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Abstract

Background: Slow-paced breathing training can have positive effects on physiological and psychological well-being.
Unfortunately, use statistics indicate that adherence to breathing training apps is low. Recent work suggests that gameful breathing
training may help overcome this challenge.

Objective: This study aimed to introduce and evaluate the gameful breathing training app Breeze 2 and its novel real-time
breathing detection algorithm that enables the interactive components of the app.

Methods: We developed the breathing detection algorithm by using deep transfer learning to detect inhalation, exhalation, and
nonbreathing sounds (including silence). An additional heuristic prolongs detected exhalations to stabilize the algorithm’s
predictions. We evaluated Breeze 2 with 30 participants (women: n=14, 47%; age: mean 29.77, SD 7.33 years). Participants
performed breathing training with Breeze 2 in 2 sessions with and without headphones. They answered questions regarding user
engagement (User Engagement Scale Short Form [UES-SF]), perceived effectiveness (PE), perceived relaxation effectiveness,
and perceived breathing detection accuracy. We used Wilcoxon signed-rank tests to compare the UES-SF, PE, and perceived
relaxation effectiveness scores with neutral scores. Furthermore, we correlated perceived breathing detection accuracy with actual
multi-class balanced accuracy to determine whether participants could perceive the actual breathing detection performance. We
also conducted a repeated-measure ANOVA to investigate breathing detection differences in balanced accuracy with and without
the heuristic and when classifying data captured from headphones and smartphone microphones. The analysis controlled for
potential between-subject effects of the participants’ sex.

Results: Our results show scores that were significantly higher than neutral scores for the UES-SF (W=459; P<.001), PE (W=465;
P<.001), and perceived relaxation effectiveness (W=358; P<.001). Perceived breathing detection accuracy correlated significantly
with the actual multi-class balanced accuracy (r=0.51; P<.001). Furthermore, we found that the heuristic significantly improved
the breathing detection balanced accuracy (F1,25=6.23; P=.02) and that detection performed better on data captured from smartphone
microphones than than on data from headphones (F1,25=17.61; P<.001). We did not observe any significant between-subject
effects of sex. Breathing detection without the heuristic reached a multi-class balanced accuracy of 74% on the collected audio
recordings.

Conclusions: Most participants (28/30, 93%) perceived Breeze 2 as engaging and effective. Furthermore, breathing detection
worked well for most participants, as indicated by the perceived detection accuracy and actual detection accuracy. In future work,
we aim to use the collected breathing sounds to improve breathing detection with regard to its stability and performance. We also
plan to use Breeze 2 as an intervention tool in various studies targeting the prevention and management of noncommunicable
diseases.
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Introduction

Background
Noncommunicable diseases (NCDs) are a substantial global
health and economic burden [1-3]. Slow-paced breathing
training is positively associated with physiological [4-6] and
psychological [7-9] well-being. Thus, breathing training can
play a role in interventions targeting NCDs. For example,
slow-paced breathing training may induce relaxation and help
counteract stress [8]. It can also improve cardiac functioning
[10], potentially enabling improved treatment of cardiovascular
diseases, the leading cause of death worldwide [1]. Furthermore,
it can strengthen respiratory muscles, rendering it relevant for
the treatment of respiratory diseases such as asthma [4] and
chronic obstructive pulmonary disease [11].

Slow-paced breathing training generally aims at guiding people
to breathe with 5.5 to 6 breaths per minute (BPM) [6]. People
may be able to maximize their personal effects by adjusting the
BPM. For example, an untrained person may achieve better
results by breathing with >6 BPM, whereas a well-trained person
may want to breathe with <6 BPM. Nevertheless, 6 BPM are
generally used as this appears to work well for most people,
which results in 1 complete breathing cycle every 10 seconds.
A breathing cycle consists of an inhalation, an exhalation, and
up to 2 pauses in between. The duration of these individual
phases is an area of active research. Investigating these separate
phases is relevant as inhalation is associated with the
sympathetic nervous system by inhibiting vagal outflow, and
exhalation is associated with the parasympathetic nervous
system by restoring vagal outflow [12,13].

Consequently, breathing patterns typically use equal inhalation
and exhalation durations to balance the sympathetic and
parasympathetic activity or prolonged exhalations to emphasize
the parasympathetic nervous system. Although both approaches
effectively induce relaxation [14], related work argues that a
prolonged exhalation achieves more substantial relaxation
effects. In contrast, other related work has found equal durations
of inhalation and exhalation phases best suited to attain
psychophysiological coherence [12,13,15].

The positive effects of breathing training have sparked the
development of various breathing guidance apps [16].
Nevertheless, although these apps receive much attention and
are downloaded by many users, the use statistics show that
adherence is low [16,17]. The problem of nonadherence and
lacking engagement is present in various domains, and different
works hypothesize gamification as a potential solution [18,19].
In addition, for breathing training, various mobile [20-22],
desktop [23], and virtual reality [24,25] applications that use
some gameful elements have been conceptualized and
developed. However, many apps are not interactive and do not
include biofeedback during training, which is surprising as

research indicates increased effectiveness of breathing training
when biofeedback is used [26-29].

Nevertheless, breathing training apps exist that include
biofeedback mechanisms based on heart rate variability (HRV)
[30] or breathing [21-23,31]. Although HRV-based biofeedback
offers feedback on the biosignal often targeted by breathing
training [32], it only provides deferred feedback. It is also
challenging to measure HRV without additional hardware. Thus,
HRV biofeedback is neither scalable nor well suited as sole
input for a gameful experience that requires feedback loops with
latencies of <1 second.

By contrast, breathing-based biofeedback can be instantaneous
and is the direct signal that the guidance in breathing training
apps tries to change to then affect HRV. However, approaches
using breathing-based biofeedback are so far limited to breathing
training in controlled environments [21] and early prototypes
[22]. One of the first apps to go in this direction was Breeze
(Centre for Digital Health Interventions) [21]. The first version
of Breeze featured a single environment where users accelerate
a sailboat by correctly following a fixed breathing pattern. The
effectiveness of Breeze in increasing HRV in individuals was
shown in the laboratory [33].

Furthermore, Lukic et al [33] evaluated the effect of Breeze’s
visualization and visual breathing training guidance on
participants’ intrinsic experiential value. The results showed a
significant increase in intrinsic experiential value when the
gameful visualization was used compared with a standard
guidance visualization while maintaining the same perceived
effectiveness (PE) [34]. Nevertheless, investigations showed
that the breathing phase detector used, enabling interactivity in
Breeze, was very prone to noise and differences in individuals’
breathing sounds and was overfitted on the data set used [21].
Research by Islam et al [35] extended the idea of breathing
phase detection from breathing training–specific breathing to
regular breathing. They focused on monitoring and diagnosis
as measuring breathing phases in normal breathing has been
motivated for diagnostic purposes [36,37]. Generally, monitoring
and diagnosis are popular areas of research regarding breathing
detection. Although Islam et al [35] aimed to monitor breathing
phases during rest, others tried to detect breathing rates during
sleep [38] and physical exercise [39] through smartphone and
headphone microphones. However, as breathing training guides
breathing, it does not make sense to investigate breathing phase
durations and breathing rates during this time with diagnostic
intentions. Breathing detection in the context of breathing
training aims to provide interactive feedback to users to increase
engagement and give them a tangible assessment of their
performance.

Objectives
This paper introduces Breeze 2, which has several new features,
an improved appearance, and a novel breathing phase detection
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algorithm. We designed Breeze 2 as a stand-alone training and
an intervention component in multicomponent interventions.
Breeze 2 adds a slide-based tutorial to introduce users to
breathing training and biofeedback mechanics. Furthermore, it
allows for the setting of specific training parameters (ie, training
duration and breathing pattern) according to the user’s breathing
training experience. It also adds procedural generation of the
visual biofeedback environment so users always have a slightly
different experience when performing breathing training.
Consequently, this study has the following objectives: (1) to
provide a detailed description of Breeze 2, a revised gameful
breathing training app for smartphones; (2) to introduce and
evaluate a novel real-time breathing phase detection approach
based on deep transfer learning and an additional heuristic that
prolongs detected exhalations to stabilize the algorithm’s
predictions; and (3) to evaluate perceived engagement, PE, and
breathing detection performance in a laboratory setting with 30
participants.

Methods

Design and Implementation

Overview
Breeze 2 provides visual breathing guidance through gameful
visualizations. Furthermore, it incorporates interactive
components that aim to make the training more engaging and
provide valuable feedback to users on their breathing training
performance. We outline the details of the revised user interface

design and breathing detection algorithm of Breeze 2 in the
following sections.

Concept and Design

Overview

In contrast to many other breathing training systems, Breeze 2
does not rely on abstract shapes but uses a tangible setting that
allows for the design of the interactive components in a relatable
way. A sailboat that continuously moves forward slowly guides
the breathing training. Depending on the user’s ability to match
the guiding breathing pattern, the exhalation triggers stronger
winds in the experience, and the sailboat accelerates. This way,
the sailboat travels a larger distance over the duration of the
training, which allows for the use of the traveled distance as a
condensed measure of training performance aside from more
precise measurements such as the timing accuracies on
exhalations.

In addition to the breathing training itself, Breeze 2 also offers
a tutorial, adjustable training parameters, and procedural
generation to vary the shown environment for every breathing
training session.

Tutorial

Breeze 2 uses a simple slide-based tutorial (Figure 1) that
quickly introduces the user to the benefits of slow-paced
breathing training and briefly explains the guidance and
interaction components. When a user opens Breeze 2 for the
first time, the start button on the home screen is disabled. Once
the user has completed the tutorial, the start button is enabled,
and the user can start a training session.

Figure 1. Slide-based tutorial as implemented in Breeze 2. It provides high-level information on the benefits of slow-paced breathing training and its
biofeedback mechanics.

Training Parameters

Breathing training mainly consists of 2 parameters: the training
duration and the breathing pattern. Users can adapt both
according to their preferences. Breeze 2 supports this process
by labeling the possible durations according to their required
level of breathing training experience. We chose the breathing
training parameters based on feedback from medical
professionals working with biofeedback-guided breathing
exercises as patient treatment. Regarding training durations, the

user can choose between 2 (beginner), 3 (intermediate), and 5
(expert) minutes. The breathing patterns in breathing training
usually take the form of inhalation-pause-exhalation-pause.
Breeze 2 uses the pattern 4-1-5-0 and adjusts the inhalation and
exhalation duration linearly to match the desired BPM. For
example, if 6 BPM is selected, the breathing pattern follows 4,
1, 5, and 0 seconds of inhalation; first pause; exhalation; and
second pause. However, if 7 BPM is selected, the pattern follows
3.37, 1, 4.21, and 0 for the 4 phases. As a standard selection,
we used 6 BPM. Figure 2 illustrates Breeze’s settings screen.
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Figure 2. Settings screen where the users can set the training duration and the breaths per minute according to their preferences.

Voice Commands

Breeze 2 allows for the enabling of voice commands to start
and end breathing training. We implemented this feature to
enable future studies using Breeze to gather and analyze voice
features regarding the studies’ outcomes. If a user speaks for a
specified time, Breeze 2 approves the command. We can
configure the content and expected durations of commands
according to the studies’ needs. Consequently, Breeze 2 does
not check whether the user said the correct words but that they
said something. This way, it is less error-prone and allows users
to speak more naturally, with the caveat that it is required to
trust the user to speak the displayed words. We used a pretrained
Yet Another Mobile Network (YAMNet) model for the
necessary voice detection [40].

Interaction During Training

Users can initiate a breathing training session from the start
menu. When the training starts, the view changes to the training
mode. Initially, users see a sailboat floating on a river from
behind. The sailboat first stands still. For the next step, the users

need to read 3 voice commands aloud, after which a countdown
starts. At the end of the countdown, the guidance breathing
pattern starts. The BPM parameter the user sets determines how
long the individual phases are in seconds. An animation on the
sail of the sailboat represents the separate phases. During the
first 5 breathing cycles, Breeze 2 also indicates the breathing
phases through an additional text label below the sailboat. In
the beginning, the sailboat moves forward at a slow constant
speed. The users must then adapt their breathing to the breathing
pattern by following the guidance system. The more accurately
the users follow the pattern, the more strongly the sailboat
accelerates during the exhalation phase. A correctly timed
exhalation triggers a wind animation that propels the sailboat
forward. During the inhalation and pause phases, the sailboat’s
speed slowly decreases until it reaches the constant base speed.
Once users complete a training session, they again speak 3 voice
commands aloud. After that, the users see a new screen showing
the reached distance and the breathing accuracy over the
completed session. Figure 3 depicts a complete training session.
A screen recording of a complete session without voice
commands can be found in Multimedia Appendix 1.
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Figure 3. An entire session of Breeze 2 (from left to right): start screen, starting voice commands, countdown, inhalation phase, exhalation phase,
ending voice commands, and final screen.

Procedural Generation

As users should perform breathing training regularly, it is
essential to provide visual variety every time to support
long-term adherence. Breeze 2 uses simple procedural
generation that varies the environment’s appearance and lighting
during training sessions to achieve this visual variety. The
procedural generation works with predefined configurations
that include groups of 3D models and different coloring and

lighting schemes. We handcrafted these configurations to ensure
that they fit together. Every session, the app randomly chooses
one of the configurations. Subsequently, the procedural
generation places island models assigned to this configuration
along the travel path of the sailboat at random locations.
Furthermore, this configuration’s coloring and lighting scheme
are chosen and applied to the scene. Figure 4 illustrates such
generated scenes, including islands, coloring schemes, and
landscapes.

Figure 4. A selection of procedurally generated landscapes during breathing training sessions.

Background Sounds

If the users use Breeze 2 without headphones, it does not have
any sound to not interfere with breathing detection. Otherwise,
Breeze 2 plays a peaceful background sound during the training
session. It combines soft water sounds with subtle animal sounds
such as birds. The background sound is audible in the screen
recording in Multimedia Appendix 1.

Stand-alone and Intervention Component
Breeze 2 can be used either as a stand-alone breathing
intervention or as an intervention component for
multicomponent interventions. For the former, a start screen
allows the users to set training parameters via the settings menu
(Figure 2) and a simple slide-based tutorial (Figure 1). When
built as an intervention component for a multicomponent
intervention, training parameters can also be handed over as
parameters to Breeze 2, and the training may start right away.
The handing over of parameters is useful if the multicomponent
intervention (eg, a smartphone-based holistic lifestyle
intervention) already features a tutorial and the possibility to
choose training parameters (eg, via chatbot).

Implementation
We used the Unity real-time development platform (version
2020.3.4f1; Unity Technologies) to implement Breeze 2. All
3D models were custom creations or acquired through the Unity
Asset Store. For 3D model creation and modification, we used
the 3D modeling software Blender (Blender Foundation). The
background sound was downloaded from Freesound [41] and
was available under the Creative Commons Zero license.

Real-time Breathing Detection

Overview
The aim of breathing detection for interactive breathing training
is to detect inhalation and exhalation phases as fast as possible
to enable real-time feedback. Consequently, the detection
algorithm must distinguish these 2 phases and all nonbreathing
sounds. Previous work that tried to detect breathing phases
during breathing training [21] and natural breathing at rest [35]
used preceding breathing detection gates that check inputs for
breathing sounds before passing them to the model that classifies
only breathing-related classes. Shih et al [21] tried to detect
breathing in close to real time and used a breathing gate that
works on 1-second clips. Aside from inhalations and exhalations,
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they also tried to detect breathing pauses. However, as they
applied a sequence model and wanted to account for clips that
included different phases, they split pause phases into
inhalation-pause and exhalation-pause.

Islam et al [35] focused on breathing monitoring and diagnosis
and, thus, used a 1-minute breathing gate. They also made the
simplifying assumption that breathing is continuous and has no
pauses. This focus and assumption allowed them to reduce the
problem to a 2-class problem for their primary model with the
classes inhalation and exhalation.

We did not apply a sequence model and aimed for real-time
predictions. Thus, we could not work with input durations of 1
minute. Furthermore, we argue that a single model approach
can be beneficial as the primary model then does not only come
into contact with a limited domain. Consequently, we used only
1 model and defined the problem as a 3-class problem with the
classes inhalation, exhalation, and nonbreathing sounds
(including silence).

Similar to Shih et al [21], this work focuses on applying a
breathing detector in breathing training guided by an app running
on a smartphone. This comes with a caveat as, when detecting
exhalations using a smartphone’s microphone, it is essential to
distinguish between detecting the exhalation from sound alone
and the airflow itself. Users may exhale toward the device during
training, leading to disturbances in the audio recording usually
produced by wind. Identifying these disturbances is especially
relevant if slow-paced breathing is combined with pursed-lip
breathing as the air stream is becoming more focused this way.
Therefore, the model should still detect the resulting disturbance
sounds as exhalations resulting in 2 subtypes of the exhalation
class, which we call acoustic and airflow exhalations in this
paper. However, the model should assign samples from both
subtypes to the exhalation class regardless of whether they are
acoustic or airflow exhalations.

Data Set
We formed the data set used for training, validation, and
preliminary testing from 3 separate data sets. The first consists
of acoustic breathing sounds, the second consists of
exhalation-generated airflow disturbance sounds, and the third
consistis of environmental sounds.

We used a subset of the data set from Shih et al [21] for acoustic
breathing sounds. We only used the recordings produced by the
RØDE NT1000 microphone, which had the best quality.
Furthermore, we manually selected only recordings that

contained audible breathing and little or no constant background
noise, which resulted in audio data from 20 participants. As
breathing training is often performed by inhaling through the
nose and exhaling through the mouth, we only included these
sounds for the breathing data set. Data from the first 80%
(16/20) of the participants served as training and validation data.
The validation set contained the last 3 breathing cycles by a
participant, whereas we used the remaining breathing cycles
for training. Data from the remaining 20% (4/20) of the
participants served as test data that we used to ensure model
testing on only data from unseen individuals.

As the data set from Shih et al [21] only contains acoustic
breathing sounds, we recorded new data for exhalations that
produce disturbances in the recording through airflow. Given
that these disturbance sounds are the same as those produced
by wind hitting the microphone’s membrane, they are mostly
independent of the individual’s breathing sound. The smartphone
used has a more significant influence as the microphone’s
position and the device’s overall architecture influence how
much air reaches the microphone’s membrane. Consequently,
a male and a female participant performed three 2-minute
breathing training sessions. The 2 participants used different
smartphones without headphones for the training sessions. Both
participants exhaled toward the device during training. The
exhalation sounds were then manually extracted from the
resulting recordings. To ensure that the airflow sounds were
independent of the individual, we only included the samples
produced by the male participant in the training and validation
sets and used the samples from the female participant in the test
set.

For nonbreathing sounds, we used the data set ESC-50 [42],
which entails 50 classes of environmental sounds. Every
recording is 5 seconds long, with 40 recordings per class. We
excluded all breathing sounds from the data set and used folds
1, 2, and 3 for the training, validation, and test set, respectively.
We also used nonbreathing sounds and silence from the
breathing sound data set from Shih et al [21]. They were
distributed in the same way as the breathing sounds in the
training, validation, and test sets. We used these nonbreathing
sounds and silence to ensure the model did not use the
environmental characteristics of the recordings to distinguish
between breathing and nonbreathing sounds.

All recordings in the data set were then cut into
0.195-second–long nonoverlapping clips. Table 1 describes the
resulting composition of the data set.

Table 1. Data set composition used for training, validation, and the testing of the developed model.

Samples, nClass

TestingValidationTraining

7539414574Exhalation (acoustic)

45582418Exhalation (airflow)

6634782470Inhalation

980098009800Nonbreathing (ESC-50 data set)

55219521952Nonbreathing (laboratory)
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Transfer Learning Approach

Overview

We used a pretrained YAMNet [40] model as the basis for
transfer learning. YAMNet is a convolutional neural network
based on the MobileNetV1 [43] architecture trained on the
AudioSet data set [44] to classify 521 classes. Transfer learning
refers to using a pretrained model or relevant parts of it and
fine-tuning it on a related problem [45].

Preprocessing

The audio samples were preprocessed to fit the YAMNet
requirements. Specifically, we resampled the audio to 16 kHz
mono. Here, we introduced a step specific to our problem.
YAMNet uses a minimum of 15,600 data points as input, which
corresponds to 0.975 seconds (internally, it works with
0.96-second patches but requires additional samples to compute
the final Short-time Fourier transform window [40]). However,
it is questionable whether 1 second is fast enough for real-time
feedback that should be perceived as immediate. Research in
touch-based systems indicates that commercial touch screens
yield latencies of up to 200 ms [46] and that perceivable latency
lies between 2 and 100 ms [47]. To the best of our knowledge,
no such research exists for breathing inputs. We hypothesize
that the perceived latency in breathing-based systems is not as
sensitive as in touch-based systems.

Consequently, we aimed for an input size of >100 ms but still
significantly <1 second to ensure that the input contained enough
information but could still provide feedback that users may
perceive as immediate. We decided to use 0.195 seconds as
input size, corresponding to 3120 samples and one-fifth of a

YAMNet input. We then concatenated this snippet to arrive at
the total input for YAMNet. Not just padding the signal with
some constant value ensures that inputs containing distinct
sound sources are as different as possible from, for example,
quiet environments. We then calculated a mel spectrogram with
a window and hop size of 25 and 10 ms, respectively. The mel
spectrogram consisted of 64 mel bins covering the range of 125
to 7500 Hz. Finally, we calculated the log mel spectrogram by
calculating log(S+0.001), where S is the mel spectrogram.

Feasibility Check

To assess whether the embeddings of YAMNet captured features
that allowed for distinguishing between inhalation, exhalation,
and nonbreathing sounds, we used the t-distributed stochastic
neighbor embedding method [48]. We calculated embeddings
for all samples in the data set, resulting in 1024-dimensional
embeddings that we then reduced to 2D embeddings using
t-distributed stochastic neighbor embedding (with Euclidean
metric). We then visualized the 2D embeddings in a scatter plot
and manually inspected these representations (Figure 5). We
observed that the airflow exhalation samples clustered separately
from the acoustic breathing sounds. In addition, airflow
exhalations clustered together regardless of person and device.
The acoustic exhalations also clustered together but partially
overlapped with the inhalations. The visualization also showed
that nonbreathing sounds formed various clusters among
themselves as the ESC-50 data set contained different types of
sounds. The samples from the laboratory containing
nonbreathing sounds were also spread across a wide range but
separated quite clearly from breathing sounds while partly
overlapping with various ESC-50 clusters.
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Figure 5. Visualized Yet Another Mobile Network (YAMNet) embeddings for the complete data set. We used t-distributed stochastic neighbor
embedding to reduce the high dimension of the embeddings. ESC-50: Dataset for Environmental Sound Classification.

Training

For transfer learning, we used the 1024-dimensional embeddings
generated by YAMNet and fed them into a small neural network
consisting of 2 fully connected layers with 32 and 3 units. The
first layer applied the swish [49] activation function, and the
output layer applied the softmax function. We trained the
algorithm using mini-batch gradient descent with the Adam
optimizer and categorical cross-entropy as loss function.
Mini-batch size was set to 32. Our manual testing showed that
the algorithm usually started to overfit on the training set after
5 to 10 epochs. We then used early stopping with patience of
10 epochs and restored the best weights according to the lowest
loss reached on the validation set. Even though the used data
set was strongly imbalanced, we did not use any balancing
approaches as there is more diversity in nonbreathing sounds
than in exhalations and inhalations. This way, we wanted to
discourage false positives on breathing sounds. Otherwise, the

detector may yield problems in not perfectly quiet environments.
Using this transfer learning approach, we created 1000 models
and chose the 3 that reached the lowest loss on the validation
set to be combined as an ensemble. The ensemble applied soft
voting with equal model weights (the class with the maximum
sum of probabilities is chosen). This was done to slightly
increase the performance and stability of the model’s
predictions.

Evaluation

To evaluate the model, we used the unseen test set. We
investigated the receiver operating characteristic (ROC) curves;
confusion matrix; and the precision, recall/sensitivity,
specificity, F1 score, and balanced accuracy metrics. The ROC
curves (Figure 6) yielded areas under the curve of 0.96, 0.97,
and 0.98 for exhalation, inhalation, and nonbreathing sounds,
respectively, indicating good discrimination capacity between
all classes.
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Figure 6. The left diagram depicts the model’s ROC curves for exhalation, inhalation, and nonbreathing sounds on the test set. The right chart shows
the TPR for all classes when applying different thresholds for the breathing classes. We used the same threshold for inhalations and exhalations but
applied it first to exhalations. We used the visual inspection of the right chart to determine a suitable threshold for the breathing classes. ROC: receiver
operating characteristic; TPR: true positive rate.

To identify thresholds for exhalation and inhalation detection,
we applied 2 approaches. First, we calculated the optimal
thresholds for inhalation and exhalation individually by selecting
the threshold that yielded the highest Youden J statistic [50].
Second, we plotted the true positive rates for several thresholds
and established an appropriate threshold via visual inspection
that yielded a balance between the 3 classes (Figure 6). We
applied the threshold first for exhalation and then for inhalation

and, if they did not apply, the model yielded nonbreathing. We
found the threshold of 0.3 to strike a reasonable balance between
the 3 classes. Figure 7 shows the confusion matrices for the
standard threshold (maximum probability), the optimal
thresholds, and the threshold of 0.3 for the test. We concluded
that the threshold of 0.3 reached a better balance and, thus,
discrimination among classes.

Figure 7. Confusion matrices showing the model results on the test data set applying 3 different thresholds for the breathing classes. From left to right:
max (the class with the highest prediction probability is selected), threshold=0.3 (the threshold of 0.3 is applied first to exhalation and then to inhalation),
and optimal threshold (different optimal thresholds for exhalation and inhalation are applied, as determined by the Youden J statistic).

Consequently, we chose this threshold for further evaluation.
The precision, recall/sensitivity, specificity F1 score, and
balanced accuracy metrics for this model are provided in Table
2. They show that the model best detects nonbreathing sounds,
the most dominant class in the training set. The confusion
matrices also show that the model more often misclassified
exhalation and inhalation samples as nonbreathing sounds than
as the wrong breathing phase. To gain further insights regarding
the correct and incorrect classifications, we visualized test set
classifications for all subclasses of the 3 main classes (Figure

8). The figure indicates that acoustic exhalations are similarly
often misclassified as inhalations and nonbreathing sounds,
whereas airflow exhalations are only misclassified as
nonbreathing sounds. Inhalations yield a similar result as
acoustic exhalations. For nonbreathing sounds, the samples
from the laboratory appear to be easily distinguishable by the
model. Sound samples from ESC-50 yield some
misclassifications, with most being exhalations. Nevertheless,
the misclassifications for nonbreathing sounds are only a small
portion of all samples of this class.
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Table 2. Performance metrics of the model using a threshold of 0.3 for the breathing classes on the data from the test set.

Balanced accuracyF1 scoreSpecificityRecall/sensitivityPrecisionClass

0.840.710.970.710.72Exhalation

0.840.630.970.710.57Inhalation

0.900.970.850.960.97Nonbreathing

0.860.770.930.790.75Average

Figure 8. Histogram showing test set classifications by the model using a 0.3 threshold for breathing sounds. We split the data according to the subsets.
As the ESC-50 subset of the nonbreathing sounds is substantially larger (9800 samples) than the other subsets, we cut off the diagram at 1000 samples.
ESC-50: Dataset for Environmental Sound Classification.

Model Inference Time Measurement
We conducted a basic performance measurement of the resulting
model on 3 smartphones. The main objective was to verify that
the model could perform inference in <0.195 seconds, which
corresponds to the input duration of the audio signal. As it can
be expected that more powerful devices allow for faster
inference, we focused on low- to midrange Android smartphones
from different device manufacturers. We used the TensorFlow
(Google Brain Team) Android benchmark app [51] to measure
the performance of our model after conversion to a TensorFlow
Lite model. The benchmark app simulates the model’s execution
within an actual Android app. Thereby, it is ensured that
Android’s scheduler treats the thread and process priorities of
the model inference like those of a foreground app. We ran

inference time measurements on a Samsung Galaxy S10e, a
OnePlus 6, and a Huawei P30 Lite. All devices were factory
reset before the benchmark app was installed. Furthermore,
auto-lock was disabled to ensure that the devices did not switch
to low-power mode during measurements. No hardware
acceleration was used (ie, the use of a graphics processing unit,
the NNAPI, the XNNPACK, and Hexagon was disabled in the
benchmark app). We performed the measurements for 1, 2, and
4 central processing unit threads. For every device and thread
configuration, we ran 100 inferences with 1 warm-up run. As
the model was continuously running in the target use case, the
warm-up and initialization times were neglectable and, thus,
not reported. Table 3 lists the average measurements and their
SDs. On the Samsung Galaxy S10e, measurements became
unstable when using >2 central processing unit threads.

Table 3. Inference timings for the model on a small battery of Android smartphones.

Inference time (μ; ms), mean (SD)Device

4 CPU threads2 CPU threads1 CPUa thread

7.05 (1.26)5.44 (0.09)7.71 (0.10)Samsung Galaxy S10e

6.42 (0.10)9.39 (0.06)15.37 (0.02)OnePlus 6

11.61 (1.32)15.19 (0.99)24.17 (0.13)Huawei P30 Lite

aCPU: central processing unit.
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Consequently, we used 2 threads for model inferences in Breeze
2. The measurements showed that the model can make an
inference on all tested smartphones below the input size of 1
sample (0.195 seconds). Therefore, it should be able to monitor
an incoming audio stream seamlessly.

Implementation in Breeze 2
As the feedback mechanism focuses mainly on the exhalation,
we used an additional heuristic for exhalation detection. For
this heuristic, we exploited the high precision of exhalation
detection and the fact that detection runs every frame
(approximately 30 times per second). If an exhalation was
detected, we used a delay of 300 ms, during which the heuristic
set the detected phase to exhalation. Every time the model
detected an exhalation, the heuristic reset the delay. This way,
once an exhalation was detected, the user could receive an
immediate reaction, which the heuristic maintained for at least
300 ms. We used this maintaining of detected exhalations to
counter the expected moderate detection performance on
exhalations when deploying the model in settings with higher
background noise levels. Furthermore, it prevented too abrupt
changes between sailboat acceleration and deceleration.
Consequently, the heuristic was specific to the feedback loop
used of the sailboat accelerating during correct exhalations.

User Study
We aimed to evaluate this new iteration of Breeze and evaluate
the breathing detection algorithm on new and realistic data
through a laboratory study.

Participants
We recruited 30 participants (women: n=14, 47%; age: mean
29.77, SD 7.33 years). As our main interest was to collect
breathing sounds and explore how certain aspects of Breeze 2
were perceived and how well breathing detection worked, the
nature of the sample was not crucial. Consequently, we recruited
participants mainly from ETH Zürich, but participation was
open to all interested parties. However, participants had to be
aged ≥18 years and not pregnant. Furthermore, they were
required not to be taking any medication to treat depression,
anxiety, or the main symptoms of mood disorders (such as low
mood) and not to have any respiratory diseases such as asthma
or chronic obstructive pulmonary disease. We aimed to balance
female and male participants to account for potential differences
in breathing sounds that may occur owing to physiological
differences in respiratory function [52].

Materials
We measured user engagement using the User Engagement
Scale Short From (UES-SF) [53]. This instrument consists of
4 subscales: focused attention, perceived usability, esthetic
appeal, and reward factor. A total of 3 items measure each
subscale.

The instrument to investigate PE of the breathing training
consists of the following six items [54]: (1) The breathing
training facilitates relaxation, (2) The breathing training is
pleasant to use, (3) It is easy to follow the breathing training
instructions, (4) The breathing training effectively teaches how
to breathe, (5) The breathing training is effective in reducing

stress, and (6) The breathing training is effective in increasing
attention to breath. Each item was rated on a 5-point Likert
scale (strongly disagree to strongly agree). To build the score
for PE, we averaged the scores from all items. To construct the
score for perceived relaxation effectiveness, we used the average
of items 1 and 5.

Participants reported their perceived breathing detection
accuracy with 2 independent items. The first one was adapted
from the study by Efendic et al [55] and asked “How accurate
is the breathing detection?” It was rated on a 7-point Likert scale
(very inaccurate to very accurate). The second item asked “How
much of your breathing did the breathing detection correctly
detect?” Participants responded using a slider ranging from 0%
to 100%. The questionnaires used in the study can be found in
Multimedia Appendix 2.

We used 5 different smartphones in the study: Samsung Galaxy
S10e, OnePlus 6, Huawei P30 Lite, iPhone XR, and iPhone 11
Pro. Each participant used only 1 smartphone, which was
randomly assigned. All participants used Apple AirPods second
generation [56] as headphones.

Procedure
After they signed the consent form at the start of the study, the
participants received one of the smartphones with the
stand-alone version of Breeze 2. The investigator then asked
the participants to perform 2 breathing sessions with Breeze 2,
one performed using headphones and the other without any
additional hardware aside from the smartphone. Whether the
participants started with or without headphones was randomly
assigned. Each session was 3 minutes long. Before the first
session, the investigator instructed the participants to read
through the tutorial (Figure 1) and asked them to set the training
duration and the breathing pattern to 3 minutes and 6 BPM,
respectively. The investigator encouraged the participants to
ask questions freely if the instructions provided in the app were
not clear enough. We decided to allow such an additional
explanation as assessing the quality of the tutorial was not a
major objective of this study. After the first breathing session,
the participants answered questions about their engagement
(UES-SF) [53], the PE of the visualization [54], and the
perceived accuracy of the breathing detection algorithm (adapted
from the study by Efendic et al [55]) and provided their age and
sex. Subsequently, they performed the second round of breathing
training, after which they again answered the questions regarding
the perceived accuracy of the breathing detection algorithm. If
the participants wanted, they were allowed to interact with
Breeze 2 for an additional 5 minutes, but this part was optional.
Finally, the investigator encouraged participants to share
feedback regarding Breeze 2 and the study. The sounds captured
during breathing training were recorded for further offline
analysis and future training data to refine the model.

Data Collection
Breeze 2 continuously monitors the breathing phase reference
shown to the user during training and the breathing phases
detected by the model used with and without the heuristic. This
information is sampled every frame and, thus, usually results
in 30 data points per second that are written to a log file.
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However, this number fluctuated depending on the smartphone’s
computational power and the current scenery shown. Breeze 2
recorded and stored audio through the device’s microphone
during training sessions. When the participants used headphones
because of the study design, Breeze 2 recorded the audio with
the headphones’ microphones. Breeze 2 tried to record with
44.1 kHz. However, operating system settings could overwrite
this setting. In these cases, Breeze 2 recorded audio with at least
16 kHz, sufficient for the breathing detection model used. Breeze
2 similarly recorded the pre- and posttraining voice commands
and yielded 2 separate recordings from the main breathing
training recording. However, the voice commands were not
further analyzed in this study.

After the data collection, 2 raters independently labeled the
breathing training recordings as exhalations and inhalations.
The raters did not manually label nonbreathing sounds.
However, if a part of the recording was not assignable to an
exhalation, an inhalation, or another sound, it was labeled as
unclear. Unlabeled portions of the recording were then
automatically labeled as nonbreathing sounds. A Cohen κ of
0.91 indicated near-perfect interrater reliability. Most
mismatches came from slightly different label start and end
times in the time-series data. Start or end time differences of
>200 ms were manually inspected and merged, and others were
merged by choosing the average of both raters. In case different
class labels were assigned, either one of the raters’ labels was
chosen for the corresponding segment or it was marked as
unclear. We then transformed the labeled data into a data set
following the same steps as the training data. The resulting data
set consisted of 20,753, 10,459, and 19,265 samples for
exhalation, inhalation, and nonbreathing sounds, respectively.

Statistical Analyses
For the collected data, we formulated the following hypotheses:
(1) the engagement score is higher than the neutral score (neither
agree nor disagree; hypothesis 1); (2) the PE is higher than the
neutral score (neither agree nor disagree; hypothesis 2.1); (3)
the perceived relaxation effectiveness is higher than the neutral
score (neither agree nor disagree; hypothesis 2.2); (4) the
balanced detection accuracy of the model alone is lower than
the balanced exhalation detection accuracy, including the
heuristic (hypothesis 3.1); (5) the balanced detection accuracy
is lower for sounds captured by headphone microphones than
by smartphone microphones (hypothesis 3.2); (6) there is a
difference in balanced detection accuracy for female and male
participants (hypothesis 3.3); and (7) the perceived detection
accuracy correlates with the actual balanced breathing detection
accuracy (model including the heuristic; hypothesis 4).

To ensure construct reliability, we calculated the McDonald ω
[57] for all subscales of the UES-SF and the overall user
engagement score (UES), PE, and perceived relaxation
effectiveness. For all subsequent hypothesis tests, we used an
α level of .05. To test hypotheses 1, 2.1, and 2.2, we conducted
Wilcoxon signed-rank tests against the neutral score of 3.0 on
the UES-SF, the PE, and the perceived relaxation effectiveness.
To account for the familywise error rate of PE and perceived
relaxation effectiveness, we applied the Bonferroni correction
to adjust the P values. To gain more insight, we conducted

Wilcoxon signed-rank tests for the 4 subscales of the UES-SF
and applied the Bonferroni correction to adjust the P values to
account for the familywise error rate. For hypotheses 3.1 to 3.3,
we calculated the balanced detection accuracy of the model,
including the heuristic and the model alone based on data from
the log files aggregated with the labels of the audio recordings.
We used balanced accuracy as the heuristic should increase
exhalation sensitivity while decreasing the specificity. It should
also affect the sensitivity and specificity measure for the other
2 classes.

Consequently, we used multi-class balanced accuracy [58] as
the dependent variable for this analysis as it includes all classes’
specificity and sensitivity measures [59]. We then conducted a
repeated-measure ANOVA with balanced accuracy as the
dependent variable, the presence of the heuristic and the use of
headphones as repeated-measure factors, and the participants’
sex as a between-subject factor. The latter was included to
account for any potential breathing sound differences between
men and women because of physiological differences [52]. A
Shapiro-Wilk test [60] verified the normal distribution of the
data for all 4 cells: heuristic (W=0.93; P=.07), headphone
(W=0.97; P=.68), heuristic and headphone (W=0.94; P=.14),
and neither (W=0.97; P=.55). We tested the assumption of
homogeneity of variances for all the sex-based subgroups within
the cells using the Brown-Forsythe test, which is a more robust
Levene test [61] using medians instead of means to calculate
the center of each group [62]. The assumptions of homogeneity
of variance were met for heuristic (F1,25=1.75; P=.20),
headphone (F1,25=0.07; P=.79), heuristic and headphone
(F1,25=0.07; P=.80), and neither (F1,25=0.79; P=.38). The
assumption of sphericity was met as the repeated measures had
only 2 levels. To investigate hypothesis 4, we conducted Pearson
correlation tests between the actual balanced breathing detection
accuracy and the perceived detection accuracy items separately.
This tested whether the found correlations differed from 0. We
then scaled the responses from the response values to be between
0 and 1 (divided by the maximum allowed value for each item)
and plotted them with the balanced breathing detection accuracy
in 2 Bland-Altman plots [63] to investigate the tendencies of
the differences.

Model Evaluation
We also investigated the detection performance of the model
(excluding the heuristic) offline on the collected audio
recordings. This was done for 2 reasons; first, to obtain detailed
insights into the model’s detection performance without the
heuristic used. Thereby, we obtained more information on the
transferability of the model to potential other implementations
where the heuristic would not be adequate. Second, this
evaluation may serve as a baseline for future work as it was
done in a standardized way offline on the collected breathing
recordings. We considered the ROC curve of each class.
Furthermore, we investigated the precision, recall/sensitivity,
specificity, F1 score, and balanced accuracy (average of
sensitivity and specificity) metrics. We included all these metrics
to provide a complete picture of the model’s performance.
Furthermore, we analyzed the detection performance for samples
captured via smartphone and headphone microphones.
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Data Exclusion
For the analyses regarding hypotheses 3.1 to 3.3, we excluded
10% (3/30) of the participants (3 women). One participant had
technical problems with the headphones, which resulted in them
performing the exercise twice without headphones. Another
participant failed to disconnect the headphones, resulting in
them performing the exercise twice with headphones. For the
third participant, headphones could not capture any sound
because of very silent breathing, whereas the smartphone
microphone was able to capture some exhalations and missed
most inhalations. We also excluded this third participant from
the offline evaluation as the raters labeled most of the data from
this participant as unclear. If we had included this participant,
the analysis would have falsely shifted toward the hypotheses
and arbitrarily favored the model’s performance in the offline
evaluation.

However, the data of these participants were included for all
the other tests as the participants were still able to complete the

2 breathing training sessions, although the third participant
received very erroneous breathing feedback. For the latter, the
model predicted 99.46% of the headphone session and 93.53%
of the smartphone session as nonbreathing because most of the
captured sound was completely silent.

Ethics Approval
The Ethics Commission of the Swiss Federal Institute of
Technology in Zurich (ID 2021-N-134) approved the study,
and we pretested the study with 3 participants (1 woman).

Results

Checks for Reliability
We calculated reliability checks (Table 4) using the McDonald
ω for the UES-SF and its subscales and for PE and perceived
relaxation effectiveness (items 1 and 5 of the PE construct). The
data from all these scales met the tests for normal distribution.

Table 4. Reliability tests for each survey construct.

McDonald ωConstruct and subscale (number of items)

0.78User Engagement Score Short Form (12)

0.53Focused attention (3)

0.58Perceived usability (3)

0.79Esthetic appeal (3)

0.82Reward factor (3)

0.58Perceived effectiveness (6)

0.85Perceived relaxation effectiveness (2)

Hypothesis Tests

User Engagement
A Wilcoxon test indicated that the UES was higher than the
neutral response (mean 3.77, SD 0.43) for the participants
(W=459; P<.001). The difference was also observed for all the
subscales: focused attention (mean 3.22, SD 0.66; W=245;
adjusted P=.15), perceived usabilityrev (mean 3.90, SD 0.66;
W=348; adjusted P<.001), esthetic appeal (mean 4.00, SD 0.547;
W=406; adjusted P<.001), and reward factor (mean 3.97, SD
0.69; W=390; adjusted P<.001).

Effectiveness
The reported PE was higher than the neutral response (mean
4.08, SD 0.49), as shown by a Wilcoxon test (W=465; adjusted
P<.001). In addition, for perceived relaxation effectiveness

(mean 3.82, SD 0.95), a Wilcoxon test indicated a positive effect
(W=358; adjusted P<.001).

Breathing Detection Performance
A repeated-measure ANOVA indicated the presence of
significant effects of headphone use (F1,25=17.61; P<.001) and
use of the heuristic (F1,25=6.23; P=.02) on the detection
performance of the model. The analysis did not indicate any
interaction effects between the use of headphones and the use
of the heuristic (F1,25=3.39; P=.08). Furthermore, no interaction
effects of sex were found with headphone use (F1,25=0.11;
P=.74), use of the heuristic (F1,25=0.25; P=.62), or both
(F1,25=2.53; P=.12). In addition, no between-subject effects of
sex were found (F1,25=1.38; P=.25). Figure 9 illustrates the
estimated marginal means.
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Figure 9. Marginal means plots illustrating the effects and interactions when different devices (smartphones and headphones) and model modes (no
heuristic and heuristic) are used. Furthermore, the differences between female and male participants are also depicted.

Perceived Breathing Detection Performance
The perceived breathing detection accuracy reported via a
7-point Likert scale (mean 5.17, SD 1.75) and 0 to 100 slider
(mean 71.17, SD 28.68) showed some correlation with the actual
performance of the breathing detector (mean 0.69, SD 0.08).
The Likert scale showed a stronger correlation (r=0.51; P<.001)

with the actual detection performance than the perceived
accuracy reported via the slider (r=0.48; P<.001). Nevertheless,
both correlations were significant. Bland-Altman plots (Figure
10) for both items showed that, when actual breathing detection
accuracy was low, participants overestimated the accuracy. At
the same time, they underestimated the accuracy when the actual
detection accuracy was high.

Figure 10. Bland-Altman plots for the 2 items measuring perceived breathing detection accuracy. Higher differences underestimate the actual detection
accuracy, and lower values overestimate the detection accuracy. The limits of agreement are set to a 1.96 SD, which produces 95% CIs for the means
of the differences.

Offline Breathing Detection Model Evaluation
The offline evaluation of the model (no heuristic) resulted in
areas under the curve of 0.83, 0.87, and 0.91 for inhalation,

exhalation, and nonbreathing sounds, respectively (Figure 11).
The detailed results grouped by capturing device used on
precision, recall/sensitivity, specificity, and balanced accuracy
are shown in Table 5.
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Figure 11. ROC curves (left) and confusion matrix (right) at the thresholds for breathing sounds that were used during the study. Both are calculated
for the deployed model based on all data gathered throughout the breathing training sessions of the study participants. ROC: receiver operating
characteristic.

Table 5. Performance metrics of the model on the data captured during the study.

Balanced accuracyF1 scoreSpecificityRecall/sensitivityPrecisionClass and device

Exhalation

0.760.690.930.590.85Combined

0.780.740.910.660.84Smartphone

0.730.640.940.510.86Headphones

Inhalation

0.680.500.950.400.67Combined

0.730.590.930.520.68Smartphone

0.610.370.970.260.65Headphones

Nonbreathing

0.790.750.630.960.62Combined

0.820.760.730.920.65Smartphone

0.760.740.530.990.59Headphones

All classes (average)

0.74b0.650.840.65a0.71Combined

0.78b0.700.860.70a0.72Smartphone

0.70b0.590.810.59a0.70Headphones

aCorresponds to multi-class balanced accuracy according to Kelleher et al [64].
bCorresponds to multi-class balanced accuracy according to Urbanowicz and Moore [58].

Discussion

Principal Findings
Overall, Breeze 2 was well received, and all 30 participants
could handle all aspects of it. Furthermore, all participants

(30/30, 100%) successfully performed two 3-minute sessions
of breathing training.

The participants perceived Breeze 2 as engaging according to
the UES that differed significantly from the neutral response.
Thus, our data support hypothesis 1. The in-depth analysis of
the focused attention, perceived usability, esthetic appeal, and
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reward factor subscales revealed that participants particularly
liked the esthetics and perceived reward factor of the experience,
which were significantly higher than the neutral response.
Interpretations of the focused attention and perceived usability
scores were less conclusive than for the other 2 subscales owing
to low reliability scores. Nevertheless, the average perceived
usability was high and did differ significantly from the neutral
response. However, focused attention was not significantly
higher than the neutral response even though it had an average
score with a positive tendency. This finding indicates that
participants felt only moderately absorbed in the experience.

A feeling of absorption is important as this may lead to a flow
state that helps people concentrate and perceive the task as
rewarding and fun [65]. A possible solution for this could be to
try out different modalities for breathing training such as virtual
reality setups as such setups show promise for mindfulness
exercises [24,66]. However, this would defeat the purpose of
the objective regarding the intervention’s scalability. Another
approach could be to introduce more dominant short-term
feedback loops [65] during training to foster immersion as the
overall reward factor of the experience already appears to be
high. Nevertheless, such feedback loops need to be implemented
with care as too strong and exciting loops may counter the
targeted effects of the training (eg, relaxation).

Our data also supported hypotheses 2.1 and 2.2, as PE and
perceived relaxation effectiveness were significantly higher
than the neutral response. However, although the reliability
score for perceived relaxation effectiveness was high, it was
relatively low for PE. Thus, the scores for the latter should be
interpreted with caution. We argue that this low reliability could
be because the PE scale includes the perceived relaxation
effectiveness scale and several other items asking about not
equally perceived aspects of the breathing training. For example,
a few participants (5/30, 17%) did not feel relaxed by the
training but still thought it was easy to follow the instructions
and directed their attention to their breathing. This is supported
by the fact that the perceived relaxation effectiveness subscale
yielded high reliability while having a lower mean than the
overall effectiveness scale. Nevertheless, the analyses support
hypotheses 2 and 3, meaning that the participants overall
regarded Breeze 2 as effective in guiding their breathing and,
most importantly, inducing a feeling of relaxation. The results
are in line with prior work [34,54].

The analysis regarding the impact of the heuristic on detection
performance showed that the heuristic brought a significant
improvement to the overall detection performance, thus
supporting hypothesis 3.1. The use of headphone microphones
instead of the built-in microphone of the smartphones had an
even larger but negative effect on detection performance. This
even larger negative effect supports hypothesis 3.2. We argue
that there are 2 reasons for this. First, the use of the smartphone
microphone allows the model to detect exhalations through the
generated airflow. The initial model evaluation has shown that
this works better than acoustic detection. Second, modern
Bluetooth headphones are optimized for speech and, thus, use
filters to reduce noise in audio signals (eg, the Apple AirPods
second generation used [56]). Breathing sounds are very close

to noise (eg, white noise) and, thus, trigger these reduction
algorithms.

Consequently, headphones may heavily suppress the breathing
signal before the signal is passed to the model. How strongly
these 2 reasons affect the observed negative effect remains
unclear as data labeling did not differentiate between
acoustically captured exhalations and exhalations captured
through airflow. Regarding hypothesis 3.3, we did not observe
any between-subject effects on detection performance based on
the participants’ sex.

In addition, our findings support hypothesis 4 as perceived
breathing detection accuracy significantly correlated with the
actual detection performance. Thus, perceived breathing
detection accuracy appears to help capture how clearly the
feedback is perceived and how well the algorithm performs.
We observed that participants over- and underestimated the
detector’s performance when the actual performance was low
and high, respectively. This over- and underestimation could
indicate that the specific breathing feedback implementation in
Breeze 2 gives users the sense of valid feedback even when the
model performance is lacking. While conducting the study, we
observed that participants felt more comfortable with the
Likert-scale item than the slider-based item. Consequently, we
plan to use the Likert-scale item in future studies to monitor
perceived breathing detection accuracy in case changes need to
be made to the feedback mechanism while Breeze 2 is deployed
in the field.

Regarding the model without the heuristic, an apparent decline
in detection performance was observed compared with the
original test data set. The reasons for this are manifold. The
breathing sound training and original test data sets were captured
in the same setup [21]. This setup also differed considerably
from the setup used in this study. In this study, the participants
used Breeze 2 in a realistic setting for the first time by holding
the device in their hands however was comfortable for them.

Consequently, the sound capturing was done in a much less
regulated way. Furthermore, the training data used only a
minimal number of devices shared between training and test
data sets, whereas this study used smartphones and headphones
unseen by the model. The headphones also pose a much more
complex detection problem, as seen by the analysis regarding
hypothesis 3.2. Our idea of a more complicated detection
problem receives further support through the observation that
all model performance metrics improve considerably for data
only captured by smartphone microphones. This effect much
more strongly influences the inhalation detection performance.
We explain this through the observation that inhalations
themselves are already very silent sounds and, thus, are already
hard to detect. The attenuation applied by the headphones
reinforces this problem even further.

Nevertheless, the model still performed reasonably well for
exhalation sounds for both device types. The exhalation
detection performance suffers, especially in sensitivity.
However, the low sensitivity is less crucial as the model runs
an inference up to 30 times per second, and the model yields
high precision on exhalations. This reasoning is supported by
the fact that participants overestimated the model’s performance

JMIR Serious Games 2022 | vol. 10 | iss. 3 | e39186 | p. 16https://games.jmir.org/2022/3/e39186
(page number not for citation purposes)

Lukic et alJMIR SERIOUS GAMES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


in most sessions (44/60, 73%), even when the model did perform
poorly. Consequently, the model appears to be already usable
to enable interactivity in breathing training despite apparent
weaknesses.

Limitations and Future Work
Optimizing Breeze is an iterative process and, consequently, it
comes with several limitations. The slide-based tutorial is not
very engaging and does not yet provide adequate guidance on
breathing training details. We plan to improve the tutorial by
providing video-based instructions. In addition, we are
considering implementing an interactive tutorial to ensure that
users can perform the breathing training correctly and give them
feedback right away before they embark on an actual training
session. Aside from the still too basic tutorial, Breeze 2 does
not yet provide an adequate mechanism to coach the users on
choosing the suitable training duration and breathing pattern
apart from labeling the different durations according to their
level of expertise with breathing training. We plan to develop
interactive tests that measure users’ capabilities and classify
their level of experience (eg, based on the maximal time a person
can inhale or exhale or on the user’s resonance frequency that
maximizes the physiological response). Such tests would then
allow us to offer some coaching to the user on which training
parameters would fit their level. Finally, we have planned
various studies to incorporate Breeze 2 as an intervention
component in multicomponent interventions (eg, interventions
aiming to prevent NCDs, reduce distress in patients with cancer,
or reduce acute stress in a student population).

This study also has some limitations regarding the detection
model and its performance. A total of 2 raters did the labeling
independently, and disagreements were carefully handled in a
subsequent process. Consequently, confidence is high that the
labels are correct. Nevertheless, 1.51% of the recordings were
labeled as unclear in the resulting data set. Unclear parts were
not used for further analysis, potentially leading to a slight
overestimation of the performance of breathing detection.

Furthermore, breathing can be very silent and, thus, may
sometimes not be captured by microphones or may be actively
suppressed by algorithms in the hardware used (eg, Bluetooth
headphones). Therefore, the reported detection performance
should be considered as the detection performance on breathing
sounds that could be captured by the devices used. Furthermore,
we trained the model on a minimal data set. Even though most
participants perceived the model as performing well, there is
room for improvement. With this study, we took the first step
by collecting new data, which we will use to improve the model
for future deployments.

Conclusions
This paper presented Breeze 2, a new iteration of the gameful
breathing training app Breeze. It consists of a slow-paced
breathing training guided by gameful visualizations and uses
breathing-based interactions. Furthermore, it allows users to
choose training parameters consisting of training duration and
breathing pattern. These features should improve long-term
adherence to breathing training, support individuals in doing
breathing training correctly, and help continuously increase
training intensity. To gain insight into whether Breeze 2 is
engaging and effective and into the performance of the breathing
detection used, we conducted a laboratory study with 30
participants. Results show that most participants (28/30, 93%)
perceived Breeze 2 as engaging and effective.

Furthermore, breathing detection performed sufficiently well
for most participants’ sessions (50/60, 83%), as indicated by
the perceived detection accuracy and actual detection accuracy.
We attribute the exceptions to the combination of noise filtering
done by the headphones and the very silent breathing of these
participants, which was not audible in the recordings even to
the raters conducting the labeling. We will use the collected
breathing sounds to refine breathing detection, making it more
stable and increasing its performance. Future work will use
Breeze 2 as an intervention tool in various studies for the
prevention and management of NCDs.
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