1167

The Value of Sensor Information for Managing Perishable Goods

A. Ilic, E. Schuster, T. Staake, E. Fleisch, and S. Sarma

Motivation

Research context Sensors enable quality measuremer Quantification of information value Economic and ecologic perspective nighly perishable goods

Sensor-based quality prediction

· Sensors (e.g. temperature) monitor environmental parameters Frequent use case: semi-passive RFID sensor tags attached to reusable transport items or cases such as RPC · Recorded temperature history can be used with formulas from food science to predict quality level and remaining shelf-life · Quality of prediction depends on prediction model, accuracy of initial quality assessment, measurements

Quality model

Example: improving through better information

Highest-Quality-First-Out (HQFO) – numbers indicate remaining shelf-life

Semi-passive RFID tag with temperature senso

Simulation model for benchmarking in-store issuing policies Analysis of inaccuracy of sensor-based shelf-life prediction

In-store logistics: Using information to reduce waste and increase customer satisfaction

Profit gains of using sensor information for early decision-making in supply chains

Supply chain simulation model with early removal of goods

Sensitivity analysis of information based profit gains

2,420

12,489

822

2,582

The impact of sensor-based management of perishables on CO₂e levels

Supply chain and sourcing scenarios of simulation Simulation results by macro scenarios

CO2e savings vs. CO2e of sensors

					Proportionally adjusted impact of profit-optimal sensor solutions for strawberrie				
Ту	/pe	l_1	<i>d</i> ₁	f _{R1}		Total	Scenario 1	Scenario 2	
lor	rry 3.5-7.5t	1	100km	0.65736g CO ₂	Consumer demand per year (tonnes)	16,500	5,500	4,290	
				kg * km	Consumer demand per year (number of trade units)	3,300,000	1,100,000	858,000	
e) lor	rry 7.5-16t	2	500km	0.29082g CO2	Profit U ₁ (in \$1000)	80,983	30,274	22,140	
				kg * km	Profit increase U2 (in \$1,000)	6,604	1,047	1,457	
lor	rry 16-32t	3	1,500km	0.16796g CO2	Emissions U1 (t of CO2)	21,054	2,282	2,554	
			0.0001	11468-00	Emission reduction U2 (t of CO2)	-359	36	-16	
air	rpiane	2	3,000km	ka + km	Purchasing volume U1 (t)	18,250	5,551	4,577	
				0					

The Laboratory for Manufacturing and Productivity

Scenario 1 Switzerland, national

2 EU, short distance (=ba

4 International, med. distan

3 EU, long distance