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Abstract

Background: To provide effective care for inpatients with COVID-19, clinical practitioners need systems that monitor patient
health and subsequently allow for risk scoring. Existing approaches for risk scoring in patients with COVID-19 focus primarily
on intensive care units (ICUs) with specialized medical measurement devices but not on hospital general wards.

Objective: In this paper, we aim to develop a risk score for inpatients with COVID-19 in general wards based on consumer-grade
wearables (smartwatches).

Methods: Patients wore consumer-grade wearables to record physiological measurements, such as the heart rate (HR), heart
rate variability (HRV), and respiration frequency (RF). Based on Bayesian survival analysis, we validated the association between
these measurements and patient outcomes (ie, discharge or ICU admission). To build our risk score, we generated a low-dimensional
representation of the physiological features. Subsequently, a pooled ordinal regression with time-dependent covariates inferred
the probability of either hospital discharge or ICU admission. We evaluated the predictive performance of our developed system
for risk scoring in a single-center, prospective study based on 40 inpatients with COVID-19 in a general ward of a tertiary referral
center in Switzerland.

Results: First, Bayesian survival analysis showed that physiological measurements from consumer-grade wearables are
significantly associated with patient outcomes (ie, discharge or ICU admission). Second, our risk score achieved a time-dependent
area under the receiver operating characteristic curve (AUROC) of 0.73-0.90 based on leave-one-subject-out cross-validation.

Conclusions: Our results demonstrate the effectiveness of consumer-grade wearables for risk scoring in inpatients with COVID-19.
Due to their low cost and ease of use, consumer-grade wearables could enable a scalable monitoring system.

Trial Registration: Clinicaltrials.gov NCT04357834; https://www.clinicaltrials.gov/ct2/show/NCT04357834
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Introduction

Health trajectories from patients with COVID-19 show large
variability with sudden deterioration in the disease state and
uncertain outcomes [1-4]. Hence, to provide effective care,
clinical practitioners need systems that allow for monitoring
the health trajectory of patients with COVID-19, especially
during hospitalization [5-8]. Such systems can then be used to
estimate the risk of a deterioration in the health condition and
thus generate early warnings of critical conditions. In clinical
practice, this enables the allocation of resources to patients in
need and supports early responses to critical conditions [6,9-11].

Prior research has developed systems for monitoring patients
with COVID-19 in different settings. One research stream
detects the onset of COVID-19 using wearables (eg,
smartphones) [12-14] and thus addresses the time before
hospitalization. Another literature stream focuses on risk scoring
for patients in intensive care units (ICUs) [7,8,15-17]. Here,
monitoring systems are customized for the needs in intensive
care and thus build upon specialized and often proprietary
medical devices for physiological measurements. Vital signs,
such as the heart rate (HR) or respiration frequency (RF), have
been found to be predictive of critical health conditions [7,16].

In contrast, research is needed that develops systems for risk
scoring for inpatients in general wards, which presents the focus
of this work. This requires a custom risk score tailored to the
corresponding patient population and nonspecialized monitoring
devices that are available in general wards. For inpatients with
COVID-19 in general wards, we propose the use of
consumer-grade wearables (smartwatches) for monitoring and
subsequent risk scoring due to their low cost, ease of use, and,
thus, potential scalability. Previously, research has demonstrated
the clinical relevance of consumer-grade wearables for
longitudinal physiological measurements [18,19]. Further, they
have been used for monitoring the progression of various other
diseases (eg, diabetes mellitus [20,21]), yet their effectiveness
for inpatients with COVID-19 in general wards remains to be
confirmed.

In this paper, we develop a risk score for inpatients with
COVID-19 in general wards based on scalable consumer-grade
wearables (see Figure 1 for our overview). The consumer-grade
wearables are used to monitor physiological measurements of
patients: HR, heart rate variability (HRV), and RF. Based on
these measurements, our risk score assesses the risk of different
patient outcomes, defined as the probability of hospital discharge
and ICU admission.

Figure 1. Monitoring and risk scoring. To develop a scalable risk score, physiological features were computed from wearable measurements. Next,
Bayesian survival analysis was conducted to assess the association between the physiological features and patient outcomes. Lastly, a scalable risk score
was developed. This study was designed to demonstrate the effectiveness of consumer-grade wearables for a scalable risk-scoring system in inpatients
with COVID-19 in the general ward. ICU: intensive care unit.

Methods

Study Procedure
In visit 1 (V1), a study investigator explained the nature,
purpose, and risks of the study and provided eligible patients
with a copy of the patient information sheet. If written informed
consent was obtained and eligibility criteria were met, the
remaining screening information was obtained. A patient number
was assigned to each patient in ascending order.

Eligible patients were provided with a Garmin vívoactive 4S
(Garmin International Inc., Olathe, Kansas, USA) smartwatch
and a Xiaomi Redmi 9 (Xiaomi Corp., Beijing, China)
smartphone. Patients wore the wearable on the wrist of the
dominant hand, if possible (otherwise the other hand).

After mounting the devices, the study investigator controlled
the function of the devices and checked whether data transfer
was working properly. In addition, the patient was instructed
to fully charge both devices once per day or as needed. The
smartwatch was worn during the whole study duration, that is,
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from hospitalization in the general ward until the patient was
admitted to the ICU or discharged home.

The study investigators were equipped with a monitoring
dashboard allowing for observation of the charging status as
well as functionality of the devices in use. If a patient was not
capable of charging the devices themselves or the devices were
not working properly, a member of the study team directly
approached the patient and either charged the devices or solved
possible technical issues.

In visit 2 (V2, close-out visit), the treating physician in the
general ward informed the study team that 1 of the close-out
criteria (admitted to the ICU or discharged home) had been met.
A member of the study team then visited the patient and initiated
the close-out visit. During V2, patients returned the wearable,
the smartphone, and the charging cable. Completeness of data
transfer to the back-end server was checked, and thereafter, all
data on the devices were deleted.

Ethical Considerations
The study followed the Declaration of Helsinki, the guidelines
of good clinical practice, Swiss health laws, and the ordinance
on clinical research. The study was approved by the local ethics
committee of Bern, Switzerland (ID 2020-00874). Each patient
provided informed written consent before any study-related
procedure.

Data Collection
The technical backbone of our data collection comprised 2
components: (1) a smartwatch that continuously collected
physiological parameters and (2) a custom smartphone app to
transfer the data to our server. In particular, the collected data
were first transferred via Bluetooth to our self-developed
smartphone app. Subsequently, the data were sent to a central
database.

The smartwatch was used for measuring various physiological
parameters. The recorded sensor measurements were the
accelerometer (ACC), interbeat interval (IBI), HR, and RF. The
ACC was sampled with 25 Hz. The HR and RF were logged
once per minute. The IBI was recorded by logging the time of
each heartbeat. The HR, IBI, and RF were derived from the
photoplethysmography (PPG) sensor of the wearable.

Additional patient demographics (ie, patient age and sex) were
collected by the clinical practitioners.

Data Processing
Data gathered from sensors embedded in consumer-grade
wearable devices come along with inherent challenges for
clinical usage. In particular, consumer smartwatches are by no
means certified medical devices, and their sensor data may be
subject to noise and missing values. We thus performed
customized preprocessing of the sensor data as follows.

The HRV was computed based on a time series of IBIs. Of note,
variability measures retrieved from an optical PPG signal should
be referred to as pulse rate variability (PRV), whereas the
variability measures retrieved from an electrocardiogram (ECG)
should be referred to as the HRV. Since variability measures
are significantly correlated, we followed the convention and

speak here of the HRV [22-24]. First, measurement artifacts
were filtered by removing IBIs that differed by more than 20%
from the preceding IBI [25]. Furthermore, we used an adaptive
threshold analysis for the HRV that discarded time windows
with less than half of the expected heartbeats recorded by the
measurement device [26]. This adaptive threshold prevents
HRV values from being distorted due to insufficient data in a
time window. Subsequently, the HRV in both the time domain
and the frequency domain was calculated according to
international guidelines [25]. For the frequency-domain features,
one needs to estimate the power spectral density [27]. The time
between 2 heartbeats changes. Hence, the IBI series is irregularly
sampled. To avoid resampling, which bears the risk of distorted
HRV features in case the proportion of missing data increases,
we relied on the Lomb-Scargle method [28-32].

Feature Engineering
Our data showed substantial variation in the HR, HRV, and RF
throughout the day, which was most likely due to changes in
patient activity patterns. A confirmatory check showed strong
dependence on the intensity of body movements throughout the
day (see Multimedia Appendix 1). To compute daily
physiological features that are robust against the activity patterns
of patients and their biological rhythms, measurements taken
during a time window from midnight to 5:00 a.m. each day were
used. This time frame roughly corresponds to the phase of
patients’ night rest, as characterized by stable physiological
measurements and minimal body movements (see Multimedia
Appendix 1).

The wearable-based measurements of the HR, HRV, and RF
were aggregated into a single value per time window using
feature engineering. For the HR and RF, we computed 15
statistical features that reflect different properties of the
distribution over time (eg, mean, skewness, SD). For the HRV,
there exists an extensive amount of research on the effect of the
window size on HRV features [33-36]. Here, we followed
recommendations by Malik et al [25] and computed 19
time-domain and frequency-domain HRV features over intervals
of 300 seconds before taking the mean over the full time
window. The detailed list of features is provided in Multimedia
Appendix 1. To ensure representativeness of the features, we
required a sufficient number of valid measurements during the
night—reasonably, minimum data of half of the measuring
period during the night. After the application of all quality
criteria (ie, IBI quality criteria and minimum coverage of the
measurement period), 114 (69.1%) of 165 observations were
retained. Here, 1 observation represents the aggregated
physiological measurements of a patient from 1 specific night.
Throughout the paper, the combination of wearable-based
measurements (HR, HRV, RF) and feature engineering is
referred to as physiological features.

For both preprocessing and feature engineering, we leveraged
the publicly available Python package FLIRT, which is tailored
to process wearable data [37]. By choosing the parameters as
stated before, the entire pipeline can be reproduced.
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Explanatory Analysis of the Association of
Physiological Features With Patient Outcomes
To assess the association of physiological features with observed
patient outcomes (ie, hospital discharge vs ICU admission),
survival analysis was conducted. This allowed us to
appropriately account for the time-to-event nature of the data
and the presence of right censoring (see the Results section).
Since the physiological features were updated each day, they
were represented by time-dependent covariates in our survival
analysis. Accordingly, a pooled regression approach [38,39]
was chosen to flexibly account for the time dependence of the
covariates. Moreover, as we did not observe an ICU readmission
after a hospital discharge, both events should be regarded as
competing risks and modeled via cause-specific hazards [40].
To make optimal use of the data in our study, both hazards for
hospital discharge and ICU admission were estimated in a joint
model. Specifically, the probabilities of hospital discharge, ICU
admission, or no event (ie, continued stay) of patient “i” on day
“t” were related to a regression function of the physiological
features from the previous night. The probabilities were modeled
jointly via an ordinal regression using a cumulative probability
model with complementary log-log link [41-43]. This can also
be interpreted as modeling the health condition of patients
through a latent variable, where hospital discharge indicates a
better health condition than continued stay and continued stay
indicates a better health condition than ICU admission. An
ordinal regression model accurately reflects this relationship,
while offering high flexibility. Additionally, patient age and
sex were considered demographic features. The model was
specified in a fully Bayesian framework. Thereby, we ensured
the robustness of our analysis by appropriately quantifying the
uncertainty in parameter estimates. This is particularly important
for limited sample sizes, as may likely be the case with newly
emerged diseases. The formal specification of our model is
provided in Multimedia Appendix 2. Of note, our approach has
a particular connection with the well-known proportional
hazards model [44] and can be interpreted as a Cox regression
with time-dependent covariates that further accounts for
competing risks in a joint model of hospital discharge and ICU
admission probability.

In our explanatory analysis, we estimated univariate
associations, which allowed us to identify the association of
individual physiological features with patient health. Thus, a
separate model was fitted for each physiological feature.

Development of a Risk Score
To develop a risk score based on the physiological features, a
parsimonious 2-step approach was chosen. That is, we first used
feature engineering and principal component analysis (PCA)
to obtain a low-dimensional but comprehensive representation
of patients’ physiological state. This representation was then
linked to patient outcomes through a Bayesian survival model
that was similar to the models used in our explanatory analysis.
We chose this approach over alternative methods (eg, deep
learning) due to several reasons. First, the use of a parametric
model can effectively reduce the risk of overfitting, while the
feature engineering still allows us to use high-dimensional
sensor data. Moreover, by jointly modeling the probabilities of

hospital discharge and ICU admission, the risk score makes
optimal use of the available data and can be readily interpreted
as an overall indicator of patient condition. Finally, the use of
Bayesian modeling ensures robust results even with limited
amounts of data and appropriately quantifies uncertainty in the
risk score.

The risk score was constructed by combining multiple
physiological features into an overall metric. For this, we
proceeded as follows: (1) The coefficients of the explanatory
models were used to select physiological features of the HR,
HRV, and RF that showed a relevant association (80% credible
interval [CrI], excluding 0) with patient outcomes. (2) Since
many features of the same measurement were strongly
correlated, dimensionality reduction via PCA [45] was applied
to generate a lower-dimensional representation of the underlying
physiological information. (3) Pooled logistic least absolute
shrinkage and selection operator (LASSO) regressions were
employed to identify principal components (PCs) with high
predictive power. Here, the PCs were used as predictors for the
probability of either hospital discharge or ICU admission on a
given day. The tuning parameter λ for the LASSO regularization
was chosen via cross-validation. All PCs with nonzero
coefficients were selected. (4) The risk score was computed
from the linear predictor of a similar ordinal regression model
as for the explanatory analysis but with the selected PCs as
covariates. Correspondingly, a larger risk score implies a higher
probability of ICU admission and a lower probability of hospital
discharge. The probability of continued stay (ie, neither hospital
discharge nor ICU admission) is Pcontinued stay = 1 – Pdischarge –
PICU.

Estimation and Performance Evaluation
All model parameters were estimated using a fully Bayesian
framework [46-48]. Weakly informative priors were used for
all parameters [49], and the estimation was checked by following
best-practice recommendations in Bayesian modeling [46,50].
Details of the estimation and model checking are provided in
Multimedia Appendices 2 and 3.

The performance of the developed risk score was evaluated via
leave-one-patient-out cross-validation. The cross-validation
covered all relevant preprocessing steps, including PCA. We
assessed the performance in terms of discrimination accuracy
via time-dependent receiver operating characteristic (ROC)
curves using the incident case approach with dynamic controls
(I/D) [51,52]. Moreover, in survival models with competing
risks, ROC curves must be cause specific. Due to the small
number of patients with ICU admission in our sample, we here
focused on the ROC curve for hospital discharge. The ROC
curve of the risk score–based prediction of hospital discharge
for varying length of stay was thus evaluated to obtain a
time-dependent area under the receiver operating characteristic
curve (AUROC; see Multimedia Appendix 2 for details). The
time-dependent AUROC assesses the predictive accuracy of
the risk score to discriminate between patients who are
discharged after a given number of days and patients who
continue to stay in the hospital [52]. It can be interpreted as the
probability that a random patient who is discharged on day “t”
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has a higher predicted hazard of discharge than a random patient
who continues to stay in the hospital [53].

To assess the added value of continuous physiological
measurements for monitoring a patient’s health throughout their
hospital stay, we compared our risk score model to an alternative
model that uses only data from the first night of hospital stay
but is otherwise identical. The time-dependent AUROC was
computed for both risk score models and compared across a
varying length of stay in the hospital. We evaluated the length
of stay for which a sufficient number of observations was
available (ie, up to 6 days), corresponding to 87% of all observed
lengths of stay. In the Results section, we further report a
smoothed AUROC over time using the nearest-neighbor
estimator for time-dependent ROC curves [54]. Our code is
available in the official code repository [55].

Results

Study Setting
We conducted an observational study (see the study flowchart
in Figure 2) between October 2020 and June 2021 in the general
ward of a tertiary referral center in Switzerland. In total, 46
patients were recruited according to 2 different scenarios of
recruitment and enrollment in the study: (1) Patients who
attended the emergency ward and were hospitalized with
suspicion of COVID-19 were recruited directly during their
initial evaluation, and (2) additionally, all inpatients tested

positive for SARS-CoV-2 were reported to the study team
automatically with an email alert from the laboratory and
thereafter contacted (in-hospital visit) by a member of the study
team. Either of the following patient outcomes were possible:
(1) hospital discharge or (2) ICU admission.

Inclusion criteria were age greater than 18 years, suspicion of
COVID-19 or patient testing positive for SARS-CoV-2, and
hospitalization in the general ward. Exclusion criteria were
direct transfer from an emergency ward or external institution
to the ICU (ie, no hospitalization in the general ward of the
study institution). Further exclusion criteria were that the
smartwatch could not be attached around the wrist of the patient,
known allergies to components of the smartwatch, and rejection
of ICU admission in the patient decree.

After screening, 1 (2.2%) of 46 individuals was excluded due
to a negative SARS-CoV-2 result, 4 (8.7%) patients were
excluded due to technical problems during the recording (eg,
persistent interruptions of the Bluetooth connection between
wearable and smartphone) or nonadherence to the prescribed
measurement regime, and 1 (2.2%) individual was excluded
because the hospital discharge occurred on the same day of
hospitalization. In total, 40 (87%) patients remained. Of these,
7 (17.5%) were admitted to an ICU during their hospital stay
(after a median of 2 days), and 31 (77.5%) were discharged
without a subsequent ICU stay (after a median of 4 days). In
addition, 2 (5%) patients dropped out before their outcome was
recorded and were thus treated as right-censored in our analysis.

Figure 2. Overview of study with a study flowchart. Data were obtained according to the study flowchart. During visit 1 (V1), 46 eligible patients were
recruited. After hospitalization in the general ward, patients were equipped with a consumer-grade wearable (smartwatch). We excluded patients with
suspected COVID-19 in the case of a negative SARS-CoV-2 test (n=1). In addition, patients were excluded due to nonadherence to measurement
principles or interruptions in connectivity (n=4) and self-discharge on the same day as hospital admission (n=1). During visit 2 (V2), we recorded the
patient outcomes (ie, discharge, n=31, vs ICU admission, n=7). Patients with unknown outcomes were right-censored (n=2). ICU: intensive care unit.

Association of Physiological Features With Patient
Outcomes
Figure 3 shows the association of physiological features with
patient outcomes. Specifically, we reported standardized
coefficients of the physiological features obtained from survival
models adjusting for patient age and sex. A positive coefficient
indicates that an increase in the value of a physiological feature
on day “t” is associated with a higher probability of ICU
admission as well as a lower probability of hospital discharge
on day “t.” In contrast, a negative coefficient indicates that an

increase in the value of a physiological feature is associated
with a lower probability of ICU admission and a higher
probability of hospital discharge on a given day.

Overall, 49 different univariate associations were estimated (ie,
with 15, 30.6%, features related to the HR, 19, 38.8%, features
related to the HRV, and 15, 30.6%, features related to the RF).
For features related to the HR, we found the following
associations: a higher HR was associated with worsened patient
outcomes. In particular, we found that an increase in the mean
HR indicated a deterioration in the patient’s condition
(coefficient 0.71, 95% CrI 0.20-1.32). A similar association
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was found for several other features, including the maximum
HR (coefficient 0.46, 95% CrI 0.03-0.94). For entropy-based
features, the estimated relationship remained largely uncertain,
however. For features related to the HRV, we found that
increases were associated with improved patient outcomes. For
example, an increase in the standard deviation of
normal-to-normal intervals (SDNN) indicated an improvement
of the patient condition (coefficient –0.28, 95% CrI –0.82 to
0.21). Moreover, several features related to the RF showed a
positive association, where larger values indicated a worsened
patient outcome. For example, increases in the 95% quantile of
the RF were associated with a deterioration in the patient’s
condition (coefficient 0.77, 95% CrI 0.19-1.51). The same was

observed for the RF SD (0.46, 95% CrI –0.05 to 1.06).
Altogether, these associations establish that the risk of a
worsened condition among inpatients with COVID-19 can be
identified through health measurements from consumer-grade
wearables.

As part of our robustness checks, various alternative model
specifications were tested (ie, changes with respect to the time
window used for physiological measurements, the time trend,
subject-specific variation, the cumulative distribution function,
and wider priors; see Multimedia Appendix 4). We obtained
similar estimates for all models, thus implying that the estimated
associations between physiological features and patient
outcomes remain robust.

Figure 3. Association of physiological features with patient outcomes. Shown are the standardized coefficients of physiological features for the (a)
HR, (b) HRV, and (c) RF. Features were computed based on daily physiological measurements from wearables (see the Feature Engineering section
and Multimedia Appendix 1). For each coefficient, we reported the posterior probability mass with mean (dot) and the 80% and 95% CrIs (thick and
thin bars, respectively). Positive values (red) indicate an association with a deterioration in the health condition, and negative values (blue) indicate an
association with an improved health condition. CrI: credible interval; HR: heart rate; HRV: heart rate variability; RF: respiration frequency.

Development of a Risk Score
Next, the physiological measurements from the wearables were
combined into an overall risk score. Here, our main aim was to
demonstrate that a combination of different physiological
features is of predictive value and thus jointly informative. For
this, PCA [45] was applied to all features that showed a relevant
association (80% CrI, excluding 0) with patient outcomes. This
was the case for 9 HR features, 4 HRV features, and 9 RF
features. Next, PCs with the highest predictive value for patient
outcomes were identified using LASSO (see the Methods
section). For our clinical data, the LASSO selected 8 (36.4%)
of 22 PCs. These PCs characterized the physiological state of
patients through a lower-dimensional representation of the
wearable-based measurements. A visualization of the PCs is
shown in Multimedia Appendix 5.

The selected PCs were used to model patient outcomes as the
dependent variable based on a survival model that is similar to
that of the explanatory analysis. Multimedia Appendix 5 reports
the estimated coefficients. The resulting linear predictor for the
probability of hospital discharge and ICU admission was used
as the overall risk score. The risk score thus quantifies the
probability of hospital discharge and ICU admission of patients
on a given day using wearable-based measurements from the
previous night. Here, a higher score generally indicates a worse
patient condition (Figure 4). Although the overall health
condition of patients is confidently predicted by the risk score,
the smaller number of patients with ICU admission in our data
set means that the risk score is less differentiated with regard
to ICU admission.
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Figure 4. Probability of hospital discharge and ICU admission for different values of the risk score. Shown is the estimated daily probability of hospital
discharge (blue) and ICU admission (red) as a function of the risk score. A larger risk score implies a higher probability of ICU admission and a lower
probability of hospital discharge. Posterior means (lines) and 95% CrIs (shaded areas) are reported. The probability of continued stay (ie, neither hospital
discharge nor ICU admission) is not shown but can be computed as Pcontinued stay = 1 – Pdischarge – PICU. CrI: credible interval; ICU: intensive care
unit.

Evaluation of the Risk Score
Figure 5 shows the leave-one-patient-out cross-validation results
for the predictive performance of our risk score. Because the
risk score was updated as the condition of patients changed
throughout their hospital stay, the time-dependent AUROC was
used as a performance metric that accounts for time-varying
prediction performance. A daily AUROC was computed for up
to 6 days of hospital stay, which covered 87% of the patients’
length of stay. For different lengths of stay, the risk score
achieved a time-dependent AUROC of 0.73-0.90, suggesting
reasonable predictive performance (Figure 5). This establishes
that the different physiological features are jointly informative
of patient health condition over time.

For comparison, we also reported the performance of a fixed
risk score that used only data from the first night of hospital
stay but was otherwise identical (Figure 5). Comparing the
performance of the fixed risk score and our original risk score

allowed us to assess the benefit of daily updating the
physiological measurements. For the first day of hospital stay,
the fixed risk score achieved a performance that was worse than
the risk score with updated physiological measurements but
was still above 0.70. However, for a length of stay longer than
1 day, the fixed risk score showed a consistently inferior
performance.

To further assess the added value of the physiological features
used in our risk score, we also evaluated the performance of a
risk score that uses demographic features (ie, patient age and
sex) but no physiological features. The cross-validation results
for this risk score indicated that demographic features alone
have no relevant predictive value with regard to the time-varying
health condition of the patients in our sample (see Multimedia
Appendix 6). Together, these results confirm that continuously
updated, repeated monitoring of physiological measurements
can provide an added value for analyzing the patient’s condition
during the hospital stay.
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Figure 5. Prediction performance of the risk score over time. Shown is the time-dependent AUROC of the risk score in predicting patient discharge
over time. Two scenarios are compared: (1) main (blue solid line) and (2) fixed (gray dashed line). In the main scenario, the daily risk score is computed
from updated wearable-based measurements recorded during the respective previous night. The AUROC is significantly above 0.5 for up to 6 days,
which covers 87% of the patients’ length of stay. In the fixed scenario, the risk score is computed throughout the stay from recordings only from the
first night. The comparison between these scenarios shows the added value of regularly updated health measurements provided by wearables. Out-of-sample
predictions were obtained via leave-one-patient-out cross-validation. Dots show the individual time-dependent AUROC estimates for days with observed
patient discharge. Smoothing was performed via a nearest-neighbor estimator (see the Performance Evaluation section) to obtain an estimate of the
mean AUROC over time (lines) with 95% CIs (shaded areas). AUROC: area under the receiver operating characteristic curve.

Discussion

Principal Results
This work presents a monitoring system that allows for risk
scoring of inpatients with COVID-19 in the general ward using
consumer-grade wearables (smartwatches).

For this, Bayesian survival analysis was used to establish that
physiological measurements monitored by consumer-grade
wearables are indicative of patient outcomes in the general ward
(ie, hospital discharge vs ICU admission). We further showed
that these different physiological measurements can be combined
into a single, clinically meaningful risk score with high
prediction performance regarding the health condition of patients
(time-dependent AUROC of 0.73-0.90). Our results show the
feasibility of a risk score for inpatients with COVID-19 in
general wards based on scalable consumer-grade wearables. In
the future, such risk scores may enable clinical practitioners to
adapt to patient needs and, ideally, respond earlier when a
patient trajectory progresses toward a critical condition.

We found that several physiological features derived from
wearable-based measurements are associated with patient
outcomes. For instance, a higher mean HR, a higher mean RF,
and a lower HRV RMSSD are all indicative of a deterioration
in the health condition of patients. The observed relationship
between patient outcomes and cardiovascular features (HR and

HRV), as well as patient outcomes and RF measurements, is
consistent with previous research on digital biomarkers
[22,56-60]. These findings add to the robustness of our
monitoring system. Importantly, we discovered these
associations based on consumer-grade wearables, which
indicates the clinical applicability and, thus, the relevance of
the technology. Furthermore, the risk score may implicitly
capture information on clinical interventions (eg, ventilation,
which affects the RF). Hence, wearable recordings must be
interpreted carefully in the light of other simultaneous
interventions.

To derive our risk score, we intentionally chose a parsimonious
approach using feature engineering and Bayesian survival
modeling. Different from other machine learning methods, a
parametric, Bayesian approach like ours is especially viable in
the case of newly emerged diseases, where data availability may
be limited. Since our feature engineering is mostly disease
independent, the physiological features could be integrated into
models for other diseases too, further promoting scalability.
More generally, our approach demonstrates how multiple
competing patient outcomes can be flexibly linked to
time-dependent measurements in a parametric, joint model of
patient condition.
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Comparison With Prior Work
Prior research successfully explored vital signs measured by
smartwatches (eg, the resting HR) as a basis to detect the onset
of COVID-19 outside a clinical setting [12-14]. Hence, we
leveraged similar devices to record physiological measures and
model a similar outcome (ie, deterioration in a patient's health).
However, our monitoring system differs from others on
COVID-19 as follows: First, there is no proof-of-concept study
in a clinical setup that explores smartwatches as a basis to
monitor patients with COVID-19 to the best of our knowledge.
Second, we modeled a patient's health condition as a whole to
detect not only a deterioration in the patient's health but also an
improvement.

Lastly, several studies have focused on risk scoring in ICUs
[7,8,16,17]. However, due to a large number of hospitalizations
for COVID-19, inpatients in general wards are also of major
concern. Different from our study setting, risk scoring in ICUs
builds upon specialized medical devices for health monitoring
and a specific patient population. Because of this, a direct
transfer of ICU risk scores to clinical practice in general wards
is obviously limited. Therefore, we developed a monitoring
system and subsequent risk scoring that is particularly suited
for general wards (eg, there is no need for specialized medical
monitoring technology).

In summary, our study supports the clinical relevance of
wearables exclusively based on consumer-grade technology. In
contrast to specialized medical devices for health monitoring
(eg, finger pulse oximetry or ECG sensor), consumer-grade
technology comes at a comparatively low cost, can be deployed

easily, and is thus scalable. Clinical practitioners simply need
to attach the smartwatch to the wrist of a patient. In addition,
smartwatches offer a familiar user interface.

Limitations
A general concern may be that measurements from
consumer-grade wearables are subject to noise or missing values.
The results of our study, however, show that a wearable-based
risk score can offer robust predictions of patient outcomes. Our
study opens several possibilities for future research. The main
limiting factor of our study is the sample size of 40, which
naturally restricts the number of ICU admissions in the data set.
To further assess the predictive performance of wearable-based
risk scores, in particular with regard to ICU admission, future
research might expand our data set with additional patient
populations and different variants of SARS-CoV-2. The model
merely incorporated data from wearable sensors for risk scoring
and refrained from integrating other data sources (eg, electronic
health records). This choice was made to ensure a scalable use
in clinical practice. Further, our system builds upon
dimensionality reduction via PCA to handle high-dimensional
sensor data, proving effective to avoid overfitting. Nevertheless,
future research may explore alternative machine learning
methods for risk scoring.

Conclusion
Overall, our results show the promise of consumer-grade
wearables as an effective, scalable, and low-cost technology for
health monitoring in a general ward. In the future,
consumer-grade wearables, such as smartwatches, may further
offer monitoring capabilities for inpatients with other diseases.
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PCA: principal component analysis
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