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ABSTRACT
Recognizing the emotions of the elderly is important as it could
give an insight into their mental health. Emotion recognition sys-
tems that work well on the elderly could be used to assess their
emotions in places such as nursing homes and could inform the de-
velopment of various activities and interventions to improve their
mental health. However, several emotion recognition systems are
developed using data from younger adults. In this work, we train
machine learning models to recognize the emotions of elderly indi-
viduals via performing a 3-class classification of valence and arousal
as part of the INTERSPEECH 2020 Computational Paralinguistics
Challenge (COMPARE). We used speech data from 87 participants
who gave spontaneous personal narratives. We leveraged a transfer
learning approach in which we used pretrained CNN and BERT
models to extract acoustic and linguistic features respectively and
fed them into separate machine learning models. Also, we fused
these twomodalities in amultimodal approach. Our best model used
a linguistic approach and outperformed the official competition
of unweighted average recall (UAR) baseline for valence by 8.8%
and the mean of valence and arousal by 3.2%. We also showed that
feature engineering is not necessary as transfer learning without
fine-tuning performs as well or better and could be leveraged for the
task of recognizing the emotions of elderly individuals. This work
is a step towards better recognition of the emotions of the elderly
which could eventually inform the development of interventions
to manage their mental health.

CCS CONCEPTS
• Applied computing → Psychology.
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1 INTRODUCTION
Digital technologies are needed to aid in managing the physical
and emotional well-being of elderly individuals [24]. Awareness of
the emotions of the elderly could give an insight into their mental
health. Emotion recognition systems that work well on the elderly
could be used to assess their emotions in places such as nursing
homes and could inform the development of various activities and
interventions to improve their mental health. However, several emo-
tion recognition works use data collected from actors and younger
adults for their development and evaluation (e.g. IEMOCAP dataset
[3]). In this work, we develop and evaluate emotion recognition
models using the first public speech data collected from elderly
individuals in the real world for emotion recognition as part of
the INTERSPEECH 2020 Computational Paralinguistics Challenge
(COMPARE) [26]. The task was to perform a 3-class classification
of the arousal and valence dimensions of emotions based on speech
data from elderly individuals.

Deep learning has been used for speech emotion recognition in-
volving various approaches such as convolutional neural networks
(CNN), Recurrent Neural Networks (RNN) such as Long Short-Term
Memory (LSTM) — with and without attention — bidirectional
LSTM (BLSTM), mostly together with handcrafted features ([17]).
Other approaches have used the raw signal in an end-to-end ap-
proach leveraging 1D CNNs and LSTMs [29]. Transfer learning is
another approach used in deep learning to circumvent the need to
develop hand-crafted features and also deals with the challenge off
small labeled datasets. Transfer learning entails pretraining a model
on a different but related task and using it for feature extraction or
fine-tuning in which the whole model or later layers are retrained
([7]). Transfer learning has shown success in various fields such
as computer vision ([13, 16]), speech processing ([15]), and natural
language processing ([12, 23]). Transfer learning has also been used
in emotion recognition tasks ([7, 14, 25]).

Our contribution is the evaluation of transfer learning approaches
to recognize the emotions of elderly individuals using a novel
dataset — speech data collected from German-speaking elderly in-
dividuals. Specifically, we used a pretrained CNN model to extract
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Figure 1: Overview of Acoustic, Linguistic and Multimodal
Approaches

acoustic features and a pretrained Transformer language model —
Bidirectional Encoder Representations from Transformers (BERT)
[6] — to extract linguistic features. We trained and evaluated sepa-
rate models for acoustic and linguistic modalities. Also, we used a
multimodal approach in which we fused the features (early fusion)
and trained models using the combined features [20].

The rest of our paper is organized as follows. In Section 2, we de-
scribe our methodology. In Section 3, we describe our experiments.
In Section 4, we show the results, discuss them and present future
work. We conclude in Section 5.

2 METHODS
In this section, we describe the dataset, the competition baseline
approaches, and our acoustic, linguistic, andmultimodal approaches
as shown in Figure 1.

2.1 Dataset
We used the Ulm State of mind elderly (USOMS-e) database col-
lected from German-speaking elderly individuals [26]. The dataset
contains speech data of 87 participants (55 f, 32 m, age 60–95 years,
mean 71.01 years, std. dev. 9.14 years), each of whom told two neg-
ative and one positive personal narrative. Participants’ emotions
were assessed post every narrative by the subject and later by 4
experts on a scale of 0 (very sleepy and very bad) to 10 (very ex-
cited and very good) for the "arousal" and "valence" dimensions
respectively. The audio data was converted to 16 KHz mono and
was segmented into 5-sec chunks. The audio was also transcribed
manually and automatically. The mean values of each dimension
were used to create 3 classes: low (0-6), medium (7-8), and high
(9-10).

2.2 Competition Baseline Approach
The organizers of the competition used various approaches to gener-
ate the baseline results for the competition such as feature engineer-
ing, transfer learning, unsupervised learning and end-to-end learn-
ing [26]. For feature engineering, they used the openSMILE toolkit
to extract 6373 static features (functionals), and the OPENXBOW

toolkit to extract Bag of Audio Words (BoAW) features. For transfer
learning, they used the DEEP SPECTRUM toolkit which used a
pretrained CNN (ResNet50) to extract embeddings from the spec-
trograms of the audio. They also used the LinguistIc Feature Ex-
tractor (LIFE) toolkit to extract linguistic embeddings which used
a BERT model that was pretrained on German text followed by
Global Maximum pooling or bidirectional LSTM with attention.
For unsupervised learning, they used the AUDEEP toolkit which
used recurrent sequence-to-sequence autoencoders to learn repre-
sentations of mel-spectrograms of the audio in an unsupervised
manner. These different feature sets were then fed into separate
linear support vector machines with different hyperparameters.

2.3 Acoustic Approach
We used the acoustic characteristics of the audio to perform classi-
fication. We extracted spectrograms and used a pretrained CNN to
compute embeddings which we used as acoustic features to perform
classification with various machine learning models (Figure 1). We
used the YAMNet model which is a CNN that was pretrained on the
AudioSet dataset to predict 521 audio event classes [8, 9]. YAMNet
is based on the MobileNet architecture [11]. We used the YAMNet
model as a feature extractor and hence replaced the original final lo-
gistic layer which outputs 521 class with various machine learning
algorithms.

We extracted a spectrogram as an input into the YAMNet model
in the same way as was done for the trained model. The audio is
downsampled from 44.1Kz to 16 kHz mono. A spectrogram is com-
puted using magnitudes of the Short-Time Fourier Transform with
a window size of 25 ms, a window hop of 10 ms, and a periodic Hann
window. A mel spectrogram is computed by mapping the spectro-
gram to 64 mel bins covering the range 125-7500 Hz. A stabilized log
mel spectrogram is computed by applying log(mel-spectrum + 0.01)
where the offset is used to avoid taking a logarithm of zero. These
features are then framed into non-overlapping examples of 0.96
seconds, where each example covers 64 mel bands and 96 frames
of 10 ms each. This resulted in a 2D data of size 96 x 64 for each
second, which we used as a data point input to the YAMNet model.
The output of the model is a 1024-dimensional feature vector per
data point input of size 96 x 64. We then normalized the feature
vectors to be zero mean and unit variance and then used them as
inputs to various machine learning models.

2.4 Linguistic Approach
We used the content of the speech — the manual transcript — to
perform classification. Specifically, we used pretrained Transformer
language models to extract linguistic features and then performed
classification with various models (Figure 1). We used a pretrained
BERT model to extract a 768-dimensional embedding vector for
each narrative [6]. BERT is a deep learning model that has achieved
state-of-the-art results for several natural language tasks. The BERT
model we used is a case sensitive German BERT that was trained
using a German Wikipedia dump, the OpenLegalData dump, and
news articles [2]. We preprocessed each story’s transcript by first
tokenizing each word and ensuring that the total number of tokens
was less than or equal to the 512 maximum that the BERT model
takes. Hence, we ignored subsequent words in each story which was

ICMI 2020 Late Breaking Results  ICMI '20 Companion, October 25–29, 2020, Virtual Event, Netherlands

13



Table 1: Results for Competition Baseline Approaches and
our Acoustic, Linguistic, and Multimodal Approaches

Model Dev (UAR %) Test (UAR %)
Val Arous Val Arous

Competition Baseline Approach
Functionals + SVM 33.3 39.1 33.3 47.9
BoAW + SVM 33.3 40.5 31.5 49.1
Autoencoder + SVM 36.7 34.9 33.8 44.3
ResNet50 + SVM 31.6 35.0 40.3 50.4
BERT + LSTM + SVM 49.2 40.6 49.0 44.0

Acoustic Approach
YAMNet + SVM 44.3 43.9 34.7 43.9
YAMNet + LSTM 37 40.2 — 47.9

Linguistic Approach
BERT + SVM 51.1 45.7 56.3 48
SBERT + SVM 57.42 30.33 57.8 —

Multimodal Approach
Fusion + SVM 49 43.8 52.3 47.4

over 512 length. We added special tokens for sentence classification
(such as [CLS] at the first position). After passing each story into the
model, we took the 768-dimensional embedding vector of the first
token [CLS] of the last hidden layer and used that as the embedding
for the whole story. We then normalized the vectors to be zero mean
and unit variance and then used the features vectors as inputs to
various machine learning models.

We also used Sentence BERT (SBERT), a modification of the
BERT architecture with siamese and triplet network structures for
generating sentence embeddings such that semantically similar
sentences are close in vector space [21]. The SBERT network was
shown to outperform state-of-the-art sentence embedding methods
such as BERT and Universal Sentence Encoder for semantic simi-
larity and sentence classification tasks such as sentiment detection.
We used the multilingual version of the SBERT model [22]. The
network, like the original BERT outputs a 768-dimensional embed-
ding for each story. We normalized the vectors to be zero mean and
unit variance and then used the feature vectors as inputs to various
machine learning models.

2.5 Multimodal Approach
We also explored using a multimodal approach in which we fused
aspects of the acoustic and linguistic modalities because multimodal
approaches have been shown to outperform unimodal approaches
in emotion recognition tasks [20]. Specifically, we fused the feature
vectors from the acoustic and linguistic approaches producing a
1792-dimensional feature vector for each story (Figure 1). Since
there were several acoustic feature vectors for each story, we per-
formed a weighted sum of the acoustic feature vectors for each
story. We then normalized the vectors to be zero mean and unit
variance and then used these fused vectors as inputs to various
machine learning models.

Figure 2: Confusion matrix for development set evaluation
for the best model for valence — SBERT + SVM: 57.4%

3 EXPERIMENTS
We performed various experiments using the following libraries
scikit-learn [19], keras [5], and PyTorch [18]. We trained models
separately for valence and arousal, and used a hyperparameter
search to get models that produced the best results. We used a
linear support vector machine (SVM), and a 2-layer LSTM [10] with
16 and 8 units, and 50% dropout [27] after each layer. We used the
LSTM model for the acoustic approach to take advantage of the
sequential nature of the acoustic embeddings. Also, for the acoustic
approach, we used majority voting of the classification of the 5-sec
audio chunks to decide the class for each story. For evaluation, we
used the metric unweighted average recall (UAR) which is used for
unbalanced data and confusion matrices.

Given that the data is imbalanced, we upsampled the minority
classes so the data was balanced using the SMOTE algorithm [28]
and imblearn library [1]. We used the train and development data
sets provided by the competition organizers for developing the
model. The organizers had a held-out test whose labels were not
made available to researchers. We had to submit our predictions
on the held-out test which was evaluated by the organizers, and
the prediction result sent to us. Also, we had a constraint of five
submissions on the held-out test set and hence we used only our
best models for those submissions. The official competition baseline
was based on the performance on the held-out test set.

4 RESULTS, DISCUSSION AND FUTURE
WORK

Wepresent the results for the competition baseline, and our acoustic,
linguistic, and multimodal approaches in Table 1 where a "—" means
that the model was not used for the held-out test. The best results
for the competition baseline and our approaches in the valence
and arousal columns are highlighted in bold. Also, we show the
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Figure 3: Confusion matrix for development set evaluation
for the best model for arousal: BERT + SVM: 45.7%

confusion matrices of the best models in Figure 2 (valence) and 3
(arousal).

The competition organizers’ best methods which produced the
results that were used as the official competition baseline results
were the DEEP SPECTRUM (ResNet50 + SVM) for acoustic (50.4%)
and LIFE (BERT + LSTM + SVM) for valence (49.0%) and an average
of valence and arousal of 49.7%.

Among our approaches, the linguistic models performed the best
for both valence and arousal, with the multimodal model being the
second best for valence and the acoustic model being the second
best for arousal. Our best model for valence was SBERT + SVM
with a UAR of 57.8% and the best model for arousal is BERT + SVM
with UAR of 48% and an overall mean UAR of valence and arousal
being 52.9%. Our best models outperformed the official baseline
(using the held-out test set) for valence by 8.8% and the mean of
valence and arousal by 3.2%. Our best arousal model is however
below the official arousal baseline by 2.4%. Our acoustic models
not performing better than the baseline suggests that using the
pretrained YAMNet model as feature extractor is not adequate.
Hence, fine-tuning the model additionally or pretraining the model
on a related emotion recognition task might be necessary for good
performance.

The linguistic model performing better than the acoustic model
is consistent with the results of other works such as an emotion
recognition task among real-world couples whose best recognition
result for a 3-class classification of valence was 57.42% (UAR) [4]. A
possible explanation is that we used the manual transcript which
is a perfect representation of the narratives which the linguistic
model used as compared to the acoustic models which worked on
raw, noisy, audio data. The model might have performed poorly
with the automatic transcript but we did not evaluate that as we
used only the best model for evaluation. Also, the SBERT model

performed better than the regular BERT model for valence. This
result is consistent with [21] which showed that SBERT extracts
better sentence embeddings than BERT for sentiment detection
tasks.

The multimodal model surprising did not perform the best con-
sidering multimodal approaches have been shown to perform better
than unimodal approaches. This performance is however consistent
with the result of [4]. It is possible that the limitations of the acoustic
features affected the multimodal results since we performed feature-
level fusion. Exploring other forms of fusion like decision-level and
hybrid may improve the results of the multimodal approach.

Our transfer learning approaches performed as well or better
than the competition baseline approaches that used feature engi-
neering (static features and BoAW). These results show that feature
engineering is not necessary to get good emotion classification
results for real-world speech data from older adults. This work
focused on using pretrained models as feature extractors. Hence,
we did not fine-tune the pretrained YAMNet and BERT models on
this data. Doing so in the future could improve the recognition
results.

Finally, this work is a key step towards recognizing the emotions
of elderly individuals in daily life. We have collected speech and
video data with self-reported emotion labels fromGerman-speaking
elderly individuals in their daily life after they underwent inpatient
cardiovascular rehabilitation. Our future work will build upon this
work and explore emotion recognition within that unique context.

5 CONCLUSIONS
In this work, we used a transfer learning approach to classify low,
medium, and high emotion labels of the valence and arousal di-
mension of audio data collected from German-speaking elderly
individuals. We used pretrained CNN and BERT models to extract
acoustic and linguistic features respectively and fed them into sep-
arate machine learning models. Additionally, we fused the features
in a multimodal approach and fed them to machine learning mod-
els. Our models using a linguistic approach performed better than
the official competition baseline for the valence recognition task
by 8.8%. Also, our results showed that feature engineering is not
necessary and transfer learning can be leveraged to produce decent
performance for the task of recognizing the emotions of elderly
individuals. This work is a step towards better recognition of the
emotions of the elderly which could eventually inform the develop-
ment of interventions to manage their mental health.
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