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Abstract— Modern vehicles typically are equipped with as-
sistance systems to support drivers in staying vigilant. To
assess the driver state, such systems usually split characteristic
vehicle signals into smaller segments which are subsequently
fed into algorithms to identify irregularities in driver behavior.
In this paper, we compare four different approaches for vehicle
signal segmentation to predict driver impairment on a dataset
from a drunk driving study (n=31). First, we evaluate two
static approaches which segment vehicle signals based on fixed
time and distance lengths. Intuitively, such approaches are
straightforward to implement and provide segments with a
specific frequency. Next, we analyze two dynamic approaches
that segment vehicle signals based on pre-defined thresholds
and well-defined maneuvers. Although more sophisticated to
define, the more specific characteristics of driving situations
can potentially improve a driver state prediction model. Finally,
we train machine learning models for drunk driving detection
on vehicle signals segmented by these four approaches. The
maneuver-based approach detects impaired driving with a
balanced accuracy of 68.73%, thereby outperforming time-
based (67.20%), distance-based (65.66%), and threshold-based
(61.53%) approaches in comparable settings. Therefore, our
findings indicate that incorporating the driving context benefits
the prediction of driver states.

I. INTRODUCTION

In recent years, with the advent of driver assistance

systems, research in reliably predicting driver states has

increased significantly. The aim is not only to enhance

the comfort of drivers [1], but especially to improve road

safety [2] by preventing accidents related to driver im-

pairment. Advances in in-vehicle computing capacities and

sensor technologies further support these endeavors. Besides

camera-based technologies [3], the focus is on privacy-

preserving and non-intrusive approaches [4], [5]. As outlined

in recent work, a large number of in-vehicle signals can be

accessed via the controller area network (CAN-bus), which

allows insights into the driving behavior [6], [7].

The research field around gathering driver insights from

in-vehicle signals is extensive. It ranges from driver identifi-

cation [4], [5], [8], over driving style recognition [9]–[11] to
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driver state prediction for safety-critical conditions, such as

drowsiness [12]–[14], drunkenness [2], [15]–[17], and more

recently also hypoglycemia warning systems for drivers with

diabetes [18]. All these applications use a common approach,

they segment the high-frequency—and commonly also high-

dimensional—vehicle signal data and subsequently apply

descriptive statistics to represent these segments in feature

vectors. Machine learning models can then leverage these

feature vectors as input to reliably predict the driver state.

The advantage of this approach is that it offers intelligible

insights due to the interpretability of statistical features and,

in addition, only requires slight amounts of computational

load [6], [19].

The most common segmentation approach is to segment

data based on a fixed time sliding window (FTW). This

approach is simple to implement but nonetheless achieves

comparably good classification performance, for example, in

identifying a driver [8], [20], detecting drowsiness [14], or

estimating drivers’ emotions [1].

Sathyanarayana et al. [21] propose a slightly adapted

version of the FTW approach: instead of segmenting signals

based on the time passed, they segment based on the distance

traveled by a vehicle, therefore referring to it as fixed

distance sliding window (FDW) approach. Compared to the

FTW approach, the authors argue, that even at slow vehicle

velocities the FDW approach yields a high information value

of a segment because of the constant window distance.

Another widely used approach is to generate segments

based on vehicle signals exceeding pre-defined thresh-

olds [9], [10]. The popularity of this approach stems from the

fact that driving maneuvers such as accelerating or braking

change significantly, e.g., under the influence of alcohol [22],

and, therefore, offer valuable insights into the driver state.

Similarly, maneuver-based approaches segment vehicle

signals based on specific driving maneuvers inferred from ve-

hicle location [2], [6]. This approach allows for an evaluation

of driver behavior in similar situations, regardless of whether

a particular signal threshold is exceeded or not. Hallac et

al. [6] also point out the need to identify relevant situations to

make prediction models more robust to signal noise. Further,

findings of Lee et al. [15] indicate that the performance

of driver state prediction depends on the driving maneuver,

thus, arguing that the driving context plays a key role in

algorithm development. Likewise, Li et al. [17] conclude

that encoding information about road characteristics (i.e.,

radius and direction of a curve) is beneficial and training

machine learning models for each curve type even increases



the performance.

While these different segmentation approaches are well

studied on their own, a comprehensive comparison with

a standardized driving dataset is lacking. Furthermore, the

analyzed datasets are frequently limited in the duration of

driving and only encompass a small number of different

driving situations, for example, by only driving in one

environment (see [2], [14]) or having no interactions with

other road users [23], making it difficult to compare the

reported results.

To close this research gap, we apply a consistent setting

to evaluate four commonly used segmentation approaches,

including two sliding window approaches for fixed time

and distance windows, as well as a threshold-based and

a maneuver-based approach. As an illustrative dataset, we

use vehicle data from a simulator study involving sober

vs. drunk driving. Although the negative consequences of

drunk driving are known, related accident rates are still high.

In the US, 28% of fatal accidents involved drunk driving,

resulting in 30 deaths per day on average [24]. The negative

effects caused by alcohol that lead to these accidents are

confirmed by a large body of literature [25]. Therefore,

we consider the impairment of drivers due to alcohol an

important and opportune use case for driver state prediction

from vehicle signals and as a reasonable step to validate these

segmentation approaches.

II. DATASET DESCRIPTION & METHODOLOGY

To test and compare the different segmentation ap-

proaches, we used a dataset that was collected as part of

a study involving drunk driving. Where applicable, data is

reported as mean± standard deviation.

A. Data acquisition

The non-randomized, controlled, interventional single-

center study included 31 participants (16 male, 15 fe-

male, age 37.65± 9.69 years) and was registered on

ClinicalTrials.gov (NCT04980846). Study inclusion criteria

were a valid driving license and an active driving record for

the past two years, as well as a moderate level of alcohol

consumption. Potential participants were excluded in case of

health concerns or when taking illegal drugs or medications

with known adverse effects in combination with alcohol.

Study participants were driving a passenger vehicle in a

research-grade driving simulator (Carnetsoft BV, Groningen,

The Netherlands). The driving routes featured a diverse set

of intersection types (e.g., stop signs, traffic lights, and

crosswalks) and included other road users and pedestrians to

simulate naturalistic driving conditions. To cover a variety

of driving situations, we implemented three different driving

scenarios with distinct characteristics: highway, rural, and

urban. These are as follows: (1) The highway scenario

comprised of a two-lane highway with one-way traffic. Here,

the route was mostly straight with a few wide curves. The

speed limit was 80–120 km/h. Drivers experience varying

traffic density, ranging from free flow to slow-moving traffic.

(2) The rural scenario consisted of two-lane rural roads

with traffic in both directions and several intersections with

and without yield signs. The speed limit was 60–100 km/h.

Drivers experienced other traffic participants and had to

react to occasional events, such as a stopping bus or slower

speeds in front of a school. (3) The urban scenario was used

to reflect driving in a city. The route consisted of shorter

and narrower roads compared to the two other scenarios.

In addition, there were a large number of warning signs,

intersections with and without yield or stop signs, and special

events, such as pedestrians crossing streets. The speed limit

was 30–50 km/h. Participants were instructed to adhere to

local traffic laws (in Switzerland), act as they would in

normal road traffic, and make use of all provided vehicle

facilities, e.g., turn signal lights. While driving, participants

had to follow the guidance of a navigation system. The study

protocol included a pre-visit for individuals to familiarize

themselves with the procedures, specifically with the simu-

lator, and to rule out motion sickness.

The main study visit consisted of two driving sessions

with different levels of controlled blood alcohol concentra-

tion (BAC): sober (0.00 g/dL BAC) and drunk (0.07 g/dL

BAC), which is slightly above the legal limit of 0.05 g/dL

BAC in most European countries. Each driving session

for the two states consisted of driving for a total of 30

minutes (∼29.7 km), with 10 minutes in each scenario (urban

∼3.7 km, rural ∼9.9 km, highway ∼16.1 km). Driving routes

were identical across driver states and participants.

While driving, a multitude of signals capturing driver be-

havior and vehicle dynamics were sampled from an interface

resembling a vehicle CAN-bus with a frequency of 30 Hz. In

the present analysis, we use 7 vehicle signals as outlined in

Table I. We additionally included any applicable speed limit

from the driving context to assess vehicle velocity deviations

from the allowed limits.

TABLE I: Extracted signals

from CAN-bus

Driver behavior

Accelerator pedal position
Brake pedal position
Steering wheel angle

Vehicle behavior

Long. & lat. velocity
Long. & lat. acceleration
Speed limit deviation

TABLE II: Descriptive statis-

tics used to derive features

Derived features

min, max, sum, energy,
mean, standard deviation,
robust min (5th percentile),
robust max (95th percentile),
number of values above mean,
number of values below mean,
number of sign changes,
square root of mean square

B. Preprocessing

The preprocessing of the extracted signals consisted of

dropping the first 10 s and last 15 s of each trip to account

for engine start and stop times. We also dropped sequences

where the vehicle was standing still. In addition, we excluded

sequences where drivers crashed or made wrong turns. In

such cases, the drivers were reset to a prior position and had

to start from the roadside, causing irregularities in the data.

To enlarge the information captured from vehicle signal

features, we included first (velocity) and second (accelera-
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(a) Fixed time sliding window approach (20 s duration, 5 s step
size) resulting in a new segment (gray) every 5 s.
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(b) Fixed distance sliding window approach (100 m distance, 25 m
step size) resulting in a new segment (gray) every 25 m.
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(c) Threshold-based approach resulting in one steer (blue) and one
accelerate (yellow) segment.

0 5 10 15 20 25
Time [s]

2300

2200

2100

0

100

200

300

St
ee

rin
g 

wh
ee

l a
ng

le
 [d

eg
]

0 25 50 75 100 125 150
Distance [m]

22.0
21.5
21.0
20.5
0.0
0.5
1.0
1.5
2.0

Br
ak

e 
pe

da
l p

os
iti

on
 [%

]
Lo

ng
. a

cc
el

er
at

io
n 

[m
s2

2 ]

(d) Maneuver-based approach resulting in two straight (gray), one
brake (red), one turn (blue), and one post turn (green) segment.

Fig. 1: Comparison of the resulting segments for the four segmentation approaches for an exemplary left turn at a stop sign.

tion) derivatives of steering wheel angle as well as acceler-

ator and brake pedal positions.

C. Segmentation approaches

As outlined in Section I, high-dimensional signal data is

commonly divided into segments in order to derive meaning-

ful features that can be used as input to a machine learning

model. In this paper, we analyze four different segmentation

approaches and investigate their impact on the prediction

performance for detecting drunk driving.

Fixed time sliding window (FTW). FTWs split the signal

data into segments based on a fixed time duration (Fig. 1a).

To allow for an extensive comparison, we analyze different

window lengths, i.e., various time durations in the range of

5–60 s, similar to [14]. We applied a step size of 25% of the

window duration so that two succeeding windows overlap

by 75%. Since in our case vehicle signals are sampled at a

constant frequency of 30 Hz, each window contains the same

number of input data points.

Fixed distance sliding window (FDW). While being

very similar to the FTW approach, the window length of the

FDWs are not determined by the time duration but instead

by the traveled distance (Fig. 1b). Again, we investigate a set

of window lengths, i.e., distances, ranging from 100–1000 m.

Fig. 2 shows that our chosen distances of FDWs result

on average to window durations comparable to the FTW

approach. Analogously, we applied a step size of 25% of the

window distance. In comparison to the FTW approach, the

number of data points in the FDW approach per window is

variable since the window duration of the FDWs is inversely

proportional to the current velocity.

Threshold-based segmentation. Compared to the pre-

viously discussed approaches, the threshold-based segmen-

tation approach is not statically separating vehicle data into

windows. Instead, segments are formed by inspecting the

vehicle signals and isolating driving events based on pre-

defined rules. Event beginnings, i.e., segment beginnings, are

marked once the value of a signal exceeds a certain threshold.

When the value drops below the threshold again, the endpoint

of the corresponding segment is marked. Following previous

work [9], [10], we focus on the three signals and associated

thresholds that reflect the main vehicle controls used by a

driver: accelerating, braking, and steering. We chose the

following thresholds based on this previous work to identify

driving events:

• Longitudinal acceleration ≥ 1.0 ms−2

• Brake pedal position ≥ 1.0%

• Steering wheel angle ≥ 7.0 deg or ≤−7.0 deg

For an exemplary left turn at an intersection as depicted

in Fig. 1c, the approach identifies two distinct events: an

acceleration event and a steering event. Since the brake pedal

is not used, no brake event is detected in this situation.

In a concluding step, we combined consecutive segments
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Fig. 2: Balanced accuracy of the different segmentation approaches over the mean segment duration in seconds (left) and

mean segment distance in meters (right).

of the same event type if they are within 1 s of each other,

assuming that they belong to the same driving intention of

the driver. Further, we dropped all segments shorter than 1 s

as we presume they contain too little information for the

model to make a reliable prediction.

Maneuver-based segmentation. For the maneuver-based

segmentation approach, we postulate that a modern vehicle

is aware of its driving context. On real roads, GPS location

and/or camera/radar systems can infer these information.

Based on the driving routes in our dataset, we defined

areas in which specific maneuvers occur (e.g., turning left

at an intersection or braking before a stop sign). Similar

to the threshold-based approach, we then determined the

start and endpoints for each maneuver and driver, i.e., the

locations where a driver started to brake or began turning

the steering wheel. We calculated maneuver locations for

each participant and subsequently obtained a common area

over all participants, so that the trips of all drivers are

covered within that specific maneuver. In comparison to the

threshold-based approach, these maneuvers are independent

of specific driver behavior and only rely on the layout of the

road. For example, the maneuver-based approach captures

the driver behavior in front of a stop sign and segments a

braking maneuver as shown in Fig. 1d, even if the driver

fails to brake at all.

We define and apply the following main maneuver groups

based on the location, with their respective subgroups in

parentheses:

• Straight ahead (urban, rural, highway)

• Curve (left, right)

• Straight at intersections

• Turn at intersections (left, right)

• Post turn after intersections (left, right)

• Brake (straight, left, right, speed bump)

In addition, we included the following maneuvers, which

occur independently from absolute vehicle position, based

on vehicle signal thresholds:

• Highway braking

• Highway lane change (left, right)

D. Feature generation

We aggregate the vehicle signals for each segment using

descriptive statistics, resulting in statistical vectors which

reflect the driver behavior for this segment. This approach

is commonly used in related work [6], [19]. For each of

the vehicle signals in Table I, including the derivatives of

the driver behavior signals, we computed the 12 statistical

features outlined in Table II [1], [2], [9]. Further, we added

the time duration for each segment to the feature vector. In

total, this process results in a 169-dimensional feature vector.

For the maneuver-based approach, we also incorporated

information about the road context as one-hot encoded

vectors. More specifically, we include information about the

scenario (urban, rural, and highway) and, if applicable, the

type of intersection (traffic light, stop sign, main road, etc.).

E. Predictive modeling

We used a decision tree-based gradient boosting machine

learning model (LightGBM [26]) in its default configuration

for the binary classification of the driver state (sober and

drunk). We trained separate models for each window length



TABLE III: Results for the four segmentation approaches in detecting drunk driving. Fixed properties of sliding window

approaches are underlined.

Duration Distance Trip coverage Balanced

[s] [m] [%] accuracy [%]

Fixed time 5 84.37± 46.49 100 61.03
sliding window (FTW) 10 169.15± 91.24 100 63.11

15 254.14± 134.62 100 64.23
20 339.45± 177.10 100 64.34
30 510.90± 261.25 100 65.70
40 682.46± 344.45 100 66.95
50 853.69± 425.97 100 66.14
60 1025.15± 506.42 100 67.20

Fixed distance 5.92± 4.20 100 100 60.94
sliding window (FDW) 8.86± 5.96 150 100 62.29

11.78± 7.70 200 100 62.45
17.60± 11.08 300 100 63.09
23.34± 14.45 400 100 63.49
29.01± 17.66 500 100 63.29
42.94± 25.26 750 100 65.04
56.65± 32.87 1000 100 65.66

Threshold 5.78± 5.36 80.17± 111.79 56.70± 3.42 61.53

Accelerate 5.62± 3.54 56.24± 51.34 18.03± 3.44 63.10
Brake 2.43± 1.18 20.64± 16.95 5.51± 1.18 59.64
Steer 7.12± 6.46 115.30± 139.54 42.79± 2.11 61.41

Maneuver 10.53± 6.15 160.16± 165.25 86.37± 2.38 68.73

Straight 10.45± 7.18 213.91± 194.72 17.62± 3.75 66.08
Curve 15.52± 6.45 295.56± 186.69 35.45± 1.35 66.32
Straight intersection 4.60± 2.90 46.76± 11.48 2.47± 0.54 67.87
Turn 10.88± 3.22 44.29± 7.37 13.99± 1.80 72.27
Post turn 5.82± 2.05 54.12± 15.76 5.77± 0.39 71.31
Brake 10.19± 4.50 52.40± 25.49 21.55± 1.22 72.09
Highway brake 3.55± 0.70 80.59± 23.58 0.85± 0.61 71.13
Highway lane change 8.42± 1.86 235.27± 61.81 7.43± 2.40 66.40

of the FDW and FTW approaches. In the case of the

threshold-based approach, we trained a separate model for

each of the three driving events to allow the model to pick

up peculiarities of that specific driving event [17]. For the

maneuver-based approach, we proceeded analogously and

trained a separate model for each subgroup of maneuvers.

We ran an iterative feature selection for each model to

decrease the dimension of the input feature vector and, thus,

also reduce overfitting of the model on the train data. The

feature selection chose up to 50 features with the maximum

positive impact on the overall prediction performance.

For model evaluation, we used leave-one-subject-out

(LOSO) cross-validation, i.e., we trained the model on all

segments of n–1 drivers and used the segments of the

remaining driver as test data. This procedure was repeated

for each participant, and the final results were averaged over

all participants. The driving data used in this paper were

obtained from a controlled setting in which the same routes

are covered in each driver state. We evaluate the machine

learning performance with balanced accuracy, therewith ac-

counting for potential imbalances in single maneuvers and

equally penalizing false positives and false negatives.

III. EVALUATION & RESULTS

Table III shows the driver state prediction results based

on the four different segmentation approaches. In the fol-

lowing, we outline the results of the individual approaches

in more detail and compare them. Since FTWs are the most

commonly used segmentation approach, we use them as the

baseline performance.

Fixed time sliding window. As previously described,

the number of aggregated data points for calculating the

feature vector is constant with the window length. Therefore,

with increasing the window length, more information of the

driving behavior and, thus, the driver state is captured. Our

results show that the balanced accuracy improves with a

longer time period covered, as depicted in the left panel in

Fig. 2 and Table III. The balanced accuracy ranges from

61.03% (5 s) to 67.20% (60 s) with increasing performance

for longer window durations. Since the time duration of the

windows is fixed, the distance traveled by the vehicle within

the time window depends on its velocity. For example, while

60 s of urban driving might only cover a turn at a busy

intersection, 60 s of highway driving might cover a couple

of hundred meters. With the sliding window approach, the

entire driving trip is used for window segmentation, i.e., a

trip coverage of 100% when taking all windows together,

since the segmentation does not dynamically take the driving

situation into account.

However, with increasing window length, data needs to

be sampled for longer time periods before a prediction

can be made. Hence, choosing the window length is a



trade-off between the rapidity of the segmentation and the

performance.

Further analysis of the results revealed that the balanced

accuracy for segments with a lower mean velocity is con-

siderably higher than for faster segments when keeping the

window length constant (see blue line in Fig. 3, exemplary

for FTW with 10 s). We attribute this difference to situations

where the driver had to slow down in the urban scenario

since such situations are likely more complex to handle, and

driving deficits become more evident [27].

Velocity 
group [km/h] < 30 30-60 60-90 > 90

FTW mean
distance [m] 51.06 ± 19.42 123.32 ± 25.88 205.46 ± 21.54 308.58 ± 30.79

FDW mean
duration [s] 32.07 ± 6.19 16.51 ± 3.66 9.72 ± 1.03 6.48 ± 0.67
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Fig. 3: Balanced accuracy for the time-based (FTW 10 s)

and distance-based (FDW 200 m) approach grouped by the

mean velocity of the segments. Below, the mean distances

(for FTW) and mean durations (for FDW) for each velocity

group are listed.

Fixed distance sliding window. For the FDW approach,

we observe similar results as for FTW. With increasing

distance, the window becomes larger, and the balanced

accuracy improves, ranging from 60.94% (100 m) to 65.66%

(1000 m). Since FDW also statically segments vehicle signals

into windows, it also achieves a trip coverage of 100%.

However, again, increasing the window length is not always

desirable, as an application might require the driver state to

be predicted from a short segment [6].

Calculating the mean time duration of each window for

the different distances allows a comparison with FTW. We

can see that our defined window distances lead on average

to similar long windows as defined by the FTW duration.

Vice versa, the FDW distances are comparable to the mean

distance of the FTW approach. Fig. 2 reveals that the

balanced accuracy of the distance-based approach is always

around 2% lower than that of the comparable FTWs.

When comparing both sliding window approaches for

different velocities, then the distance-based approach out-

performs the time-based one at lower velocities but loses its

advantage at higher velocities. We attribute this to the fixed

distance of the driving segment, for which the information

value remains high even at low velocities where segments

become longer in duration (see also [21]). In contrast, for

FTW the segment duration remains constant, but the covered

distance of a segment decreases with lower velocities, result-

ing in a lower informative value, which in turn has a negative

impact on the performance. To illustrate this behavior, the

mean window distances for FTW with 10 s and the mean

durations for FDW with 200 m are shown for each velocity

group in Fig. 3.

Threshold-based segmentation. Using thresholds to

segment the signal data and training a model for each of

the three different event types (i.e., accelerate, brake, and

steer) results in balanced accuracies between 59.64% (brake)

and 63.10% (accelerate) with a combined balanced accuracy

of all event types of 61.53%. Acceleration events perform

best, while brake events seem to distinguish only poorly

between the two driver states. The lower balanced accuracy

of brake segments can be explained at least in part by

the comparatively short segment lengths of about 2.43 s,

potentially resulting in insufficient informative value.

Noteworthy, the threshold-based approach only covers a

somewhat limited portion of the driving trip. Merely in about

57% of the driving time one of the defined thresholds was

exceeded, which means that the remaining 43% of the driving

time was not taken into account for a driver state prediction.

This comparatively small amount of segments shows the

limitation of the threshold-based approach, more specifically,

that a significant driver input/action is needed. On the other

hand, with a mean duration of 5.78 s, the windows are

relatively short and, therefore, allow for fast predictions in

situations in which the driver needs to use the steering wheel

or pedals frequently (e.g., within an urban scenario).

The combination of the three models for each driving

event type is only slightly better than that of both sliding

window approaches with comparable mean duration (i.e.,

FTW 5 s) and distance (i.e., FDW 100 m) (see Fig. 2).

These findings are contradictory to related literature, as other

work suggests that especially in these driving events, the

differences between sober driving and drunk driving are

significant [22], [28] and, thus, the performance should be

better. We attribute the lower performance to our dataset,

which includes a wide range of driving situations, making

it difficult for machine learning models to compare such

heterogeneous events, whereas related work primarily inves-

tigated specific driving events and situations.

Maneuver-based segmentation. The balanced accuracies

for the different maneuvers range from 66.08% (straight) to

72.27% (turn), resulting in a combined balanced accuracy

weighted by trip coverage of 68.73%. According to our

analysis, turn maneuvers at intersections (72.27%), urban

braking (72.09%), and post turn maneuvers (71.31%) reveal

the driver state best. By separating the complex maneuvers

based on the driving context and by training dedicated

models, these models can better adapt to the behavioral

changes in the alcohol-impaired state. These findings are in

line with previous work [15], [17].

Although we segment the driving route into many smaller

maneuvers, the proposed approach still covers 86.37% of

the trip. Therefore, a prediction of the driver state can be

performed in a fast and frequent manner with compara-

tively high balanced accuracy. In theory, implementing the



maneuver-based approach would achieve 100% trip cover-

age, however, we had to discard some maneuvers during

preprocessing in cases such as accidents.

Fig. 2 shows that the maneuver-based segmentation ap-

proach generates windows with similar short lengths as the

threshold segments but by far outperforms its combined

balanced accuracy of 61.53%. Moreover, our findings show

that the maneuver-based approach outperforms both sliding

window approaches with comparable window lengths by

about 10%. The maneuver-based approach even outperforms

FTW and FDW for considerably larger window lengths,

highlighting the superiority of a segmentation approach re-

specting the driving context.

These promising results of the maneuver-based approach

support our hypothesis that segmenting the driving route into

distinct maneuvers allows for a more meaningful comparison

of driver behavior in similar driving situations. By identifying

high-level maneuvers not based on thresholds but rather

from information about road features, the trained models

can focus on the particular behavioral changes in specific

driving situations. Therefore, machine learning models can

accurately predict the driver state even for comparatively

short road segments.

IV. CONCLUSION

This paper contributes to the ongoing research field of

reliable driver state prediction from vehicle signals and

highlights the impact of a chosen segmentation approach

on the prediction performance. We investigated and com-

pared four segmentation approaches (based on time, distance,

threshold, and maneuver) on driving data of 31 participants

from a study involving sober vs. drunk driving. The driving

route consisted of three different scenarios (urban, rural,

and highway) and, thus, covered a broad range of driving

situations. Our results show that, while it is beneficial to have

longer windows for the sliding window approaches (time and

distance), the performance of driver state prediction improves

when the driving route is segmented into distinctive driving

maneuvers. Separating the specific driving situations allows

machine learning models to better learn a representation of

the behavioral changes in drivers under the influence of

alcohol. In addition, the shorter maneuver-based segments

are also better suited for providing timely predictions [6],

compared to the significantly longer sliding windows with

similar performance. Using shorter segments is particularly

relevant considering that an intervening decision towards

a specific driver state should be robust and, thus, such a

system should consider several consecutive predictions, e.g.,

by majority vote [8], [20], before a final prediction is made.

Albeit the simulator setting allows for a controlled and

balanced driving dataset, it also implies certain limitations.

Although the study setting aimed to resemble driving scenar-

ios as realistic as possible, the vehicle handling and driving

conditions are still different from driving on real roads. How-

ever, related work indicates that alcohol-induced changes in

driving behavior are comparable between simulator settings

and real vehicles [29]. Another limitation is that automotive

technology is rapidly evolving, and fully autonomous driving

might resolve the issue of traffic accidents caused by driver

impairment. Nevertheless, as of now, autonomous driving

without the need for a vigilant driver (level 4 or 5) is deemed

to still be several decades away due to increasing safety

concerns associated with the underlying technology [30].

Therefore, solutions that bridge the intervening time by more

rapidly and directly addressing the traffic incidents related to

driver impairment are an important step towards safer roads.

While we report promising results for a more context-

specific segmentation approach to detect impairment caused

by alcohol, its transferability to the detection of other kinds

of impairment remains to be verified by future work. For

example, we anticipate a high potential of context-specific

segmentation approaches for drowsiness detection since this

condition causes similar impairment characteristics as alco-

hol, and related work already reported encouraging results

for CAN data-based drowsiness detection [14]. A promising

field of research lies ahead.
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