details.

IR2.5
Non-
Functional
Requirement

Low The process editor has to be
enduser-friendly.

A business user needs to be able to
model a process.

A person with no
process execution
background is able to
model a process.

IR2.6 Functional
Requirement Low

The process editor must be
able to verify the syntax of the
process model.

The technical user needs
information about the correctness of
the syntax before the execution.

The editor provides a
syntax checking
functionality.

IR2.7
Non-
Functional
Requirement

Medium The process editor must be
"easily and fastly" extendable.

First project results should be
presentable in a small time frame.

Small effort needed for
the implementation of
a new stencil.

IR2.8
Non-
Functional
Requirement

Medium
The process editor has to
provide an attractive graphical
user interface.

The project results need to be
representable in a research review.

A user looking at the
editor for the first time
must say: "Wow, that's
cool!"

IR2.9 Functional
Requirement Medium

The process editor must be
interoperable with
developments of other WPs
and Tasks.

The projects results should be
combinable to reach the common
project goals.

The process editor
uses the interfaces,
commonly defined
with the other WPs,
where necessary.

IR2.10 Design
Constraint Medium

The process editor must
support BPMN 2.0 completely
(in particular the IoT-aware
parts)

The development effort should focus
on the BPMN IoT extension.

An IoT-aware sample
process is completely
representable.

IR2.11 Functional
Requirement High

The process modeling notation
has to be extensible in terms of
the definition of new stencils,
the specification of new syntax,
the definition of serialisation
and execution semantics.

The reuse of an existing process
modeling notation allows to focus
the effort on the IoT-extension.

The notation allows
extensions by default
or the notation was
already extended in
the past.

IR2.12 Functional
Requirement Medium The process modeling notation

has to be executable.

The projects task 2.2 and 2.3 should
closely work together and represent
a hand in hand solution.

Execution Semantics
for the artifacts of the
modeling notation are
defined.

IR2.13
Non-
Functional
Requirement

High The process modeling notation
has to be IoT-aware.

Due to the DOW the project focuses
on IoT processes. .

IR2.14 Functional
Requirement Medium

The process modeling notation
has to offer a graphical
representation.

A graphical process notation offers
a symbolism to easily model and
document business processes.

A symbolism is
available for the
notation.

IoT-A (257521)

Internet-of-Things Architecture © - 73 -

ID Type Priority Description Rationale Fit Criterion

IR2.15
Non-
Functional
Requirement

High The process modeling notation
has to be a standard.

A common standard maximizes the
potential application of industrial
stakeholders.

The standard
implementation is
published and
administrated by the
corresponding
organisation.

IR2.16 Functional
Requirement High

The BPMN extension must
support an entity based
approach defined by the
domain model of WP1.

The domain model is one key result
by WP1 and should fit to the
business modeling approach of
WP2.

All relevant domain
model concepts are
reflected by the
process modelling
approach.

IR2.17 Functional
Requirement High

The BPMN extension must
support the process execution
distributed over several
devices.

In the IoT the execution of process
steps can be distributed over
several devices.

An example process
can be executed over
more than one agent
based system
including several
devices.

IR2.18 Functional
Requirement High

The BPMN extension must
support the modelling of
different IoT specific interaction
types.

The interaction between different
devices, the integration of
information about physical entities,
and the interaction between
services characterizes the IoT.

IoT specific interaction
types are definable.

IR2.19 Functional
Requirement Low

The BPMN extension must
support to arrange data
distribution over several data
storages (resources) of
devices.

Business Processes in the IoT
distribute data objects in resources
of many devices.

For each data object
and data storage the
resource is definable.

IR2.20 Functional
Requirement Low

The BPMN extension must
provide means to scalably
model and execute processes
independently of the number of
involved process components.

In IoT processes multiple physical
entities, devices, resources and
services can appear, which could
negatively effect the performance of
the execution.

For each process
model indicators are
available, that allow to
predict the scalability
of the process.

IR2.21 Functional
Requirement Low

The BPMN extension must
support the abstraction of
individual process components.

In the IoT multiple devices,
resources and services can appear.
The accuracy and availability of
accumulated data can be of much
higher importance for the process
than the data of individual
components. The extension shall
provide abstractive individual
process components.

Individual process
components are
abstractable.

IR2.22 Functional
Requirement Medium

The BPMN extension must
support means to express the
availability of a process
component.

Due to the mobile nature that
physical entities, devices and its
services and data often have, a
business process can have a
different availability depending on its
involved components.

An indicator of the
availability of
individual process
components is
available.

IoT-A (257521)

Internet-of-Things Architecture © - 74 -

ID Type Priority Description Rationale Fit Criterion

IR2.23 Functional
Requirement Medium

The BPMN extension must
provide means to express the
tolerable error rate of a
process.

Depending on the process, a
process result is still acceptable as
far it stays under a tolerable error
rate.

Defective business
processes can be
modeled and executed
(not exceeding a
certain error threshold)

IR2.24 Functional
Requirement Medium

The BPMN extension must
provide means for designing
context-aware business
processes.

Depending on occurring events the
IoT processes need to be highly
flexible.

Several events types
are representable
using the BPMN
extension.

IR2.25 Functional
Requirement Low

The BPMN extension must
provide means for expressing
the uncertainty of process
components.

The uncertainty of individual
process components can influence
the process creation on model and
execution time.

The uncertainty of
different process
components can be
indicated.

IR2.26 Functional
Requirement High

The BPMN extension must
provide means for expressing
real-time constraints.

As the process interact with
augmented entities real-time
constraints apply to these processes

Different real-time
constraints can be
expressed.

IR2.27 Functional
Requirement High

The process execution engine
must be able to execute
processes described in BPMN
2.0 format.

The graphically defined BPMN 2.0
process model can be executed
without mapping the process model
to another notation.

The process engine
executes a BPMN 2.0
process without pre-
processing.

IR2.28 Functional
Requirement High

The process execution engine
must be able to execute defined
BPMN 2.0 extensions.

The execution demonstrates the
benefit of the graphical extension.

The process engine
executes a BPMN 2.0
process with
extensions without
errors.

IR2.29
Non-
Functional
Requirement

High
The process execution engine
must be "easily and fastly"
extendable.

The development should focus on
the IoT related extension.

Small effort to
implement an example
extension to the
process execution
engine.

IR2.30 Functional
Requirement Medium

The process execution engine
must be interoperable with the
results and development of the
other WP task.

The projects results should be
combinable to reach the common
project goals.

The process execution
uses the interfaces,
commonly defined
with the other WPs,
where necessary.

IR2.31 Functional
Requirement Medium

The process execution engine
must support BPMN 2.0
completely.

The development effort should focus
on the BPMN IoT extension.

A process using all
BPMN 2.0 artefacts is
executable.

IR2.32 Functional
Requirement Low

The process execution engine
must support the integration
with a Complex Event
Processing (CEP) component.

One WP central process execution
engine including the CEP enables a
bigger research contribution.

One process
execution engine is
used in task 2.2 as
well as in task 2.4

IoT-A (257521)

Internet-of-Things Architecture © - 75 -

ID Type Priority Description Rationale Fit Criterion

IR2.33 Functional
Requirement High Mobile entities must be able to

provide events to the platform

Many physical entities such as
mobile phones, products in a retail
store, etc. are mobile and IoT-A
must be able to detect changes
related to those entities

A mobile entity moves
to a different network
and/or administrative
domain, the mobile
entity is identified as
the same, and events
are still received

IR2.34
Non-
Functional
Requirement

Medium Events are processed on a set
of distributed nodes

A distributed architecture provides
more flexibility in the way events are
processed, saves energy and allows
minimal functionality if there is no
network connectivity

Implemented
distributed event
processing component

IR2.35 Functional
Requirement Medium

Processing of events must take
quality of information (QoI) into
account

In the processing step quality
changes

Implementation of a
QoI aware event
processing algorithm

IR2.36 Functional
Requirement Medium

Quality of information related to
virtual entities can be retrieved
from the system

Different devices provide
information with varying quality. An
application may have certain quality
requirements.

Quality of information
related to virtual
entities can be
retrieved from the
system

IR2.37 Functional
Requirement High

The IoT-A reference
architecture shall provide
events that can be related to
augmented entities

Augmented entities are the key
concepts in IoT-A with which the
applications will deal with.

Design of an event
framework that
satisfies this
requirement.

IR2.38 Functional
Requirement Medium

The IoT-A reference
architecture shall provide event
templates that can be related to
types of augmented entities

Events can be defined for a class of
augmented entities at design time,
but evaluated for every augmented
entities of the same type at runtime.
Otherwise Events must be defined
for every particular augmented
entity.

Events can be defined
per Entity Type

IR2.39 Functional
Requirement High

The IoT-A architecture shall
provide a shared memory of the
observable phenomenon

Due to services could not be online
all the time it could be necessary to
incorporate a shared memory in
order to store this information.

Implement a shared
memory to store the
measurement
information

IR2.40 Functional
Requirement High

The IoT-A architecture shall
provide unified interfaces to
access and query the
resource/entity meta data

This will enable WP4 discovery and
identification and also reasoning
mechanisms to access the required
descriptions

Definition and
description of service
interfaces

IR2.41 Functional
Requirement High

The IoT-A architecture shall
provide unified interfaces to
access and query the
observation and measurement
data emerging from resources

This will enable integration of IoT
data into business layer and high-
level applications; this will be also
related to requirement IR2.39

Definition and
description of service
interfaces based on
existing standards
(e.g. OGC SWE) and
SENSEI information
models and interfaces

IR2.42 Functional
Requirement Medium

The IoT-A architecture shall
provide standard query end-
points and generic reasoning
mechanisms to infer the
emerging data and to process
the stored meta-data related to
resources/entities

This will provide generic interface to
query the stored meta-data and to
enable high-level
applications/services to perform
query and reasoning upon the
existing/emerging data

Existing technologies
provided by the
Semantic Web
community to provide
query and reasoning
mechanisms are
employed by the meta
data models designed
in WP2

IoT-A (257521)

Internet-of-Things Architecture © - 76 -

ID Type Priority Description Rationale Fit Criterion

IR2.43 Functional
Requirement Medium

The IoT-A architecture shall
provide mechanisms to publish
and present the
resource/entity/service
description meta data as linked-
data

This will enable linking the published
description to other domain
knowledge and also location models
described by third party ontologies
or open linked data concepts and
will also support reasoning the data
based on high-level concepts and
entities defined in domain ontologies

Meta data models as
well as the semantic
data designed in WP2
are provided as linked-
data and define
association attributes
for the designed
models to relate them
to domain and location
data that can be
provided by existing
ontologies and/or
open linked data
resources.

IR2.44 Functional
Requirement High The orchestration engine shall

interpret service descriptions
service orchestration is done based
on service descriptions

Correct service
compositions can be
created

IR2.45 Functional
Requirement High

The orchestration engine shall
support creation of new
applications

Higher level services should create
new functionality

Higher level service is
created based on
lower level services

IR2.46 Functional
Requirement High The orchestration engine shall

create new service descriptions
The newly created service must be
registered with service discovery

Valid service
descriptions registered
to be discovered
correctly

IR2.47 Functional
Requirement High The orchestration engine shall

support flexible composition

Services involved in compositions
can fail and need to be replaced by
some serving equal needs

Services are replaced
by similar ones in case
of error

IR2.48 Functional
Requirement High

The orchestration engine shall
handle scopes for selecting
services for composition

Scopes selected for composed
service must be applied to the
atomic services as well

Scopes are applied
correctly to all services
a composition
contains

IR2.49 Functional
Requirement Low

The orchestration engine shall
increase quality of information
by service composition

QoI can be increased by using
additional information as reference QoI is increased

IR2.50 Functional
Requirement High The orchestration shall access

service resolution
Orchestration depends on service
descriptions provided by discovery

Service resolution can
be accessed

IR2.51 Functional
Requirement High

The orchestration shall provide
a feedback to the user who sent
a composition request

The feedback should contain a
message about the success of the
requested composition

Feedback is send in
any case
(success/failed)

IR2.52
Non-
Functional
Requirement

Medium

The orchestration engine shall
provide feedback within a
reasonable amount of time
(<5sec)

A time out must be set for
request/response loops

Every
request/response loop
finishes within the limit

IoT-A (257521)

Internet-of-Things Architecture © - 77 -

ID Type Priority Description Rationale Fit Criterion

IR2.53 Functional
Requirement Low

The orchestration engines shall
support setting preferences for
selecting services involved in
composition

Users can have the possibility to
prefer one service over another for
any reason

Preferred services are
selected for
composition

IR4.1 Functional
Requirement Medium

Discovery and lookup service of
IoT systems shall allow the
locating physical entities based
on geographical parameters

Confirms our present plan of having
some geographical representation.
This requirement is derived from
SmartProducts (SP) requirement "A
SmartProduct should be able to
locate another SmartProduct in the
same environment w.r.t. their
environment"

The architecture
reference model
incorporates
geographical
parameters in
resolution service

IR4.2 Functional
Requirement Medium

A geographical location
attribute shall exist for virtual
entities

Confirms our present plan of having
some geographical representation.
Derived from SP requirement "A
SmartProduct should be able to
access the location information of
other SmartProducts"

Reference model
defines location as
entity parameter

IR4.3 Functional
Requirement Medium

IoT-A shall support a
standardized location model
and location-information
representation.

Derived from SP requirement
"Smart products shall support a
standardized location model and
location-information representation."

Function is specified in
reference model

IR4.4 Functional
Requirement Medium

IoT-A shall support a hybrid
location model, that is, it shall
support symbolic coordinates
as well as local and global
geometric coordinates

Derived from SP requirement
"Smart products shall support a
hybrid location model, that is, it shall
support symbolic coordinates as
well as local and global
geometric coordinates"

Function is specified in
reference model

IR4.5 Functional
Requirement Low

The location model shall allow
programmers to add new
coordinate reference systems
and shall support the
transformation of coordinates
among them

Derived from SP requirement: The
location model shall allow
programmers to add new coordinate
reference systems and shall support
the transformation of coordinates
among them

Feature is specified in
the reference model

IR4.6 Functional
Requirement Medium

The location model shall enable
the implementation of the
following
queries: position queries,
navigational queries, and range
queries

Derived from SP requirement: "The
location model shall support the
following common location queries:
position queries, nearest neighbour
queries, navigational queries, and
range queries"

Location model is
specified in reference
model and the
parameters are
specified as necessary

IR4.7 Functional
Requirement High

The look-up service of IoT-A
shall withhold or grant
information depending on
context such as application
involved, requesting entity, and
security permissions

Needed for fulfilling security
requests of stakeholders. Derived
from BRIDGE requirement: "A broad
set of data from enterprise
applications MAY be requested
depending on context, industry,
application, etc"

Feature/Best Practice
is specified in the
reference model

IoT-A (257521)

Internet-of-Things Architecture © - 78 -

ID Type Priority Description Rationale Fit Criterion

IR4.8 Functional
Requirement High

Services (and information
providing services) connected
with the IoT system can
indicate what information can
be found by a Discovery/Look-
up service

Opting out of being found in a data
search was indicated in the BRIDGE
requirement and also in the IoT-A
stakeholders. The BRIDGE
requirement was "Data that
companies are willing to provide to
the Discovery Services are mainly
URL addresses of databases /
EPCIS repositories"

Feature/Best Practice
is specified in the
reference model

IR4.9 Functional
Requirement Medium

The Digital Entity History
Storage should allow for
storage of aggregation changes

This is a main functionality of the
BRIDGE system which applies to
RFID/assets tracked in the
EPCGlobal framework

Feature/Best Practice
is specified in the
reference model

IR4.10 Functional
Requirement High

The Digital Entity History
Storage shall be restricted in
who can call delete and update
functions

The integrity and trust in the history
storage block depends on how
"unaltered" it is. The BRIDGE SoTA
justifies the present use of the
"history storage" component. They
expressed it as "Discovery Service
security policies may be set to
restrict update and delete actions on
DS records to provide a journal
functionality"

Feature/Best Practice
is specified in the
reference model

IR4.11 Functional
Requirement High

Clients requesting data via the
Discovery/Lookup services
shall be uniquely identifiable

BRIDGE mentioned that the unique
client identification at the DS is
required to control access to data
stored on the DS (particularly EPC
number and link).

Prototypes of the
function are specified
with these parameters
in the reference model

IR4.12 Functional
Requirement High

Data owners should be able to
set access-control rights/
policies (set up by data owners)
to their data stored on
resources

This addresses privacy by putting
the control in the hands of the data
owners (or certain external groups)

Feature/Best Practice
is specified in the
reference model

IR4.13 Design
Constraint High

Access-control rights/ policies
(set up by data owners) shall
not be published publicly.

Access control policies themselves,
if known, can give away information.

Feature/Best Practice
is specified in the
reference model

IR4.14 Functional
Requirement High

The IoT system must enable
the dynamic discovery of
relevant virtual entities and their
related services based on
respective specifications.

Augmented entities are the core
concept proposed for IoT and to
enable applications that do not have
to be a-priori configured for a fixed
set of augmented entities, discovery
at runtime must be possible.

A discovery function
with the specification
of the virtual entity and
the specification of the
required service as
parameters

IR4.15 Functional
Requirement High

The IoT system must enable
the dynamic discovery of
relevant physical entities and
their related services based on
a geographical location scope.

Geographic location is one of the
most important aspects for finding
relevant physical entities. Spatial
relations are of prime importance in
the physical world.

A discovery function
with the specification
of the physical entity
and the specification
of the required service
as parameters and a
geographic location
scope as parameters.

IoT-A (257521)

Internet-of-Things Architecture © - 79 -

ID Type Priority Description Rationale Fit Criterion

IR4.16 Functional
Requirement High

The IoT system must enable
the lookup of service
descriptions of specified
services for an augmented
entity with the augmented entity
identifier as key for the lookup.

It is important to find the services
related to an augmented entity that
may provide information about it,
allow to actuate the augmented
entity or enable interaction with the
augmented entity.

A lookup function
providing service
descriptions with the
augmented entity
identifier and a service
specification as
parameters.

IR4.17 Functional
Requirement High

The IoT system must enable
the resolution of service
identifiers to service locators.

Due to the heterogeneity,
dynamicity and mobility in the
Internet of Things, the
communication endpoint may
change or different endpoints may
be suitable for different applications.
Therefore, services should be
uniquely identified by a service
identifier, but this identifier should
not be used for locating the service,
so a resolution step is necessary.

A resolution function
providing service
locators with the
service identifier as
parameter.

IR4.18 Functional
Requirement High

The IoT system must be able to
discover dynamic associations
between an virtual entities and
services related to the virtual
entities

Due to the mobility of physical
entities as well as devices whose
resources are accessible through
services, changing services may
provide information, allow actuation
or enable interaction with physical
entities. In order to provide the
currently relevant services for a
corresponding virtual entity, the
dynamic associations must be
discovered

Associations are
dynamically
discovered and added
to the Virtual Entity
Resolution

IR4.19 Functional
Requirement High

The IoT system must be able to
track dynamic associations
between an augmented entity
and services related to the
augmented entity to determine
whether they are still valid.

Due to the mobility of augmented
entities as well as devices whose
resources are accessible through
services, changing services may
provide information, allow actuation
or enable interaction with
augmented entities. In order to
provide the currently relevant
services for an augmented entity,
the dynamic associations must be
tracked to determine whether they
are still valid.

Associations are
tracked and
automatically removed
if it is determined that
the association is no
longer valid

IR4.20 Functional
Requirement High

The IoT system must be able to
discover dynamic associations
based on geographic location
and other context information.

Mobility is one of the key aspects for
changing associations. By
monitoring the location of physical
entities and area for which
resources can provide information,
possibly in combination with other
context information, dynamic
associations between physical
entities and services providing
access to resources can be
discovered.

By using location
services new dynamic
associations can be
found

IR4.21 Functional
Requirement High

The IoT system must be able to
track dynamic associations
between an virtual entity and
services based on geographic
location to determine whether
they are still valid.

Mobility is one of the key aspects for
changing associations. By
monitoring the location of physical
entities, e.g., using location
services, it can be determined when
associations become invalid due to
the geographic distance of physical
entities and possibly other aspects.

By using location
services, it can be
determined when
dynamic associations
become invalid.

IoT-A (257521)

Internet-of-Things Architecture © - 80 -

ID Type Priority Description Rationale Fit Criterion

IR4.22 Design
Constraint Medium

The IoT system shall enable the
discovery and lookup of
associations across multiple
administrative domains.

The Internet of Things will consist of
multiple administrative domains with
different owners. To develop its full
potential interactions, including
lookup and discovery, across
domain boundaries must be
possible.

Associations from a
different administrative
domain can be looked
up or discovered.

IR4.23 Design
Constraint High

The IoT system must respect
the privacy aspects when
performing discovery, resolution
and lookup

Privacy is a key aspect for the IoT.

Pseudomized
identifiers are
unlinkable to other
identifiers or a specific
user

IR4.24 Design
Constraint Medium

The IoT system must provide
privacy protection for users
accessing information about
physical entities or services

For acceptance of the Internet of
Things privacy during usage must
be guaranteed

Users can access
services in a
pseudomized manner

IR4.25 Functional
Requirement High

The IoT Service Identifier shall
use the service/resource
description for retrieval

The IoT System must consider the
description of a service/resource for
the semantic indexing on which the
search will be performed

A semantic description
of the Resources and
the ID of the
associated virtual
entity is recorded in
what we define the
Discovery Server

IR4.26 Functional
Requirement High

The IoT System shall be able to
accept and manage semantic
queries from the user and
return Resources/Services

Necessary for the match in the VE
Semantic Retrieval

Rough specifications
are available in the
definition of the
Discovery Service

IR4.27 Functional
Requirement High

The Discovery Service in local
search, is required to find
service/resource based on
(rough) semantic description

Because the discovery service in
local search combine the peer to
peer discovery with the white search
(no semantic filter) in the geo-
localization context.

Feature is not
currently described in
Reference Model; This
can be done in the
Terminology Section
or functional
Decomposition when
talking about the
Discovery Service

IR4.28 Functional
Requirement High

The IoT system shall have a
service to obtain a new
identifier to the new VE
registered resource/service and
to save the description of its
services

VE Service Identifier manages the
ID (VID) and the semantic
description, for the Global Discovery
Search.

Feature is specified in
the reference model

IoT-A (257521)

Internet-of-Things Architecture © - 81 -

ID Type Priority Description Rationale Fit Criterion

IR4.29 Functional
Requirement High

The IoT system shall have a
service to insert the operational
specifications of the new
registered resource/service

VE Service Specification manage
the association ID(VID) to the
operational specification for the
LookUp Service

Feature is not
specified explicitly in
the Reference Model

IR4.30 Functional
Requirement High

The IoT system shall have a
service to register the proper
URI and the locator of the new
registered resource/service

To managed by dynamic linker,
uses for the Resolution Service by
return the last address/locator

Feature is not
specified explicitly in
the Reference Model

IR4.31 Functional
Requirement High

A VE that is associated with a
PE that changes geolocation
shall update
coordinates/address/locator
through IoT system service

IoT Service Monitoring is a service
that manages the
coordinates/address/locator and
uses for the Resolution Service by
return the last address/locator

Feature is not
specified explicitly in
the Reference Model

IR4.32 Functional
Requirement Medium

IoT system should define a
common virtual identification
system (virtual-ID)

An universal identifier should be
defined as standard ID in order to
map it to the specific ID used in
every type of system (TCP/IP, RFID,
...)

Feature/Best Practice
is specified in the
reference model

IR5.1
Non-
Functional
Requirement

High
The communicated messages
must not be spied by an
unauthorized person or device

Confidentiality must be ensured

IR5.2
Non-
Functional
Requirement

High

The device (contactless card for
example) must not be activated
without the consent of the
owner

To avoid unsolicited scanning of
people

IR5.3
Non-
Functional
Requirement

High

The identifier of the device (ID
of an RFID tag for example)
must not be tracked by
unauthorized entities

The tracking of items and then
people raise the problem of privacy

IR5.4 Functional
Requirement Connected objects shall be able

to do energy harvesting
Maintain operation in harsh
environments

Ensure IOT-A
exploitation potential
in an as wide as
possible spectrum of
application domains

IR5.5 Functional
Requirement

Connected objects shall be able
to communicate with each other
through the network via
standard communication
interfaces

Enhance wide use potential It is part of the overall
architecture

IR5.6
Non-
Functional
Requirement

 Data security&privacy should
be enabled at atomic level

Part of the wider
security & privacy
framework

IoT-A (257521)

Internet-of-Things Architecture © - 82 -

ID Type Priority Description Rationale Fit Criterion

IR5.7
Non-
Functional
Requirement

Communication with the objects
must be intermittent and
command-based

Avoid traffic overhead Part of the WP3
requirements for M2M

IR5.8
Non-
Functional
Requirement

Each object should have a
universal ID, part of it read-only
and part of it read/write

Enable object recognition and
setup/configuration in the context of
particular applications development

Enable faster and
easier setup of use-
cases

IR5.9
Non-
Functional
Requirement

 Object capabilities may be
universally defined at HW-level

Enable plug n'play operations at
user services level

Enable rapid object
functions integration in
user services

IR5.10
Non-
Functional
Requirement

Atomic-level protocols must
implement only functions
related to data acquisition (e.g.
DSP-level), crypto and security

Avoid overlap with user-level
communication protocols (WP3)

High level
communication
protocols are studied
in WP3

IoT-A (257521)

Internet-of-Things Architecture © - 83 -

Annex B – System use cases

In this Annex, the system use cases for the different functionality groups or functional
components are described according to the functional view of Section 3.1.

At this stage of the project, it is difficult to include detailed system use cases of all functionality
groups or functional components.
The use cases that are already available are presented in this Section because they allow a
preliminary evaluation of the different architectural components and their interactions.
Furthermore, they help the reader in getting a better understanding of the function and
interaction of these components. They also help in identifying additional internal requirements
as mentioned in Annex A.

The current plan is to expand further on this modelling in IR 1.4 and D1.3 and complement this
annex with:

o System use cases covering the components not covered in this document.
o Diagrams showing the interaction between components such as sequence or

interaction diagrams.
o Diagrams modelling the use cases of WP7.

The remainder of this Annex is organized as follows.
First, the system use cases of the process-execution and service-orchestration functionality
group are described.
Next, IoT-services and resources and virtual-entity resolution use cases are described followed
by virtual-entity and IoT service-monitoring use cases.
Finally, the system use cases of the security functionality group are provided.

B.1 Process execution and service orchestration

The use cases presented in this Section demonstrate two primary functional components,
namely process execution and service composition & orchestration. The former functional
component processes more highly refined data and pertains to business-process management.
Business processes are modelled at the business level and executed in an environment in
which services are resolved at design or runtime. These services fulfil the process steps or
activities outlined in the process model. This is where the second functional component, namely
service composition & orchestration comes into play, when services need to be found and
orchestrated in order to execute business steps.

The use cases depicted below illustrate the mechanics of these two functions.

IoT-A (257521)

Internet-of-Things Architecture © - 84 -

Use case 1: Process Execution.

The process-execution diagram in Figure 29 illustrates how a process model is created by a
modelling application and then serialised and deployed to different execution platforms. The
context management framework (CMF) and real-world integration platform (RWIP) are outlined
as examples, as these execution platforms are used as background Intellectual Property in the
IoT-A project.

The use cases addressing the process-execution component typically follow this usage pattern:

1. A domain expert starts with modelling a business process in a dedicated modelling
application. While such an application for modelling IoT-aware processes is not strictly
part of the IoT reference architecture, one of the technical work packages in IoT-A will
develop such a tool. The graphical modelling environment provides stencils and other
components following the IoT-A concepts of an entity-based domain model as it is
outlined in this deliverable.

2. The graphical model is then serialised in an executable form. The preliminary analysis

of process execution languages and notations (which will be discussed in depth in the
forthcoming deliverable D2.2 due at month 18 of the project) indicates that BPMN2.0
will most probably be the preferred output format for IoT-aware processes. A technical
expert will use this serialisation to deploy the process to an execution environment, in
which the process is to be run.

The actual process execution is then IoT-specific in the sense that it delegates certain activities
or process steps to IoT execution platforms such as RWIP or CMF. In these platforms, service
capabilities and activity requirements are aligned. The goal of this alignment is to allow the
choice of services that are capable of providing the required IoT-specific service qualities. For
instance, a process might require a certain confidence level provided by a sensor service of at
least 80%, so that only a subset of the available sensor services might be suitable within the
execution of the respective process parts. At this stage of execution, the service-composition &
orchestration component becomes relevant, as certain quality and capability parameters might
not be met by individual services, but only by an orchestration of such services. The lower part
of the diagram is thus explained in more detail within Figure 30.

IoT-A (257521)

Internet-of-Things Architecture © - 85 -

 uc Domain Agnostic Use Cases

Service Manager Service Composition and Orchestration

Application Process Execution

Business Process
Modelling

Domain Expert

Create Model
Serialization

Deploy To Execution
Env ironment

Delegate Activ ities To
IoT Runtime Platforms

Delegate to RWIP
Delegate to CMF

Orchestrate IoT
Serv ices

Resolv e IoT Serv ice

Execute Activ ity

Align Activ ity
Requirements with
Serv ice Capabilites

Inv oke Serv ice

Inv oke Serv ice

Technical Expert

«include»

«include» «include»

«include»

«invokes»

«include»

«invokes»

«include»

«include»

Figure 29: Use case process execution

IoT-A (257521)

Internet-of-Things Architecture © - 86 -

Use case 2: Service composition and orchestration.

When individual process steps or activities need to be executed, the service-composition &
orchestration diagram comes into focus. The following diagram shows the detailed and principal
steps for service composition in a domain-agnostic way. The general principle is always that a
mapping of services to VEs must be found by aligning information from the functionality group
virtual entity resolution & IoT-service resolution.
As this chain of invocation typically progresses from the service-composition & orchestration
component to the process-execution component (i.e. services are typically orchestrated in the
execution of a process activity). Therefore, the process-execution component is shown as an
actor starting the composition activities. While the diagram features the relationships to other
functional components, we can disregard these for the time being and focus on the main
responsibilities of the component:

• Increase quality of information
Service composition can increase the quality of information by fusing information from
different sources. This relates to the example given in the previous Section. While a
single sensor service might not be able to guarantee a certain level of precision for the
information provided, fusing several similar services might increase information quality
considerably, as errors are mitigated and faulty sensors excluded from the list of
“providers”.

• Support flexible service composition
IoT services can be composed of other services, so that the composition of the
individual services together might provide higher-level functionality. The composition is
flexible because it is not made of pre-defined services but services able to meet the
required functionality. If one service fails it can be replaced by a similar one. This
behaviour is closely related to the previous aspect of an increase in information quality
and actually further contributes to an increase of information quality, as dynamic
changes in the available services are taken into account.

• Orchestrate IoT services
The process-execution component delegates service orchestration, viz. the execution of
services appropriate for the specific process activity, to the service composition and
orchestration function. It constitutes the interface between the process execution and
the service-resolution infrastructure (the latter is discussed in the following Sections). In
essence, the process-execution component conveys the service requirements needed
for executing to the service-composition & orchestration component, which in turn
utilises the IoT-service-resolution functionality in order to find and resolve appropriate
services, and to create a suitable orchestration from them, if necessary.

IoT-A (257521)

Internet-of-Things Architecture © - 87 -

uc Domain Agnostic Use Cases

Virtual Entity
Resolution

Process Execution

Information Annotation

IoT Service
Resolution

Service Composition and Orchestration

Process Execution

Combine Information
from different Services

Compose IoT Service

Increase Quality of
Information

Support flexible
Service Composition

Insert Service
Description

Analyse Service
Descriptions

Create new
Service

Description

Discover Service

Invoke Service Subscribe To
Service

Unsubscribe From
Service

Deliver Service
Result

Discover
VE-Attribute to

IoT-Service
Associations

Service Manager

Resolve IoT
Service

Orchestrate IoT
Service

Lookup Service
Description

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Figure 30: Use case service composition and orchestration

IoT-A (257521)

Internet-of-Things Architecture © - 88 -

B.2 Resolution of IoT service

The use cases of this Section cover the IoT Service Resolution functional component as
identified in the functional view (see Section 3.1). They provide a service/resource abstraction
level, i.e., service descriptions can be discovered and looked up, but there is no relation to
virtual entities (and thus physical entities) being modelled.

The following use cases are depicted in Figure 31.

• Resolve Service Identifier to URL/Address
o The use case is initiated by a user of the system, i.e., a human user or an

active digital entity. The user wants to have the URL or address of a service for
interacting with the service.

o The assumption is that the user already knows a unique identifier of the service.
o In this use case, the IoT Service Resolution resolves the service identifier to a

URL or address.
o If the resolution step is successful, the user can contact the service.

• Look up service description based on Service Identifier
o This use case is initiated by a user of the system. The user wants to have a full

description of the service, including a description of the interface and the URL
or address for interacting with the service.

o The assumption is that the user already knows a unique identifier of the service.
o In this use case, the IoT Service Resolution looks up the service description

based on the service identifier. The service description contains all information
necessary for interacting with the service (including URL). This interaction is
then based on service identifier.

o If the lookup step is successful, the user has all the information needed for
interacting with the service.

• Discover service based on service specification
o This use case is initiated by a user of the system. The user wants to discover a

service that can provide certain functionality.
o The assumption is that the user knows what kind of service it needs, but does

not know the specific service instances available.
o In this use case, the IoT Service Resolution discovers services that fit the

service specification, which can contain information about the type of service,
its requirements, and also scope information, e.g., the geographic area for
which the service provides information.

o If the discovery step is successful, i.e., services fitting the specification are
found, the user gets the service descriptions of these services.

• Manage service resolution and service descriptions (insert, update, delete)
o This use case is initiated by a service (or an entity managing a service).
o The assumption is that a service description needs to be inserted, updated or

deleted due to a new service becoming available, an aspect of a service
changing (e.g. due to mobility), or a service no longer being available.

o This use case is about the management of service descriptions in the IoT-
service resolution, and the association of service identifiers to URLs /
addresses.

 The service (or an entity-managing a service) inserts a new service
description, so that it can be looked up and discovered and so that the
service identifier can be resolved as a URL/address.

 The service (or an entity managing a service) updates an existing
service description, which may include the update of the mapping of a
service identifier to a URL/address.

 The service (or an entity managing a service) deletes an existing
service description, so that a service is no longer available.

IoT-A (257521)

Internet-of-Things Architecture © - 89 -

o If the management of a service description is successful, the service
descriptions that can be looked up or discovered, and/or reflect the status as
reported by the services.

uc T4.1 Domain Agnostic Use Cases

IoT Service Resolution

Resolution
Infrastructure User

Resolv e Serv ice
Identifier to URL

IoT Serv ice

Look Up Serv ice
Description Based on

Serv ice Identifier

Discover Serv ice
Based on Serv ice

Specification

Manage Serv ice
Description

Insert Serv ice
Description

Update Serv ice
Description

Delete Serv ice
Description

Figure 31:Use case IoT Service Resolution

IoT-A (257521)

Internet-of-Things Architecture © - 90 -

B.3 Resolution of virtual entities

In this Section, the Virtual Entity Resolution functional component, as identified in the functional
view (see Section 2.4), is described. It provides a virtual entity abstraction level, i.e., virtual
entities, which are the digital counterparts of physical entities, are modelled on this level. Virtual
entities and services are linked together using associations. Services provide access to
information about the corresponding physical entities through the resources, to which the
services are associated. The virtual entity service specification allows the specification of the
relation between a virtual entity and a service. Notice that the service is part of the association.
For example, a room and a temperature service may be related through the relation (e.g.,
modelled as an attribute) indoorTemperature. The association would contain the virtual identifier
of the room, the type of room, the relation indoorTermperature, and the identifier of the service.

The following use cases are depicted in Figure 32.

• Look up associations for virtual entity and virtual entity service specification.
o This use case is initiated by a user of the system, i.e. a human user or an active

digital entity like a software agent. The user wants to look up associations that
associate the virtual identification of the virtual entity with a service providing
specific information or allowing executing an actuation affecting the
corresponding physical entity.

o The assumption is that the user already knows the virtual identity of the virtual
entity.

o In this use case, the Virtual Entity Resolution looks up the associations
corresponding to the virtual identification and filters them according to the
virtual entity service specification. As a result, the user receives associations
containing identifiers of relevant services.

o If the lookup is successful, the user gets the identifiers of the required services
whose description can then be looked up through the IoT Service Resolution.

• Discover associations based on virtual entity specification and virtual entity service
specification

o This use case is initiated by a user. The user wants to discover physical entities
through their corresponding virtual entities. These virtual entities can provide
information about the physical entity or trigger actuations on the physical
counterpart of the virtual entity.

o The assumption is that the user does not now a the virtual identities of these
virtual entities, but knows what kind of virtual entities and what kind of
associated services are required.

o In this use case, Virtual Entity Resolution enables the user to discover relevant
associations. Virtual entities are specified through a virtual-entity specification,
and the requirements for the associated service are specified in the virtual-
entity-service specification. As a result, the user then receives fitting
associations.

o If the lookup is successful, the use gets the virtual identities of fitting virtual
entities together with the identifiers of required services, whose description can
then be looked up through the IoT Service Resolution.

• Manage virtual entity/service associations (insert, update, delete)
o The use case is initiated by a service or the Virtual Entity & IoT-service

Monitoring.
o The assumption is that an association between a virtual identity and a service

needs to be inserted, updated, or deleted.
o The use case is about the management of associations in the Virtual Entity

Resolution.
 A service or the Virtual Entity & IoT Service Monitoring unit inserts a

new association, so that it can be looked up and discovered.

IoT-A (257521)

Internet-of-Things Architecture © - 91 -

 A service or the Virtual Entity & IoT Service Monitoring unit updates an
existing association, so that any changes are reflected.

 A service or the Virtual Entity & IoT Service Monitoring unit deletes an
existing association, indicating that the formerly associated service
does no longer provide the specified functionality.

If the management of associations is successful, the associations that can be looked up or
discovered reflect the status as reported by the services or the Virtual Entity & IoT Service
Monitoring.

uc T4.2 Domain Agnostic Use Cases

Virtual Entity Resolution

Look Up Associations for Virtual
Entity & VE Serv ice Specification

Discover Associations based on VE
Specification and VE Serv ice

Specification

Manage Assoication

Insert Association

Update Association

Delete Assoication

Resolution
Infrastructure User

IoT Serv ice / VE &
IoT Serv ice
Monitoring

Figure 32: Use case Virtual Entity Resolution

IoT-A (257521)

Internet-of-Things Architecture © - 92 -

B.4 Monitoring of virtual entities and IoT services

This Section covers the Virtual Entity and IoT Service Monitoring use cases. The Virtual Entity &
IoT Service functional component is responsible for finding and monitoring dynamic
associations between virtual entities and services. Static associations between virtual entities
and services are valid all the time, e.g., in cases where the device providing the service is
embedded in the physical entity which is the physical counterpart of the virtual entity. For
dynamic entities this is not the case, i.e., they can become invalid. A dynamic association may
for example be valid when the device providing the service and the physical entity are in close
proximity and become invalid if one of them moves away.

Use cases depicted in Figure 33 cover the cases …
• Assert static virtual entity to IoT service association

o This use case is internally triggered by the Virtual Entity & IoT Service Monitoring
functional component.

o The assumption is that the functional component was configured with respect to the
aspects that need to be monitored in order to assert static associations.

o The Virtual Entity & IoT Service Monitoring unit asserts a static association between
a virtual entity and a service.

o As the result of asserting a new static association, the Insert Association use case
of the Virtual Entity Resolution is triggered (see B.3). Due to the static nature of the
association, it does not have to be monitored.

• Discover associations between virtual entities and services
o The use case is internally triggered by the Virtual Entity & IoT Service Monitoring

functional component.
o The assumption is that the component was configured with respect to aspects that

need to be monitored in order to discover dynamic associations (see Annex B.3).
Important aspects include the location, proximity, and other context information that
is modelled for physical entities and devices hosting resources.

o The Virtual Entity & IoT Service Monitoring discovers new dynamic associations by
which virtual entities and services are related.

o As the result of discovering a new dynamic association, the insert association use
case of the Virtual Entity Resolution is triggered (see B.3). Also, as the association
is dynamic, it needs to be monitored.

• Monitor existing associations between virtual entities and services
o The use case is internally triggered by the Virtual Entity & IoT Service Monitoring

functional component.
o The assumption is that it the aspects that were relevant for the discovery of the

dynamic association can changes so the dynamic association becomes invalid.
o The Virtual Entity & IoT Service Monitoring function monitors the aspects that were

relevant for the discovery of the dynamic association (see Annex B.3) to determine
whether the association has changed or has become invalid.

o As the result of monitoring an existing dynamic association, the “update
association” use case or the “delete association” use case of the virtual-entity
resolution can be triggered.

IoT-A (257521)

Internet-of-Things Architecture © - 93 -

uc T4.3 Domain Agnostic Use Cases

Virtual Entity Resolution

VE & IoT Service Monitoring

Discov er Dynamic Associations
between Virtual Entities and

Serv ices

Monitor Existing Dynamic
Associations between Virtual

Entities and Serv ices

Assert Static Virtual Entity to IoT
Serv ice Association

(from Domain Agnostic Use Cases)

Insert Association

(from Domain Agnostic Use Cases)

Update Association

(from Domain Agnostic Use Cases)

Delete Assoication

«invokes»

«invokes»

«invokes»

«invokes»

Figure 33: Use case Virtual Entity & IoT Service Monitoring.

IoT-A (257521)

Internet-of-Things Architecture © - 94 -

B.5 Security

In this Section we present two use cases that illustrate the utilisation of security-related
functional components.
Both use cases extend the “Discovery of an IoT-Service based on Service Specification” by
adding additional steps before and after ensuring security and privacy related aspects. It has to
be emphasised that this use case “discovery of an IoT service based on service specification” is
just a place holder for any of those use cases identified in the previous Annex (B.2, B.3, and
B.4).

Use Case 1: secure discovery of an IoT service

This use case illustrates how the discovery of services has to be restricted to those users or
applications that are authorised to know about it, including the creation of a new pseudonym (to
ensure the privacy of a user). In this use case, it is assumed that the communication between
functional components is not limited.

The actor in the use case shown in Figure 34 is a user who utilises a service client to discover
an IoT-Service or a high-level service composition or orchestration. An example for such a
service is discovery. The following use cases are all depicted
Figure 34

• Authenticate the user
The user is authenticated and an assertion of his identity is provided7.

• Discover person-related IoT services for authorised personal
This use case extends the original discovery IoT service by adding security and privacy
protection functionality.The use case includes:

o Authorise general access to discovery
Apply access restriction to the authenticated user. Such restriction may include
further obligations like pseudomisation of the result.

o Discover service based on service specification (see Section B.2 for details).
As mentioned above this use case is just a place holder.

o Filter discovery results
The original result list of the previous use case is limited to those results the
authenticated user is allowed to see.

o Create and deploy new pseudonym
An optional use case, in which the identifier which is discovered will be
replaced by a pseudonym and provided to the user.

It is assumed as a pre-condition that the user is known and can be authenticated (e.g. through a
password or asymmetric key). The authentication use case only has to be executed once for the
validation period of the given assertion. In addition, the policies regarding the discovery of
services with respect to privacy are deployed at the respective component.
As a post-condition of the secure discovery of an IoT service, the user only receives those
services that he is entitled to see due to privacy restrictions.

7 As an example a SAML Authentication Assertion could be provided [Cantor, 2005]

IoT-A (257521)

Internet-of-Things Architecture © - 95 -

Figure 34: Secure discovery of IoT services.

IoT-A (257521)

Internet-of-Things Architecture © - 96 -

Use Case 2: Secure Direct Discovery of IoT-Services

The discovery of IoT-Services that may reveal personal information, e.g. those used for health
monitoring, needs to be secured also in those cases, in which the discovery is not able to
access additional security information on the fly. Thus the related credentials have to be prior to
the discovery.

Figure 35: Secure Direct Discovery of IoT Services

The actor in the uses case shown in Figure 35 is again a user who utilises a service client.
In a first phase, during which the related components are available, the following actions take
place:

• Authenticate the user
The user is authenticated and an assertion of this identity is provided.

IoT-A (257521)

Internet-of-Things Architecture © - 97 -

• Retrieve credentials
Based on the identity of the user, a list of credentials is provided, which prove the
privileges of the user in a self-contained manner. This proof can also be based on
simultaneously deployed information.

During a second phase, the service client may only communicate directly with an isolated
discovery component. This includes the actions:

• Discover an IoT service directly for authorised personnel
This use case extend the original Discover IoT-service, by applying access restrictions.
It includes:

o Present credentials
The credentials are verified and the related privileges will be retrieved.

o Discovery service based on service specification (see section B.2 for details)
As mentioned above, this use case is just a place holder.

o Restrict access based on credentials
Applies the privileges of the user to the result of the previous use case,
especially removes those services that the user is not allowed to see.

It is assumed as a pre-condition that the user is known and that the user can be authenticated
(e.g., through password or asymmetric key). Authentication only has to be executed once for
the validation period of the given assertion. These assertions allow the user to retrieve the
access credentials for further processing during the second phase. In addition, the policies
regarding the discovery of services (with respect to privacy) are deployed at the respective
component realizing the “retrieve credential” use case.
It is assumed that during the second phase, the service client as well as the component
realising the discovery service is unable to communicate with any of the components realising
the use case of the first phase.
As a post-condition of the secure discovery of an IoT Service, the user only receives those
services that he is entitled to see according to privacy restrictions.

