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Abstract

Background: Investigating ways to improve well-being in everyday situations as a means of fostering mental health has gained
substantial interest in recent years. For many people, the daily commute by car is a particularly straining situation of the day, and
thus researchers have already designed various in-vehicle well-being interventions for a better commuting experience. Current
research has validated such interventions but is limited to isolating effects in controlled experiments that are generally not
representative of real-world driving conditions.

Objective: The aim of the study is to identify cause–effect relationships between driving behavior and well-being in a real-world
setting. This knowledge should contribute to a better understanding of when to trigger interventions.

Methods: We conducted a field study in which we provided a demographically diverse sample of 10 commuters with a car for
daily driving over a period of 4 months. Before and after each trip, the drivers had to fill out a questionnaire about their state of
well-being, which was operationalized as arousal and valence. We equipped the cars with sensors that recorded driving behavior,
such as sudden braking. We also captured trip-dependent factors, such as the length of the drive, and predetermined factors, such
as the weather. We conducted a causal analysis based on a causal directed acyclic graph (DAG) to examine cause–effect relationships
from the observational data and to isolate the causal chains between the examined variables. We did so by applying the backdoor
criterion to the data-based graphical model. The hereby compiled adjustment set was used in a multiple regression to estimate
the causal effects between the variables.

Results: The causal analysis showed that a higher level of arousal before driving influences driving behavior. Higher arousal
reduced the frequency of sudden events (P=.04) as well as the average speed (P=.001), while fostering active steering (P<.001).
In turn, more frequent braking (P<.001) increased arousal after the drive, while a longer trip (P<.001) with a higher average speed
(P<.001) reduced arousal. The prevalence of sunshine (P<.001) increased arousal and of occupants (P<.001) increased valence
(P<.001) before and after driving.

Conclusions: The examination of cause–effect relationships unveiled significant interactions between well-being and driving.
A low level of predriving arousal impairs driving behavior, which manifests itself in more frequent sudden events and less
anticipatory driving. Driving has a stronger effect on arousal than on valence. In particular, monotonous driving situations at high
speeds with low cognitive demand increase the risk of the driver becoming tired (low arousal), thus impairing driving behavior.
By combining the identified causal chains, states of vulnerability can be inferred that may form the basis for timely delivered
interventions to improve well-being while driving.

(J Med Internet Res 2022;24(8):e36314) doi: 10.2196/36314
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Introduction

With rising numbers of mental disorders worldwide, maintaining
well-being has become an important public health issue [1],
with a special focus on untreated cases [2]. In recent years, there
has been an increased interest in investigating ways to improve
well-being in everyday situations in order to prevent mental
disorders [3,4]. Especially interventions aimed at improving
well-being in moments when a person is susceptible to a
deteriorating mental state, a so-called state of vulnerability,
have shown great promise [5,6]. In this regard, the just-in-time
adaptive intervention (JITAI) framework has recently gained
major attraction as it guides researchers in their way to develop
effective interventions that are delivered at the right time and
in the right situation. To implement such a JITAI effectively, a
profound understanding of the contextual factors leading to a
state of vulnerability is necessary [7].

A suitable everyday situation in which an intervention may
promise beneficial effects on well-being is daily driving [8].
Daily car commuters spend a considerable amount of time on
the street every day, often associated with events causing
frustrations and loss of time, such as caused by traffic jams,
congestion, and unpredictability [9,10]. Kahneman et al [11]
found the daily commute to be one of the least pleasant activities
of the day. Accordingly, states of deteriorating well-being are
likely to occur in daily driving. Simultaneously, the car is a
suitable place for JITAIs as there are multiple sensors to detect
the current driving conditions (eg, lane or traffic object detection
[12,13]) and driver states (eg, arousal states [14] or emotions
[15,16]) as well as to deliver interventions using advanced
multimedia systems.

Recent work investigated when drivers are interruptible by
[17,18] or even responsive to interventions [19] while driving.
Moreover, researchers designed and validated the effect of
well-being interventions that can be conducted while driving,
for example, breathing exercises [20] and music or mindfulness
experiences [21]. According to the JITAI framework,
interventions are most effective when triggered in a state of
reduced well-being [7]. To identify such states of vulnerability
and thereby improve road safety [22], the factors influencing
well-being while driving must be determined. Since well-being
likely influences driving behavior and vice versa, a thorough
understanding of the causal relationships is crucial for evaluating
the driver’s mental state. Therefore, this study examines the
interactions between driving behavior and well-being during
daily driving.

Because drivers are exposed to a variety of contextual factors,
it is difficult to establish robust causal relationships based on
existing statistical analysis [23]. Previous studies on driving
and well-being have been primarily limited to isolating specific
relationships in simulation experiments [24-28]. However, this
controlled environment limits the results as stimuli are
artificially induced, and thus effects do not generalize well to
the wide range of situations encountered in everyday road traffic
[29-31]. To thoroughly understand the relationship between
driving and well-being, it seems necessary to study real-world
data using novel methods for causal analysis.

The aim of this analysis is to unveil a robust causal architecture,
that is, the underlying network of causes and effects [32],
between driving behavior and well-being. We applied novel
causal inference algorithms to derive these relationships from
complex observational data collected in a real-world driving
study, in which we investigated drivers’well-being over a period
of 4 months. The derived causal architecture forms a basis for
inferring states of vulnerability that can be targeted by digital
interventions.

Methods

Field Study Setting and Variables
The data were gathered in a field study in which we handed
over to 10 participants between the ages of 26 and 55 years a
car each for daily driving. For maximizing external validity, we
selected a broad spectrum of typical daily commuters with
different demographics, life and family situations, and driving
habits (purposive sampling). Detailed information about the
participants is documented in Multimedia Appendix 1.
Participants completed most of their driving in their residence
area, which for all of them was the region around Stuttgart
(Germany). The field study lasted for a period of 4 months,
from July to November 2019.

To measure a wide variety of factors that could impact the
well-being of the driver, we retrofitted the study cars for data
collection. The participants self-assessed their current emotional
state before and after driving based on questionnaires by a
smartphone mounted next to the multimedia system. Moreover,
we installed in every car a data collection system that recorded
various variables from the vehicle in high frequency (eg, the
steering wheel speed, brake pedal and gas pedal positions, or
the Global Positioning System [GPS] location) to measure the
driving behavior as well as the vehicle state. Our final data set
comprised 13 variables that were classified into 4 categories:
emotions, driving behavior, trip-dependent factors, and
predetermined factors. We chose these 4 categories based on
related work examining driving behavior and well-being [19,21].
A detailed list of the included variables can be found in
Multimedia Appendix 2. This set of variables provides a
comprehensive exploratory basis for understanding how driving
behavior and well-being relate to each other. We explain these
categories in the following paragraphs.

The emotions of the driver were assessed according to the
circumplex model of affect, which is composed of the 2
dimensions arousal and valence [33,34]. The arousal dimension
describes the drivers' feeling of being awake, and the valence
dimension indicates the corresponding level of happiness. Before
and after each drive, the driver indicated their state of arousal
and valence on a scale from 0 (very low) to 100 (very high)
using the Affective Slider [35], which is depicted in Multimedia
Appendix 3.

We measured the driving behavior using the sensors that each
car was equipped with. To quantify the driving behavior, we
analyzed the steering and braking behavior of the driver. The
steeringbehavior was quantified as the proportion of the trip in
which the driver was turning the steering wheel. Analogously,
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the brakingbehavior reflected the ratio of the seconds in which
the brake pedal was engaged to the total duration of the trip. To
account for the risk that a driver takes, we included the
frequency of sudden accelerations, sudden braking, or sudden
steering as the variable sudden events. An event was classified
as sudden when the acceleration or steering angle exceeded a
prespecified threshold. To identify these events, we used the
same approach as in prior work [19] based on the peak detection
algorithm from the Python package SciPy [36].

Since the field study was conducted in an uncontrolled setting,
we needed to account for contextual and environmental factors
that drivers experience. We distinguished between
trip-dependent factors, which are related to the drive itself, and
predetermined factors, which are explicitly known to drivers
before starting. The trip-dependent factors comprise information
about the length of the trip in seconds and the average speed in
kilometers per hour. In addition, the flow of the trip quantifies
the ratio of the actual speed to the potential maximum speed
throughout the trip. By combining these 3 factors, we aimed at
representing the built environment in which the trip takes place
[37]. For example, urban driving will likely result in short trips
at low speeds with low flow.

The included predeterminedfactors in the causal model were
the weather, quantified by the minutes of sunlight in the hour
that the drive started and whether the trip was or was not

performed on the weekend. Furthermore, we recorded whether
another occupant was present and whether the trip was a
commute between home and work, as derived from the GPS
location at the beginning and end of each trip. To reduce
skewness and to establish a common scale across all continuous
variables, we standardized the data to a mean of 0 and an SD
of 1.

Ethical Considerations
This field study was reviewed by the Institutional Review Board
of the University of Bern, Switzerland (approval
#2019.04-00003).

Establishing a Causal Relationship
We conducted a field study to examine well-being in real-world
driving situations, while maximizing the generalizability of our
results. However, this purely observational study design comes
at the cost of controllability. Therefore, the interactions between
factors of well-being and driving behavior cannot be directly
estimated as in a controlled experiment. Instead, we propose a
framework for causal inference based on a causal directed
acyclic graph (DAG), which visually represents the causal
architecture formed by all recorded variables [38-68]. Our
workflow for causal inference was designed as a 3-step process,
as illustrated in Figure 1. Detailed theoretical information about
the workflow and the causal methodology can be found in
Multimedia Appendix 4.

Figure 1. Our workflow for causal analysis. CAN: controller area network (car sensor data); DAG: directed acyclic graph.

The causal DAG was constructed using the DAG with NOTEARS
algorithm [69] on the data of the field study. This algorithm
performs continuous optimization on a matrix representation
of the graph rather than using constraint-based or local methods
for inferring a graphical model. Thereby, a single graph
maximizing the score function of the algorithm is found. We

used the resulting graph to determine paths, which depict
relationships between variables. To isolate the effect of one
variable on another, the paths carrying spurious associations
must be eliminated, while preserving the paths that transmit the
causal effect. We isolated the relevant paths by applying the
backdoor criterion [47], which identifies the set of variables
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that need to be controlled. This so-called adjustment set was
subsequently used in a multiple regression to identify the causal
effect between the variables of interest.

For determining the robustness of the resulting estimates, the
effect was recalculated in a DAG with an added random
confounder [65]. More specifically, a difference between the
original and the new estimate close to 0 indicates that an effect
is robust to unobserved confounders. Moreover, this test
indicates the robustness of the estimate against a potential
violation of the linear regression assumptions. Additionally,
trivially impossible effects, such as an effect from arousal after
to before driving, were a priori excluded from the causal DAG.
A full list of excluded effects can be found in Multimedia
Appendix 5.

Results

Descriptive Results
The 10 participants completed on average 163.8 trips (SD 89.28)
during the 4 months of the study. The mean duration of a trip
was 29 minutes (SD 20), and an average participant drove 19.5
km (SD 28.15). Our data set appears to cover typical daily

driving, as the drivers followed a large variety of routes both
in urban and in rural areas. Of the 1638 trips, 1343 (82%) took
place during the week. In addition, 393 (24%) of the trips were
labeled as a commute, and 1245 (76%) were drives to frequently
visited destinations. On all these trips, the participants completed
the affective slider. The affective slider results before driving
were on average 73.66 (SD 18.24) for arousal and 69.76 (SD
16.74) for valence and after driving were on average 71.53 (SD
19.58) for arousal and 69.26 (SD 16.91) for valence.

Causal Analysis
To understand which factors impact well-being, we conducted
a causal analysis based on the causal DAG learned from data,
which can be found in Multimedia Appendix 6. The causal
effect sizes, hereinafter abbreviated as CE, describe the impact
of a 1-SD change in the source variable on the target variable.
As all variables were standardized and to facilitate comparisons,
the resulting effect size is also given in SDs. The statistically
significant (α=.05) causal effects grouped by origin and target
nodes are listed in Table 1. The robustness test reports the
difference between the causal estimate from the analysis and
the causal estimate when adding a random confounder to the
model. A value close to 0 indicates robust causal estimates.

Table 1. Results of our causal analysis.

Robustness testP value95% CICEaTargetSource

Emotions on driving behavior

−0.00003<.0010.09- 0.160.13SteeringBefore arousal

0.00031.04–0.11 to 0.02−0.06Sudden eventsBefore arousal

−0.00104.001–0.13 to –0.07−0.11SpeedBefore arousal

Driving behavior on emotions

−0.00089<.0010.06-0.140.10After arousalBraking

0.00001<.001–0.20 to –0.12−0.17After arousalSpeed

Predetermined factors on emotions

−0.00048<.0010.08-0.180.12Before arousalSun

0.00016<.0010.11-0.180.14After arousalSun

−0.00008<.0010.26-0.490.38Before valenceOccupants

0.00021<.0010.24-0.510.37After valenceOccupants

Trip-dependent factors on emotions

−0.00073.001–0.45 to –0.06−0.13After arousalLength

Emotions on emotions

−0.00084.0020.14-0.220.18Before valenceBefore arousal

0.00000<.0010.70-0.760.74After arousalBefore arousal

0.00009.010.15-0.240.19After valenceBefore arousal

−0.00161<.0010.74-0.800.77After valenceBefore valence

0.00013<.0010.08-0.180.13After arousalAfter valence

aCE: causal effect size.

For developing a better understanding of the interaction between
driving and well-being, we investigated the effects in both
directions (ie, well-being on driving and driving on well-being).

In the following paragraphs, we report on the significant results
(α=.05). All effects that we discuss are highly robust with
respect to omitted variables and to violations of the linear
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regression assumptions as the change in the causal estimate is
smaller than 0.001 after adding a random confounder.

Effects Related to Well-being Before Driving
Figure 2 shows all causal effects related to well-being before
driving. The analysis showed that before-driving emotions cause
changes in the driving behavior as well as in trip-dependent
factors. Regarding behavioral variables, a higher level of
before-driving arousal significantly increased the frequency of
steering (CE=0.13, P<.001) and decreased the occurrence of
sudden events (CE=−0.06, P=.04). More specifically, these
effects mean that an increase of 1 SD of arousal prevented 8
sudden events per hour. Moreover, higher before-driving arousal

decreased the speed of trips (CE=−0.11, P=.001), which
amounted to 2 km/hour per 1 SD of arousal. Moreover, a
significant interaction between emotions existed. Before-driving
arousal positively influenced the level of before-driving valence
(CE=0.18, P=.002). Before-driving valence had no statistically
significant effects on driving behavior or on trip-dependent
factors.

Before-driving emotions were also influenced by predetermined
factors. The presence of occupants caused an increase in
before-driving valence (CE=0.38, P<.001), and more sunlight
caused higher levels of before-driving arousal (CE=0.12,
P<.001). The variable weekend had no causal impact on the
before-driving valence or the arousal of the participants.

Figure 2. Causal effects regarding well-being before driving.

Effects Related to Well-being After Driving
Figure 3 shows the causal effects related to well-being after
driving. The emotions after driving a car are influenced by the
driving behavior as well as by trip-dependent and predetermined
factors. Variables related to actual driving showed that both
higher average speeds (CE=−0.17, P<.001) as well as longer
trips (CE=−0.13, P=.001) caused lower levels of arousal.
Moreover, driving behavior had an influence, with more frequent
braking increasing the after-driving arousal (CE=0.1, P<.001).

Analogously to the effects of predetermined factors before the
trip, sunlight increased after-driving arousal (CE=0.14, P<.001)
and the presence of occupants increased after-driving valence

(CE=0.37, P<.001). Thus, the effect of sunlight on arousal was
stronger after than before driving, whereas the effect from
occupants on valence was smaller after driving.

The emotions before starting the trip strongly influenced the
emotions after having completed the trip. This relationship was
especially evident when examining the causal effects from
before-driving to after-driving arousal (CE=0.74, P<.001) and
valence (CE=0.77, P<.001). Further, a significant interaction
existed between emotions, with the before-driving arousal
influencing the level of after-driving valence (CE=0.19, P=.005).
In addition, higher after-driving arousal states causally increased
after-driving valence (CE=0.13, P<.001).

J Med Internet Res 2022 | vol. 24 | iss. 8 | e36314 | p. 5https://www.jmir.org/2022/8/e36314
(page number not for citation purposes)

Stephan et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Causal effects regarding well-being after driving.

Discussion

Principal Findings
The results of our field study indicate that well-being
significantly influences driving behavior and vice versa.
Moreover, we found effects from predetermined and
trip-dependent factors on valence. In the following paragraphs,
we highlight our findings and contextualize them with potential
explanations.

We found a significant impact of arousal on several driving
behavior variables. With higher levels of arousal, drivers had
fewer sudden maneuvers, steered more, and drove at lower
speeds. We explain these effects with improved alertness due
to high arousal [70]. More alert drivers react faster and in a
more controlled manner to unexpected events. Therefore, they
can proactively avoid sudden driving maneuvers, which reduces
the risk of accidents [24]. Moreover, this anticipatory driving
behavior with higher arousal leads to more steering and is
potentially a sign of active control of the vehicle. Due to
alertness and anticipatory driving, drivers may also proactively
adapt the speed of the vehicle earlier to changing driving
situations, which results in lower speeds.

For the inverse relationship, we found significant effects
showing that driving-related factors impact the arousal of
drivers. First, the higher the average speed was, the lower the
after-driving arousal state was. Second, we found that the length

of the trip negatively influences arousal. Since this deterioration
of arousal is counteracted by frequent braking, we assume that
monotonous driving situations (ie, long trips at high speeds with
no need to brake frequently) cause a decrease in arousal.
Cognitive tasks, such as braking, seemed to interrupt the
perceived monotony and, thus, reduced the negative effect on
arousal throughout the trip.

In contrast, we could not identify any statistically significant
effect between valence and driving. The missing impact of low
flow or sudden events on valence may be explained by the high
driving experience of the participants, who may have grown
accustomed to these conditions (eg, daily experience of traffic
jams on commutes). However, the lack of effects may also be
explained by a possible transient impact of adverse events, such
as a traffic jam or consecutive red lights. After having reached
the destination, these occurrences may have been forgotten and
other thoughts may determine the disclosed end-of-trip valence.
Further studies should evaluate the immediate impact of adverse
conditions on valence.

Besides the actual driving, we identified predetermined factors
that influenced well-being. First, more sunlight (ie, better
weather) increased before- and after-driving arousal. Sunlight
is known to impact daily mood in general and to reduce tiredness
[71]. Second, the presence of occupants increased before- and
after-driving valence. The explanation of this effect may be that
social interaction is associated with a better sense of well-being
[72]. In contrast, occupants had no influence on the arousal of
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drivers. Although occupants may reduce the monotony of a
drive, the social interactions may also lead to social fatigue [73]
and thus limit a potential arousal improvement.

Furthermore, we found significant interactions between the
dimensions of well-being. The levels of arousal and valence
before driving were highly correlated with the respective levels
after driving. Most likely, carry-over effects occur, for example,
awake drivers are still more awake at the end of the trip than
drivers who already started while feeling tired. Moreover, both
well-being dimensions are positively associated with each other.
Building upon our prior reasoning, we propose 2 potential
explanations. First, alert drivers experience fewer adverse events
and therefore feel more positive by the end of the trip. Second,
higher valence can make drivers more resistant to boredom,
which reduces the feeling of monotony.

Comparison With Prior Work
This study aimed at investigating the complex causal
architecture of well-being in daily driving using a real-world,
uncontrolled field study. In contrast, previous studies have
mainly focused on isolating specific effects in controlled
experiments (eg, simulator studies). In the following paragraphs,
we compare the significant effects between daily driving and
well-being of our exploratory study to prior driving studies.
These studies serve hereby as a plausibility check of our
findings.

Our explanation of the positive impact of increased arousal on
driving behavior is in line with the prior literature. Corfitsen
[74] found in a survey combined with a reaction time test that
low arousal states (ie, fatigue) are a major cause of longer
reaction times while driving at night. Moreover, McGehee et
al [24] showed in an experimental study on a test track that
these longer reaction times are a major risk factor for accidents.
However, our findings concerning valence differ from the
previous literature. Prior simulator studies have revealed a
significant negative effect of extreme valence states (very happy
and very unhappy) on driving behavior [25]. The lack of effects
of valence in our study could be explained by the setting of the
field study. Whereas in the simulator study [25], strong
valence-changing stimuli were induced, our study aimed to
collect data on everyday driving situations with less strong
valence changes.

Furthermore, we find confirmation that monotonous driving
reduces the arousal of drivers. Thiffault and Bergeron [26]
observed in a simulator study that continuous driving without
any external stimulus induces fatigue and tiredness, which
increases with time. Moreover, our conclusion that arousal levels
are reduced by driving at high speeds due to the monotonous
setting is supported by a simulator study by Ting et al [27].
Their study showed that highway driving leads to fatigue, which
negatively affects driving performance and increases the risk
of accidents, as priorly discussed [24,71]. We can further
confirm that cognitive tasks, such as frequent braking, improve
after-driving arousal. The results of a simulator experiment by
Dunn and Williamson [28] showed that cognitive demand
mitigates monotony.

Implications for Intervention Research and Practice
Our findings can be used to allow for more effective JITAIs by
providing an estimate for when drivers are likely at risk of
feeling tired or unhappy, that is, when they are in a state of
vulnerability. By improving the well-being of the driver, such
interventions have the potential to increase road safety and
reduce the frequency of accidents.

Interventions for increasing well-being while driving can be
conceptualized in 2 ways. First, the causes for states of
vulnerability can be directly targeted according to our causal
architecture. For instance, the findings indicate that a long drive
with little braking and steering generates a monotonous driving
situation, which sets the driver at risk of a state of low arousal.
Second, interventions can react to detected states of
vulnerability. For instance, if an increased number of sudden
events, less steering, or increased speeds are recognized, it is
an indication that the arousal of the driver has decreased. Thus,
an intervention could be triggered that acts as a mental stimulus
to increase arousal and thereby prevent drowsy driving. Past
research developed and evaluated such interventions, for
example, using highly personalized music playlists [21] or
gamified driving challenges [75]. Our findings could pave the
way for the ideation of new interventions. For instance, valence
can be raised with an intervention that leads to social interaction,
for example, by recommending calling someone during a break.
As another example, a driver’s arousal deterioration due to
high-speed driving could be addressed by reminding drivers
about the speed limit.

Strengths and Limitations
We identified relationships between well-being and driving
from a 4-month longitudinal field study on real roads with a
sample representative of a wide range of commuters. To derive
robust relationships, we applied causal inference methods in
our analysis. This overall approach has multiple benefits. First,
we observed in our study setup the true emotions participants
experienced while they were driving. Contrary to laboratory
experiments, which often induce or inspect single isolated
effects, our results reflect realistic driving situations and
therefore generalize better to the real world. Second, our findings
can serve as a basis for delivering interventions to react to
well-being changes impacting driving behavior. Finally, all
identified effects are explainable by the prior literature and
robust to violations of assumptions. Therefore, our study serves
as a practical example that inferring causal architectures from
observational field studies is feasible and may provide insights
that go beyond the capabilities of controlled experiments.

The exploratory design of the study comes with some
limitations. The analysis was conducted on the aggregated data
set of trips during a longitudinal field study of naturalistic
driving on public roads. Hence, it does not regard variation
between drivers on a personal level. However, by combining
experiences from 10 drivers, we could examine interactions that
are present across multiple individuals. Further research could
include a psychological analysis on the personal level and could
combine valence and arousal to construct more complex
emotions. Regarding the causal methodology, the DAG with
NOTEARS algorithm does not definitely guarantee a precise
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causal DAG and is especially sensitive with respect to the scale
of the variables [63]. We mitigated this issue by standardizing
all continuous variables and by introducing a random confounder
for testing the robustness of the estimates. Further research
should establish a framework for assessing the robustness of
the causal DAG itself.

Conclusion
In this paper, we unveiled the complex causal architecture of
well-being in daily driving in a real-world field study. Daily
driving is a complex setting in which many contextual and
personal factors interact. In a real-world field study, this
complexity can be replicated more adequately than in a

controlled experiment. However, in observational studies, an
elaborate causal methodology is necessary for identifying causal
effects. Our study identified that arousal is more susceptible to
changes while driving than valence. Especially monotonous
driving situations, such as long drives on a highway without
the need to decelerate or steer frequently, set the driver at risk
of becoming more tired. This tiredness impairs driving behavior
and can be seen as a state of vulnerability that can be utilized
as a trigger for interventions. The knowledge about robust causal
effects between well-being and driving behavior can therefore
be applied as a basis for deciding when to initiate an intervention
to improve the well-being of the driver.
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