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Abstract
Based on wearable data machine learning models can detect and predict various health and behavioral outcomes, like

stress, hypoglycemia, cognitive engagement, and COVID-19 onset. However, wearable data from commercial wearables is
prone to noise, missing, or artifacts. In addition, there is a lack of uniformity and reproducibility in wearable data processing
and feature generation across studies, making it difficult to compare results. To overcome these issues, we present FLIRT:
A Feature Generation Toolkit for Wearable Data; it is an open-source Python package that provides functionalities beyond
existing packages. FLIRT can address unmet needs in physiological data processing and feature generation: (a) integrated
handling of common wearable file formats (e.g., Empatica E4 archives), (b) robust preprocessing, and (c) standardized feature
generation that ensures reproducibility of results. While FLIRT comes with a default configuration to accommodate most
situations, it offers a highly configurable interface for all of its implemented algorithms to account for specific needs.
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• Wearable data is increasingly utilized for biomedical research and clinical practice
• Standardized wearable data processing and feature generation is needed
• FLIRT is an open-source Python package tailored to wearable data processing
• FLIRT calculates more than 100 features ready for machine learning models
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ABSTRACT
Background and Objective: Researchers use wearable sensing data and machine learning (ML)
models to predict various health and behavioral outcomes. However, sensor data from commercial
wearables are prone to noise, missing, or artifacts. Even with the recent interest in deploying commercial
wearables for long-term studies, there does not exist a standardized way to process the raw sensor
data and researchers often use highly specific functions to preprocess, clean, normalize, and compute
features. This leads to a lack of uniformity and reproducibility across different studies, making it
difficult to compare results. To overcome these issues, we present FLIRT: A Feature Generation Toolkit
for Wearable Data; it is an open-source Python package that focuses on processing physiological data
specifically from commercial wearables with all its challenges from data cleaning to feature extraction.
Methods: FLIRT leverages a variety of state-of-the-art algorithms (e.g., particle filters, ML-based
artifact detection) to ensure a robust preprocessing of physiological data fromwearables. In a subsequent
step, FLIRT utilizes a sliding-window approach and calculates a feature vector of more than 100
dimensions – a basis for a wide variety of ML algorithms.
Results: We evaluated FLIRT on the publicly available WESAD dataset, which focuses on stress detec-
tion with an Empatica E4 wearable. Preprocessing the data with FLIRT ensures that unintended noise
and artifacts are appropriately filtered. In the classification task, FLIRT outperforms the preprocessing
baseline of the original WESAD paper.
Conclusion: FLIRT provides functionalities beyond existing packages that can address unmet needs in
physiological data processing and feature generation: (a) integrated handling of common wearable file
formats (e.g., Empatica E4 archives), (b) robust preprocessing, and (c) standardized feature generation
that ensures reproducibility of results. Nevertheless, while FLIRT comes with a default configuration
to accommodate most situations, it offers a highly configurable interface for all of its implemented
algorithms to account for specific needs.

1. Introduction
The advances in wearable technologies and sensor qual-

ity have enabled researchers to increasingly use wearables
to passively sense and record physiological and behavioral
data signals in daily living conditions. Devices from a wide
range of manufacturers such as Empatica, Oura, Garmin, Fit-
bit, Lifecard, and Apple provide a variety of sensor streams
like electrocardiogram (ECG), heart rate variability (HRV),
and more recently, electrodermal activity (EDA). Results
have shown that it is feasible to build machine learning (ML)
models to detect and predict various health and behavioral
outcomes, like stress, hypoglycemia, cognitive engagement,
and COVID-19 onset (see for example [48, 46, 32, 52, 59]).
However, data from wearables are prone to noise, missing,
artifacts; and despite increasing interest in deploying such
wearables for long-term studies, there is not yet a standardized
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way to process its raw sensor data. Researchers often imple-
ment custom functionalities to preprocess, clean, normalize,
and compute features from these sensor signals, which results
in a lack of uniformity across studies, thus making it difficult
to compare the results from different studies. Further, the
lack of a standard processing pipeline makes it challenging
to reproduce or replicate the results achieved in a particular
study by researchers not involved in the original study, even
when the data is publicly available. Hence, one cannot quan-
titatively evaluate the benefit of a newMLmodel or approach
over previous models because it is unclear if the performance
improvement is due to the “better” model or a difference in
the data processing steps. Thus, the lack of standardization
is a significant challenge before realizing the true potential
of using wearables for continuous physiological signals.

In this work, we take a concrete step towards realizing a
tool that can deal with artifacts, measure gaps within the input
data to construct reliable digital biomarkers. Specifically, our
work outlines methods to reliably process physiological data
from wearable devices to provide standardized and meaning-
ful features for researchers to build their ML models. We
bundle these functionalities into a Python package, FLIRT:
A Feature Generation Toolkit for Wearable Data (Table 1).
FLIRT is a middleware between raw sensor data and ML
models that aims to provide a standardized way to generate
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Figure 1: Key functionalities provided by FLIRT.

physiological features from wearables (see Figure 1). Re-
searchers can then use these features to develop ML models
for healthcare applications such as digital biomarkers.

Table 1
FLIRT package metadata.

Metadata description

License MIT

Implementation Python 3.7+

Code repository https://github.com/im-ethz/flirt

Documentation https://flirt.readthedocs.io

PyPI installation pip install flirt

Our motivation to build such a tool stemmed from our
inability to effectively reproduce the results from a paper on
affect and stress detection using the authors’ publicly avail-
able data, even when trying to replicate the same ML model
as accurately as possible as detailed by the authors. In the
original paper, there are several crucial gaps in how the au-
thors processed their data, making it infeasible to replicate
results and compare if and how new ML models can lead
to better performance. Our work aims to prevent such sce-
narios in the future. Thus, we implemented several different
state-of-the-art processing methodologies and algorithms in
FLIRT, which are easily configurable through various param-
eters. We envision that in the future, researchers can share
their configurations for FLIRT, and succeeding works can
leverage those parameters to emulate the same processed data
and features, thus enabling evaluation of reproducibility and
replicability and also the test the effectiveness of new ML
models and methods compared to prior works in that domain.
Furthermore, we open-sourced FLIRT to encourage further
development with the power of many.

2. Related Work
Prior research has shown considerable progress in ap-

plying ML algorithms to physiological data to develop, for

example, novel digital biomarkers. According to their feature
generation, we classify these approaches into two categories.
The first category includes approaches where the ML models
themselves extract the features. As an example, consider the
end-to-end learning of one-dimensional convolutional neural
networks [52, 7, 60]. The second class subsumes approaches
that leverage explicit feature engineering, such as calculating
a pre-defined set of features on time segments of a physio-
logical recording [46, 59, 12]. Although the second class has
the advantage that interpretable features can be selected, it
requires an intensive effort to preprocess the physiological
data and select and compute the associated features.

To point out the contribution of FLIRT, we evaluated the
current state on Python packages for processing and generat-
ing physiological features. For this purpose, we first select
and evaluate packages specialized in processing physiologi-
cal.

Python packages include Neurokit2 [43], BioSPPy [66],
PyPhsyio [15], PySiology [21], HeartPy [23], HRV [11], hrv-
analysis [17], and pyHRV [25]. Packages such as Neurokit2
provide comprehensive pipelines to process any kinds of phys-
iological signals. However, these algorithms are usually tai-
lored to signals obtained by professional medical equipment.
In order to achieve robust results with data from wearables
applied in the wild, where artifacts frequently occur, such a
package is not the preferable choice. Other packages such as
hrv and hrv-analysis solely focus on retrieving HRV features,
while other signals such as EDA cannot be processed.

Additionally, we evaluate the packages mentioned above
according to their functionalities:

• File Reader: Manufacturers of wearables (e.g., Em-
patica) provide non-standardized though documented
file formats, which contain the desired physiological
data. Moreover, recordings of medical devices (e.g.,
ECG) are often exported in proprietary file formats
(e.g., Holter format). By directly processing propri-
etary file formats, such as zipped archives provided by
the Empatica E4 wearable, a package facilities easy
application.

• Preprocessing: Data recordings from commercial wear-
Föll et al.: Preprint submitted to Elsevier Page 2 of 14
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Table 2
Overview of Python packages for physiological data processing.

Package File
reader

Sliding
window

Pre-
processing ECG IBI EDA ACC

BioSPPy ✓ ✓ ✓

HeartPy ✓ ✓

HRV ✓ ✓ ✓

hrv-analysis ✓

Neurokit2 ✓ ✓ ✓ ✓

pyHRV ✓ ✓

PyPhysio ✓ ✓ ✓

PySiology ✓ ✓ ✓

FLIRT ✓ ✓ ✓ ✓ ✓ ✓ ✓
Electrocardiogram (ECG), inter-beat interval (IBI), electrodermal activity (EDA), and accelerometer (ACC).

able are often prone to artifacts, measuring gaps, or
deviations from the measurement regime [62, 40, 33].
Therefore, robust preprocessing to filter noise and arti-
facts to restore the original signal is crucial to retrieving
reliable results from data obtained in the wild.

• Signal modalities: Recent wearable technology in-
corporates a range of sensor modalities with signals
such as ECG, inter-beat interval (IBI), EDA, and ac-
celerometer (ACC). Thus, packages for physiological
data processing should be capable of dealing with data
from those sensors.

Table 2 compares the functionalities of all evaluated pack-
ages. While the presented selection of packages cover the
functionalities for specific parts of physiological data process-
ing, there is lack of a holistic solution. We bridge this gap by
providing a fully integrated package from reading proprietary
files to robust preprocessing for various wearable signals
specifically tailored to wearable device characteristics.

3. Computational Methods
Data recordings from wearables are often prone to arti-

facts, measuring gaps, or deviations from the measurement
regime [62, 40, 33]. Thus, robust preprocessing to generate
a clean signal are crucial to retrieve reliable ML-results from
data obtained by wearables. Furthermore, although selected
MLmodels can leverage raw signal data, the majority of avail-
able models does not do so. Thus, the user needs to manually
write code that segments the time-series into windows and
generate features per time window – difficult for researchers
with limited background in data science.

In summary, preparing physiological data, or in general
terms time series data, for ML models, comprises three steps:
(1) preprocessing, (2) generate customizable (overlapping)
sliding windows, and (3) feature engineering.

3.1. Cardiovascular Activity
Wearable devices often use photoplethysmography (PPG)

sensors to measure IBIs [4]. IBIs quantify the time distance
between two consecutive heart beats. Since raw PPG record-
ings from commercial wearables are only rarely accessible
(e.g., Empatica E4), we focus on processing the more readily
available IBI (or the normal-to-normal (NN) interval) data.
Using this IBI data, we calculate HRV measures, reflect-
ing the change between consecutive heart beats. Leveraging
(commercial) wearable devices to retrieve HRV measures
comes with inherent challenges such as artifacts or measure-
ment gaps [33, 14, 53]. Thus, we place special emphasis on
increasing the reliability of the measures in our HRV process-
ing pipeline. All steps are summarized in Figure 2.
3.1.1. Preprocessing and Window selection

Table 3
IBI artifact detection rules.
Rule Description

Malik [44] Each IBI should not differ more than 20
percent compared to the preceding IBI.

Kamarth [34] Each IBI should not increase or decrease
by more than 32.5 percent nor by more
than 24.5 percent from the previous in-
terval.

Acar [1] Removing IBIs that differ by more than
the 20 percent of the mean of the last
nine IBIs.

Karlsson [35] Removing IBIs that differ by more than
20 percent of the mean of the preceding
and succeeding IBI.

As a first preprocessing step we remove obvious arti-
facts within the IBI series. The automatic artifact removal
comprises four rules which are presented in Table 3. Ad-
ditionally, IBIs outside the physiological feasible range of
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Figure 2: IBI processing pipeline.

250––2000ms (equals a heart rate (HR) of 30––240) are dis-
carded as well [55]. The cleaned IBIs are then partitioned
into overlapping time windows for feature generation.

The IBI series can contain measuring gaps caused by
either discarded (ectopic) beats or heart beats not recog-
nized by the measurement device; a frequent case with wear-
ables [14, 33]. Handling missing data is an important step to
avoid otherwise negatively affected HRV measures [53, 50].
This error in HRV features drastically increases with the oc-
currence and length of measuring gaps [50, 41]. However,
applying interpolation methods to recover missing beats can
cause a significant proportion of errors in HRV features when-
ever measuring gaps occur [50]. In contrast to interpolation,
incomplete time windows can be discarded prior to HRV fea-
ture calculation to prevent overly inaccurate measures [44].
Thus, instead of accepting an arbitrary error in HRV mea-
sures, we increase the reliability of the HRV measure by
defining a threshold criterion for the removal of incomplete
windows.

We do not rely on a static threshold such as the minimum
number of sinus beats because it would imply two major
drawbacks. First, such approaches cannot be individualized
to single subjects and, second, they are not dynamically ad-
justing to temporal changes in the input signal (e.g., diurnal
changes in heart rates). Based on the idea of [14], we in-
troduce an adaptive threshold analysis method. We set an
adaptive threshold for a minimum number of detected beats
based on the expected number of beats per individual time
window. The expected number of beats is estimated via the
arithmetic mean over the detected heart beats within a time
window.

A time window t is not discarded if it satisfies the inequal-
ity ⌈

tℎresℎ ⋅
L

�IBIt

⌉
< Nt,

where L denotes the window length in seconds,Nt the num-
ber of detected valid beats in window t, �IBIt the mean IBI

of window t in seconds, and tℎresℎ ∈ [0, 1] the threshold,
which can be chosen arbitrarily based on the desired applica-
tion. In summary, the higher the threshold is set the higher
the required proportion of detected heart beats with respect
to the amount of expected beats.
3.1.2. Feature Engineering

Current research highlights three feature categories for
HRV: statistical, time-domain, and frequency-domain fea-
tures [44, 2, 61, 63, 68, 47]. In Table 4, we summarize all
features.

First, time-domain features represent the variability of
the IBIs over a time specific period. Additionally, we retrieve
the instantaneous heart rate from the IBIs and compute basic
time domain features. In case the wearable provides raw PPG
data, one can generate statistical features for the blood volume
pulse. In general, time-domain features are fast calculable
but provide less discriminant power to distinguish between
the two branches of the autonomic nervous system [2].

Second, frequency-domain features reflect the energy dis-
tribution over a range of frequencies. In particular, this class
of HRV measures better quantifies changes in the balance
between the sympathetic and parasympathetic autonomic
nervous system [2]. For frequency-domain HRV features,
we have to estimate the power spectral density (PSD) of the
partitioned IBI sequence [9]. Estimating PSD based on the
fast Fourier transform requires an interpolation method to
produce an artificial equally-sampled discrete time-series [9,
38, 58, 44]. Since interpolation can affect the power spec-
trum, and thus frequency-domain features [50], we rely on
the Lomb-Scargle method [42, 57]. This method is robust
against unequally-sampled time-series and has shown promis-
ing results in the context of HRV analysis [9, 49, 38].

Third, non-linear HRV features quantify the uncertainty
in the IBI sequence. We added them, since time- and feature-
domain cannot account for the entire complexity of the mech-
anisms regulating HRV [58].
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Table 4
HR and HRV features.
Category Name Description Unit

Statistical
min∕maxHR Minimum and maximum of the HR bpm

mean HR Mean of the HRi bpm

median HR Median of the HRi bpm

Time domain

SDNN SD of all NN intervals ms

RMSSD The square root of the mean of the sum of the squares of differences between adjacent
NN intervals

ms

NN50 Number of pairs of adjacent NN intervals differing by more than 50 ms in the entire
recording

ms

pNN50 NN50 count divided by the total number of all NN intervals %

NN20 Number of pairs of adjacent NN intervals differing by more than 20 ms in the entire
recording

-

pNN20 NN20 count divided by the total number of all NN intervals. %

CV NN Coefficient of variation equal to the ratio of SDNN divided by mean NN interval -

CV SD Coefficient of variation of successive differences equal to the RMSSD divided by mean
NN interval

-

mean Mean of the IBIs ms

std Standard deviation of the IBIs ms

min∕max Minimum and maximum of the IBIs ms

ptp Range (peak to peak) of the IBIs ms

sum Sum of the IBIs ms

energy Energy of the IBIs ms2

skewness Skewness of the IBIs -

kurtosis Kurtosis of the IBIs -

peaks Number of the IBIs -

rms Root mean square of the IBIs ms

line_integral Integral under the IBIs ms

n_above_mean Number of IBIs above the mean -

n_below_mean Number of IBIs below the mean -

n_sign_cℎanges Number of changes in the IBIs slope -

iqr Interquartile range between the 25th and 75th percentile of the IBIs ms

iqr 5 − 95 Interquartile range between the 5th and 95th percentile of the IBIs ms

pct 5 5th percentile of the IBIs -

pct 95 95th percentile of the IBIs -

entropy Entropy of the IBIs -

perm entropy Permutation entropy of the IBIs -

svd entropy Singular value decomposition of the IBIs entropy -

Frequency domain

total power The variance of NN intervals over the temporal segment below 0.04 Hz ms2

vlf Power in very low frequency range below or equal 0.04 Hz ms2

lf Power in low frequency range 0.04 Hz and 0.15 Hz ms2

ℎf Power in high frequency range 0.15 Hz and 0.4 Hz ms2

lf∕ℎf − ratio Ratio of LF to HF -

lfnu LF power in normalized units -

ℎfnu HF power in normalized units -
High frequency (HF), low frequency (LF), heart rate (HR), inter-beat interval (IBI), and normal-to-normal (NN) interval.

3.2. Electrodermal Activity
In this section, we present an electrodermal activity (EDA)

processing pipeline in order to retrieve reliable and standard-
ized EDA measures for ML applications. All steps are de-
picted in Figure 3.

3.2.1. Preprocessing EDA
We present two distinct categories of approaches. First,

two integrated approaches which comprises artifact removal
and noise filtering: (a) the extended Kalman filter (EKF)
and (b) the particle filter (PF). Second, a modular approach
which allows to combine low-pass filter and artifact detection
algorithms.
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Figure 3: EDA processing pipeline.

Kalman filter The Kalman filter is an integrated, model-
based approach for filtering data, which combines the data
measurements with a theoretical model of the signal to esti-
mate its true response. Our procedure implements the EKF
algorithm as it has shown reasonable results in removing
noise and artifacts from data gathered using wearables [67].

We estimate the state matrix as
x = [SCH , kdiff , SC0, SCR, S]T , (1)

where SCH is the hydration-dependent contribution to the
skin conductance (SC), SC0 is the baseline SC of the inert
skin, SCR denotes the skin conductance response (SCR),
kdiff is the inverse time constant of the sweat diffusion, and
the variable S denotes the sudomotor nerve activation.

The model equations found in [67] are discretized and the
non-linear system is then linearized around the last predicted
state in each time step. At each time step, the well-known
Kalman filter steps are performed: the prediction step (prior
update) and the measurement update (posterior update).

The final estimate of the SC signal is retrieved as SC =
SCH +SC0 +SCR. Initialization was conducted accordingto [67], with the mean vector as x0 = [0, 0, 0, 0, 0]T , and the
variance as

P0 =

⎡⎢⎢⎢⎢⎣

0.01 0 0 0 0
0 0.01 0 0 0
0 0 0.01 0 0
0 0 0 0.001 0.01
0 0 0 0.01 0.01

⎤
⎥⎥⎥⎥⎦
,

where we slightly modified the variance of SCH , kdiff , and
SC0. The intuition is that an over-idealizedmodel may hinder
the convergence of the extended Kalman filter specifically
when this filter is applied to real-world data.
Particle filter Similarly to the EKF, the PF is amodel-based
filtering algorithm. However, PF assumes in contrast to EKF
no normal distribution of state and noise random variables.
This allows the PF algorithm to be more widely applicable

to wearable signals and scenarios with highly non-Gaussian
noise.

We propose a PF algorithm based on the pyParticleEst
Python package [54]. The algorithm is based on a linear
process and measurement model:

xk+1 = xk + vk
zk = xk +wk,

(2)

where xk is the SC signal to estimate, zk is the EDA mea-
surement, vk is the process noise and wk is the measurement
noise, all at time k.

A specified number of particles are sampled from the ini-
tial state distribution to initialize the algorithm. Subsequently,
the particles are updated and propagated to the next time step
by first sampling from the prior distribution (the model) and
then from the posterior distribution (the measured SC signal).
Additionally, a smoothing algorithm is applied to re-weight
the particles, granting a larger contribution to the particles
that better represent the signal.
Low-pass filter The effect of measurement noise can be
attenuated by using a low-pass filter with the desired cut-off
frequency. In technical terms, a low-pass filter keeps only the
frequencies below a specified threshold. Low-pass filtering is
the traditional approach to automatically reduce noise in EDA
signals [56, 37, 22]. We leverage several infinite impulse
response filtering methods [69]. The cutoff frequency is set
below 0.5 Hz, since the SC signal is band limited to 0.5
Hz [5].

In contrast to the integrated approach, artifacts can be
detected and removed using ML algorithms as they have been
proven successful in automatically and accurately detecting
artifacts in EDA signals recordedwith wrist-worn devices [65,
72]. In FLIRT, researchers can choose from the following
two integrated, pre-trained models:
EDAexplorer Taylor et al. proposed this method, which de-
tects motion artifacts in the EDA raw data by classifying each
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consecutive five second epoch into artifact, questionable, or
clean. The classification is performed using a support vec-
tor machine on features computed on the raw and low-pass
filtered EDA data (for more detailed information see [65]
or [64]).
Ideas-Lab UT Further, we include a second method [72]
that detects motion artifacts in the raw EDA signal by clas-
sifying each consecutive five second epoch into artifact or
clean. The classification is performed using an logistic regres-
sion (LR) model on features computed on the raw EDA data.
The artifact detector was trained on available labeled data,
partially recorded in a controlled environment and partially
in-the-wild (for more detailed information see [72]).

These methods can be optionally enabled to optimize the
outcome of EDA preprocessing. The methods’ performance
in detecting artifacts, however, may depend on the particular
use case itself. In both cases, the artifacts are marked and the
resulting gap in the raw EDA signal is linearly interpolated.
3.2.2. Decomposition

The EDA signal consists of two SC components: skin con-
ductance response (SCR) and skin conductance level (SCL)
or in other words, the phasic and tonic component, respec-
tively. Several decomposition algorithms for both compo-
nents have been implemented in the literature [26, 8, 13, 29,
6]. Below we elaborate on two algorithms for EDA signal
decomposition that are included in FLIRT because of their
wide adoption, cvxEDA [26] and Ledalab [13].
cvxEDA The basic principle of cvxEDA is to model the
EDA signal as the sum of a SCR term, a SCL term, and
additive white Gaussian noise [26]. The algorithm then de-
termines the SCR and SCL components that maximize the
likelihood of observing a specific SC time-series. The con-
vex optimization problem is rewritten as a standard quadratic
program, which can be solved efficiently.
Ledalab The alternative Ledalab was chosen because it re-
quires no parameters other than the data itself and therefore
can be generalized to all situations, without the need for ad-
ditional parameter fine-tuning [13]. The key concept of the
Ledalab algorithm is to model the SC signal as a sum of a
SCR and SCL driver, convolved with an impulse response.
This impulse response is modeled using the Bateman equa-
tion with parameters �1 and �2 (to be optimized).

In presence of physiologically incoherent (nerve firing
cannot be negative) data, the SCR and SCL components
can be further filtered using a low-pass Butterworth filter to
remove negative SCR and SCL values.
3.2.3. Feature Engineering

FLIRT computes general statistical and entropy features
on both the SCR and SCL components for each window.
Time domain features were chosen since they best describe
the SCR and SCL signals recorded from wearable devices,
as suggested by [28, 24]. In contrast, frequency domain fea-
tures of the EDA were proven to provide additional valuable

information about the transient behaviour of the sudomo-
tor activity [24, 3]. The benefits of time-frequency domain
features is that they capture the oscillatory behavior of the
sudomotor response. Therefore, this class of features can
provide information to detect and distinguish health condi-
tions [24].

In order to calculate time-frequency domain features, the
Cepstrum signal C is estimated by [24]:

C = IFT (log|FT (X)|), (3)
whereX is the signal of interest, FT is Fourier Transform and
IFT is the inverse Fourier Transform. We are interested in
the real part of C , which gives us the required Mel-Frequency
Cepstrum Components as a basis of our features.

Peak features are computed only on the SCR component
of each window. Table 6 shows a description of the calculated
peak features. We chose the best performing peak detection
algorithms out of [65, 43, 51, 27, 36] and implemented them
in FLIRT: the EDAexplorer algorithm [65, 64] and the algo-
rithm implemented in NeuroKit2 [43].

The EDAexplorer peak detection algorithm determines
the presence of a peak based on several criteria related to a
typical SCR peak morphology such as the signal’s rate of
change, maximum allowed rise time, and decay time. The
Neurokit peak detection algorithm is based on the SciPy [69]
Python package peak detection function. It refines its peak
search by specifying constraints based on the peaks derivative
and on the density of peaks within a time-window.

Table 5 outlines the main parameters and their default
values that can be individualized by the user. A detailed
description of all calculated features is presented in Table 6.

Table 5
Overview of parameters for EDA preprocessing. Cor-
responding default parameter values are indicated in
parentheses.
Algorithm Available main parameter
Low-pass filter [69] cutoff (1e-1), filter (’butter’)

EKF [67] d_min (5e-3) d_max (5e-1), min_diff (1e-3),
max_diff (1e-1), min_Savi_Go (-3e-2),
max_Savi_Go (3e-2)

PF [54] num_particles (80), P0_variance (2-e2),
Q_variance (2e-2), R_variance (6e-2)

EDAexplorer[65] –

Ideas-Lab UT[72] –

cvxEDA [26] delta_knot (15), cvx_alpha (8e-3), gamma

(1e-3)

Ledalab [13] optimization (0)

EDAexplorer peaks [65] threshold (1e-2)

Neurokit peaks [43] amplitude_min (3e-2)

3.3. Accelerometer Data
In addition to sensors that passively record physiological

data, commercial wearables also have an embedded accel-
eration sensor. In most cases a three-axis ACC is utilized,
measuring accelerations in the x-, y-, and z-axis. ACC data
has been utilized for ML-based tasks such as human activity
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Table 6
EDA features.
Category Name Description Unit

Time domain

mean Mean of the SCR and SCL �S

std Standard deviation of the SCR and SCL �S

min∕max Minimum and maximum of the SCR and SCL �S

ptp Range (peak to peak) of SCR and SCL within a time interval �S

sum Sum of the SCR and SCL values with a time interval �S

energy Energy of the SCR and SCL �S2

skewness Skewness of the SCR and SCL -

kurtosis Kurtosis of the SCR and SCL -

peaks Number of SCR and SCL peaks with a time interval -

rms Root mean square of the SCR and SCL �S

line_integral Integral under the SCR and SCL curve �S.s

n_above_mean Number of SCR and SCL data-points above the mean -

n_below_mean Number of SCR and SCL data-points below the mean -

n_sign_cℎanges Number of changes in the SCR and SCL slope -

iqr Interquartile range between the 25th and 75th percentile of the SCR and SCL �S

iqr_5 − 95 Interquartile range between the 5th and 95th percentile of the SCR and SCL �S

pct_5 5th percentile of the SCR and SCL -

pct_95 95th percentile of the SCR and SCL -

entropy Entropy of the SCR and SCL -

perm_entropy Permutation entropy of the SCR and SCL -

svd_entropy Singular value decomposition of the SCR and SCL entropy -

Frequency
domain

sma Signal magnitude area of the frequency domain SCR and SCL �S

energy Energy of the frequency domain SCR and SCL �S2

kurtosis Kurtosis of the frequency domain SCR and SCL -

iqr Interquartile range of the frequency domain SCR and SCL �S∕Hz

spectral_power 5 spectral power magnitudes in the [0.05-0.55] Hz bands for the power density of the
SCR and SCL

�S2.Hz

var_power Variance of the SCR and SCL spectral power �S2

Time-frequency
domain

mean Mean of the SCR’s and SCL’s MFC signal �S

std Mean of the SCR’s and SCL’s MFC signal �S

median Median of the SCR’s and SCL’s MFC signal �S

iqr Interquartile range of the SCR’s and SCL’s MFC signal �S

skewness Skewness of the SCR’s and SCL’s MFC signal -

kurtosis Kurtosis of the SCR’s and SCL’s MFC signal -

SCR
time-domain
features

peaks Number of SCR peaks -

rise_time Mean of the SCR peaks rise time s

max_deriv Mean value of the maximum derivative of the SCR peaks �S∕s

amp Mean amplitude of the SCR peaks �S

decay_time Mean of the SCR peaks decay time s

scr_widtℎ Mean width of the SCR peaks s

auc_mean Mean area-under-curves of the SCR peaks �S.s

auc_sum Sum of the area-under-curves of the SCR peak �S.s
Mel-Frequency Cepstrum (MFC), skin conductance level (SCL), and skin conductance response (SCR).

recognition or inferring physical activity intensity [16, 71].
Even physiological features calculated from wearable sensors
such as HRV can be improved by taking into account ACC
information [18, 45].

3.3.1. Preprocessing ACC
As outlined in prior work, filtering ACC data is an im-

portant step to reduce noise in the recordings. Although the
number of ways to filter the signal is many, there is a consen-
sus in applying low-pass filters [70, 20, 30]. As suggested by
Fridolfsson et al., we set the default cut-off frequency to 10
Hz.
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Figure 4: ACC processing pipeline.

3.3.2. Feature Engineering
For ACC, FLIRT provides an additional generic set of

features consisting of time domain, frequency domain, and
time-frequency domain features [59, 31, 39, 10]. We calcu-
late this set of features on the filtered ACC data. Following
the idea of [59], we computed the set of features for each
ACC axis and additionally on the l2-norm of these three axes.
Table 7 summarizes those features. Note that for the spec-
tral power features we chose the ranges according to Huynh
et al. and estimated the Cepstrum signal with Equation 3.
In addition, the generic set of statistical features applied to
ACC could as well be leveraged for other sensor data such as
temperature readings.

4. Software Description
FLIRT is implemented in Python and supports Python 3

with versions 3.7 and above. The package structure is shown
in Table 8.

We provide an extensive documentation of the application
programmer interface (API) via the popular Sphyinx Python
documentation tool. It translates source-code documentation
markup into pretty, human-readable documentation. Fur-
thermore, the API documentation can easily be extended by
custom pages like articles. The documentation artifact is
provided on the public readthedocs2 service.

To facilitate fast and easy installation, we provide FLIRT
via PyPI and it can easily be installed to Python environments
via pip install flirt.

In its core, FLIRT uses parallelization wherever possible
and allows for multi-threaded execution. Specifically, FLIRT
by default uses parallel multi-core processing for the feature
generation loops. Since the feature calculation process for
each time window does not depend on information from other
time windows, the sequence of execution is irrelevant and
thus can be parallelized and executed in an arbitrary order.
Furthermore, when working with complex signal decom-

2https://flirt.readthedocs.io

position methods, we rely on already existing, vectorized
implementations out of NumPy and SciPy [69].

5. Results and Discussion
The objective of this section is to validate reproducible

sets of features provided by FLIRT. For this purpose, we rely
on the publicly available Wearable Stress and Affect Detec-
tion (WESAD) dataset and its classification performance as
baseline [59]. WESAD contains wearable sensor data from
15 participants going through task-induced emotions. During
the study, an Empatica E4 and a RespiBan sensor were used
to record the physiological response to the emotions relax-
ation, amusement, and stress. The Empatica E4 in particular
is an established device whose data has been used in a variety
of published studies and articles [19]. Since the WESAD
dataset defines a clear ML-task and baseline as well as uses
a widely established wearable, we will rely on this publicly
available dataset for validation.

Our validation follows the original WESAD paper. Nev-
ertheless, we found that reproducibility of their features was
limited due to incomplete information about the algorithms
as well as a lack of publicly available code. Therefore, we
use the results from the original paper as baseline. Second,
we calculated all features uniformly over a 60 seconds time
window,3 with a sliding window shift of 1/4 seconds, and
assigned the corresponding emotion label to each window.
For the classification task, we compare four ML models from
the original WESAD paper (Random forest (RF), AdaBoost
(AB), decision tree (DT), and linear discriminant analysis
(LDA)). Our objective is to compare the feature generation
between FLIRT and WESAD in particular. Although emo-
tion recognition is a challenging task and might require more
complex ML models, we aim to be comparable to the ML
pipeline presented in the original WESAD paper, and thus
we used the same models, parameters, and implementations.

3In general, WESAD uses 60 seconds as well, however, the authors
change the window length for ACC to 5 seconds.
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Table 7
ACC features.
Category Name Description Unit

Time domain

mean Mean of the ACC signal g

std Standard deviation of the ACC signal g

min∕max Minimum and maximum of the ACC signal g

ptp Range (peak to peak) of the ACC signal g

sum Sum of the ACC signal g

energy Energy of the ACC signal g2

skewness Skewness of the ACC signal -

kurtosis Kurtosis of the ACC signal -

peaks Number of the ACC signal -

rms Root mean square of the ACC signal g

line_integral Integral under the ACC signal g

n_above_mean Number of ACC signal above the mean -

n_below_mean Number of ACC signal below the mean -

n_sign_cℎanges Number of changes in the ACC signal slope -

iqr Interquartile range between the 25th and 75th percentile of the ACC signal g

iqr_5 − 95 Interquantile range between the 5th and 95th percentile of the ACC signal g

pct_5 5th percentile of the ACC signal -

pct_95 95th percentile of the ACC signal -

entropy Entropy of the ACC signal -

perm_entropy Permutation entropy of the ACC signal -

svd_entropy Singular value decomposition of the ACC signal entropy -

Frequency
domain

sma Signal magnitude area of the frequency domain ACC signal g

energy Energy of the frequency domain ACC signal g2

kurtosis Kurtosis of the frequency domain ACC signal -

iqr Interquartile range of the frequency domain ACC signal g∕Hz

spectral_power 3 spectral power magnitudes in the [1-5.5] Hz bands for the power density of the ACC
signal

g2.Hz

var_power Variance of the ACC signal spectral power g2

Time-frequency
domain

mean Mean of the ACC signal’s MFC signal g

std Mean of the ACC signal’s MFC signal g

median Median of the ACC signal’s MFC signal g

iqr Interquartile range of the ACC signal’s MFC signal g

skewness Skewness of the ACC signal’s MFC signal -

kurtosis Kurtosis of the ACC signal’s MFC signal -
Accelerometer (ACC) and gravitational force equivalent (g).

We report classification with the macro F1-score based on a
leave-one-subject-out cross-validation to assess model gener-
alization capabilities to unseen subjects. We summarize the
results in Table 9.

In general, FLIRT offers many ways to combine algo-
rithms for feature calculation. In this section, we evaluate the
basic data processing options from which the user can choose.
In the case of HRV, the F1-score increases by 2.87 pp for the
overall best performing RF model based on FLIRT’s default
HRV features without window selection (i.e., threshold = 0).
For the EDA modality, the integrated EDA pipeline yields an
overall improvement of 2.9 pp based on the LDA model. Fi-
nally, the ACC features achieve an improvement of 10.05 pp
for the LDA model. Although we used the same ML model
hyperparameters as the original WESAD paper, where the
parameters were tuned to their feature sets, we achieve overall

better results than the WESAD baseline.
For the ACC features, we included FLIRT without fil-

tering ACC data as presented in [59]. It is noticeable that
ACC features achieve strong improvements compared to the
baseline. We see two reasons for this improved performance.
First, FLIRT calculates significantly more features than WE-
SAD (92 vs. 19). Second, emotions in WESAD are task-
induced, e.g., stress from public speaking and amusement
from watching a video. Therefore, it seems reasonable that
our large set of ACC features simply captures the emotion-
specific task (sitting vs. gesticulating) rather than the induced
emotion. However, there is a high likelihood that even the
original WESAD-based ACC classifications makes use of
this Clever Hans strategy. In essence, the WESAD setting
suggests to avoid the use of ACC features and we only include
this analysis to maintain full comparability to WESAD.
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Table 8
FLIRT software sub-packages.

Sub-package Description

flirt Provides access to most com-
mon functions (get_eda_features,
get_hrv_features, get_acc_features).

flirt.reader Provides implementations to read com-
mon file formats such as Empatica E4
(flirt.reader.empatica) or Holter devices
(flirt.reader.holter).

flirt.with_ Convenience sub-package to provide
functions for commonly used meth-
ods. For example, for a ready Empat-
ica E4 zip archive a function call to
flirt.with_.empatica(’E4.zip’) will auto-
matically parse all available data and
generate features.

flirt.eda Provides access to low-level feature func-
tions for processing EDA data.

flirt.hrv Provides access to low-level feature func-
tions for processing HRV data.

flirt.acc Provides access to low-level feature func-
tions for processing ACC data.

flirt.stats Provides access to a standard set of sta-
tistical aggregation functions which will
generate features in a window-based ap-
proach for arbitrary time-series data.

6. Conclusion
In this paper, we presented FLIRT: A Feature Generation

Toolkit for Wearable Data, a Python package that focuses
explicitly on standardized processing of physiological data
from commercial wearables, from data cleaning to feature
extraction. FLIRT supports researchers to leverage rich sens-
ing data (HRV, EDA, ACC) obtained by wearables to build
ML models for various health and behavioral outcome detec-
tions. Instead of writing custom code to preprocess, clean,
and compute features, which results in a lack of uniformity
across studies, FLIRT helps researchers to create fast and
reproducible results across disciplines and applications with
state-of-the-art methods.

However, we tested FLIRT on a publicly available dataset
based on which we demonstrated an increase in classification
performance. Whether this increase can be achieved in other
applications remains to be seen. However, note that FLIRT
enables the reproducibility of the results and contributes to
research in this area. Last, applying FLIRT can inherit a chal-
lenge that is choosing the parameters of FLIRT. Although
we included default parameters tailored to supported wear-
ables (e.g., Empatica E4), the user must manually tune these
parameters for yet unsupported wearables.

Soon, we look forward to extending the capabilities of
FLIRT, and welcome the community to this open-source
project. Future directions include a detailed performance

comparison to related Python packages, incorporating differ-
ent commercial wearable devices (e.g., Apple Watch), and
increasing the functionalities with improved algorithms and
feature selection capabilities.
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