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ABSTRACT
Researchers are interested in understanding the emotions of cou-
ples as it relates to relationship quality and dyadic management of
chronic diseases. Currently, the process of assessing emotions is
manual, time-intensive, and costly. Despite the existence of works
on emotion recognition among couples, there exists no ubiquitous
system that recognizes the emotions of couples in everyday life
while addressing the complexity of dyadic interactions such as turn-
taking in couples’ conversations. In this work, we seek to develop
a smartwatch-based system that leverages multimodal sensor data
to recognize each partner’s emotions in daily life. We are collect-
ing data from couples in the lab and in the field and we plan to
use the data to develop multimodal machine learning models for
emotion recognition. Then, we plan to implement the best models
in a smartwatch app and evaluate its performance in real-time and
everyday life through another field study. Such a system could en-
able research both in the lab (e.g. couple therapy) or in daily life
(assessment of chronic disease management or relationship qual-
ity) and enable interventions to improve the emotional well-being,
relationship quality, and chronic disease management of couples.

CCS CONCEPTS
•Applied computing→ Psychology; •Human-centered com-
puting → Ubiquitous and mobile computing systems and
tools.
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1 INTRODUCTION
Romantic relationships have powerful effects on people’s mental
and physical health (see e.g. [68] for an overview). For instance, con-
flicts and negative qualities of one’s intimate relationship are asso-
ciated prospectively with morbidity and mortality [50]. Researchers
are working towards understanding the emotional processes that
take place in intimate relationships as underlying mechanisms for
this relationship-health link (e.g. [33, 77]). Also, researchers are
interested in assessing couples’ emotions as they are affected in
couples’ dyadic management of chronic diseases [51] and they
are predictors of relationship quality [37]. For example, spousal
support in chronic disease management has been shown to have
positive or negative effects on emotional well-being [15, 42, 63].
Also, emotions that couples experience during a conflict predict
if these couples stay together in the long-term (for an overview,
see [37]), and couples heading for break-up show more negative
emotions and less positive emotions than happy couples, and are
stuck in certain emotional patterns [19, 36].

However, assessing these emotions in couples is challenging.
Two approaches are used for emotion assessment: self-report and
observer reports. For self-reports, couples are asked to have emo-
tionally charged conversation that is videotaped (e.g. in the lab)
and then afterward, they provide emotion ratings while watching
the videos [67]. These ratings could be biased and may not reflect
the partner’s actual emotion. In the case of daily life, couples are
periodically asked to complete self-reports such as the PANAS [82]
which can be obtrusive and impractical for continuous emotion
assessment. For observers’ reports, people are trained to watch
the video recordings (e.g. in the case of lab data) and use a coding
scheme to rate the interaction on specific emotional behaviors (e.g.
SPAFF [24]). Such coding is also done for example, for audio data
collected from couples’ daily life interactions [66]. This manual cod-
ing process is costly and time-consuming as multiple coders need
to be trained for this task [46] and suffers from inter-rater reliability
issues [39, 54]. Automated emotion recognition could address these
limitations, and therefore advance the field in important ways [58].
Yet, there exists no ubiquitous system that recognizes the emo-
tions of couples in everyday life while addressing the complexity of
dyadic interactions such as turn-taking in couples’ conversations.

Smartwatches have been used for mood recognition of individu-
als [16] and they could be leveraged for emotion recognition among
couples. Several features of smartwatches make them uniquely po-
sitioned for this task. Firstly, they are mostly with the wearer as
opposed to a smartphone which could be in various places like the
pocket, bag, and just not in proximity with the user. Additionally,
commercial smartwatches could be used to collect a wide variety
of sensor data that have been used for emotion recognition in the
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past: audio [73], heart rate, accelerometer and gyroscope (for ges-
tures) [72], and ambient light (to detect the context of couples). Our
past work leveraged smartwatches for behavior recognition: e.g.
tracking stress [9] and physical activity [7, 8]. Multimodal fusion of
these sensor data could produce better recognition results [28, 62].
Finally and importantly, smartwatches could be leveraged in novel
ways to capture the dyadic interactions of partners as we have done
in our previous work (e.g. triggering data collection when partners
are close and speaking) [12].

This research work seeks to develop a smartwatch-based system
that leverages multimodal sensor data to recognize each partner’s
emotions in daily life. Such a system could enable research both in
the lab (e.g. couple therapy) or in daily life (assessment of chronic
disease management or relationship quality) and enable interven-
tions to improve the emotional well-being, relationship quality and
chronic disease management of couples. Towards this end, we seek
to answer the following research questions (RQs).

RQ1: How accurately can emotions be recognized using multi-
modal real-world sensor data from couples? There are several chal-
lenges to address such as the kind of sensor data that should be
collected, how the data should be fused together, what features to
extract, what machine learning and deep learning approaches to
use, how to evaluate the models, among others.

RQ2: How accurately can the emotions of couples be detected in
real-time in everyday life? There are several challenges to address
such as how well the algorithm will work on unseen couples across
different cultures, when certain sensor data such as voice is not
available, how to ensure that there is little latency in prediction,
whether to do the prediction on a remote server considering various
privacy issues or on-device, which will imply the machine learning
model will need to be compact, potentially reducing the prediction
accuracy, among others.

In the rest of this paper, we discuss background and related work
in Section 2, methodology in Section 3, experiments and evaluation
approach in Section 4 and results and contribution in Section 5.

2 BACKGROUND AND RELATEDWORK
2.1 Emotion Models
There are mainly two models of emotions used in the literature
in emotion recognition: categorical and dimensional. Categorical
emotions are based on the six basic emotions proposed by Ekman:
happiness, sadness, fear, anger, disgust, and surprise [30]. Dimen-
sional approaches mainly use two dimensions: valence (pleasure)
and arousal which are based on Russell’s circumplex model of emo-
tions [70]. Valence refers to how negative to positive the person
feels and arousal refers to how sleepy to active a person feels. Using
these two dimensions, several categorical emotions can be placed
and grouped into the four quadrants: high arousal and negative va-
lence (e.g. stress), low arousal and negative valence (e.g. depressed),
low arousal and positive valence (e.g. relaxed) and high arousal and
positive valence (e.g. excitement).

2.2 Multimodal Emotion Recognition
Multimodal fusion entails combining data collected from various
modalities and leverages the idea that data contained in different

modalities could provide a better understanding of a certain con-
text. Various works have employed multimodal fusion approaches
for emotion recognition and they have been shown to give bet-
ter results than unimodal approaches [28, 62]. There are two main
fusion approaches: fusion at the feature level (early fusion) i.e., com-
bine features from different data modalities, for example, through
concatenation and feeding them into the same machine learning
algorithm or at the decision level (late fusion) i.e., have a different
algorithm for each data modality and then combine the individual
algorithm predictions using, for example, majority voting. Addi-
tional approaches include some hybrid of early and late fusion
[83] and model-level fusion which leverages interactions between
different modalities at the model level e.g [41].

2.3 Couple Emotion Recognition
Several emotion-recognition works on couple dyads have used data
collected from individuals acting out dyadic interactions either us-
ing a script or engaging in spontaneous sessions [17, 18, 53, 55].
A lot of emotion recognition works use such data sets [62]. The
emotions are later rated by others amidst several challenges [54]
and do not necessarily reflect the subjective emotions of the indi-
viduals. Additionally, these algorithms are likely to perform poorly
on naturalistic data [28].

On the other hand, there are a number of works on automati-
cally detecting the emotions, and behavior of real couples. Most of
this work with real couples has been done primarily by the Signal
Analysis and Interpretation Laboratory (SAIL) at the University
of South California with the first set of works published in 2010
[4, 47]. These works have ranged from the recognition of various
behaviors of couples such as level of blame [4, 5], conflict [78],
suicidal risk [23] to emotions [6, 22, 48] and led to the creation of
the Behavioral Signal Processing (BSP) domain [35, 56]. Few works
done by researchers outside this research lab include [25, 29].

For the works focused on recognition of emotions, they used
mostly acoustic data [4, 6, 25, 29, 47–49, 84], and others have used
lexical data [20, 21, 79, 80] and few have used visual data [85] and
multimodal data such as speech and lexical data [22, 45, 81]. A
range of algorithms have been used such as linear discriminant
analysis (LDA), support vector machine (SVM), logistic regression,
hidden Markov models, deep neural networks. Evaluations have
mostly been donewith leave-one-couple-out cross-validationwhich
is a robust evaluation approach for this task. Also, several works
trained gender-specific models as there is a gender difference in
some modalities like speech.

Despite the contributions of these works, there are still signif-
icant gaps remaining. All these works used emotion labels from
external raters rather than the couples and hence do not reflect the
subjective emotions of the couples. Only two modalities have been
used with several modalities such as physiological data and hand
gestures unexplored. Most have used data from the lab and none of
these models have been tested for real-time emotion recognition
among couples in daily life. Hence, to date, there exists no ubiqui-
tous system that recognizes the emotions of couples in real-time
in daily life while addressing noisiness of real-world data and the
complexity of dyadic interactions such as turn-taking in couples’
conversations.
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3 METHODOLOGY
To answer our research questions, our plan is to implement the
following approach:

(1) Develop mobile and wearable apps and collect multimodal
sensor and self-report data about emotions from couples in
the lab and everyday life

(2) Develop multimodal emotion-recognition machine-learning
models using the collected data

(3) Implement the model on a smartwatch to perform real-time
recognition of couples’ emotions

3.1 Data Collection
Weplan to use two datasets of emotion data from couples in Belgium
(collected in the lab) and Switzerland (collection from field and lab
ongoing).

3.1.1 Study 1: Dyadic Interaction Study. A Dyadic Interaction lab
study was conducted in Leuven, Belgium with 101 Dutch-speaking,
couples. These couples were first asked to have a 10-minute conver-
sation about a negative topic (a characteristic of their partner that
annoys them the most), followed by a 10-minute conversation about
a positive topic (a characteristic of their partner that they value the
most) [26, 74–76]. During both conversations, couples were asked
to wrap up the conversation after 8 minutes. For the negative topic,
they were also asked to end on good terms. After each conversation,
each partner completed self-reports on various categorical emotion
labels such as anger, sadness, anxiety, relaxation, happiness, etc. on
a 7-point Likert scale ranging from strongly disagree (1) to strongly
agree (7). Additionally, each partner watched the video recording
of the conversation separately on a computer and rated his or her
emotion on a moment-by-moment basis by continuously adjusting
a joystick to the left (very negative) and the right (very positive), so
that it closely matched their feelings, resulting in valence scores on
a continuous scale from -1 to 1 [38, 69]. Additionally, each partner
reported how they felt after the interaction and how they thought
their partner felt, using the Affect Grid questionnaire [71]. The Af-
fect Grid captures the valence and arousal dimensions of Russell’s
circumplex model of emotions [70]. Subjects had to place an ‘x’ on
any square on the Affect Grid corresponding to their feelings about
each conversation, which translates to a value of between 0 and 8
each for pleasure and arousal.

3.1.2 Study 2: DyMand Study. We are currently running a Dyadic
Management of Diabetes (DyMand) field and lab study in Switzer-
land with German-speaking couples in which one partner has type
2 diabetes. We plan to collect data from 180 couples (N=180; n=360)
but we have collected data from ten (10) couples so far [51]. We
collect data from the field for 7 days and also in the lab after the
couples return.

For the field study, each partner is given a smartwatch and smart-
phone running the DyMand system, a novel open-source mobile
and wearable system that we developed for ambulatory assess-
ment of couples’ chronic disease management [12]. The DyMand
system triggers the collection of sensor and self-report data for
5 minutes each hour during the hours that subjects pick. We col-
lect the following sensor data from the smartwatch: audio, heart
rate, accelerometer, gyroscope, Bluetooth low energy (BLE) signal

strength between watches, and ambient light. After the sensor data
collection, a self-report is triggered on the smartphone that asks
about emotions over the last 5 minutes using the Affective Slider, a
digital affect measuring tool which measures which assesses the va-
lence and arousal dimensions of their emotions [3]. We also record
a 3-second video of their facial expression while they complete the
self-report on the smartphone. Additionally, at the end of the day,
we trigger the Affective Slider, and also a short form of the PANAS
self-report [82] for the couples to report their emotions over the
whole day.

Our hypothesis is that we are likely to collect high-quality sen-
sor and self-report emotion data during times that the partners
are interacting. Hence, rather than trigger data collection at some
random times in the hour which is the standard approach [52, 66],
we use a novel method entailing triggering data collection after we
detect that the partners are close and speaking. We trigger sensor
data collection when the partners are close and speaking in two
steps. First, we determine closeness using the BLE signal strength
between the smartwatches. We check if the signal strength is within
a certain threshold, which corresponds to a distance estimate [13].
Then, we determine if the partners are speaking by using a voice
activity detection (VAD) machine learning model that classifies
speech versus non-speech, which we developed and implemented
to run in real-time on the smartwatch [12]. In the case in which
this condition is not met in the hour, we do a backup recording in
the last 15 minutes of the hour. There are significant ethical and
privacy concerns of such a system and study which we address in
our previous works [11, 13].

For the lab study, the couple is asked to discuss an illness man-
agement–related concern that is causing them considerable distress
for a 10-minute period. The session is videotaped and additionally,
each partner wears a smartwatch running the DyMand app as it
collects various sensor data: audio, heart rate, accelerometer, gyro-
scope, and ambient light. After the session, each partner completes
a self-report on a smartphone about their emotions over the last
10 min of the discussion using the Affective Slider [3]. Also, the
smartphone takes a 3-second video of their facial expression while
they complete the self-report.

3.2 Data Preprocessing
Wewill preprocess the sensor data into a form for easy data analysis.
For the audio data, we will remove nonvocal segments for the field
data (e.g. silence and noise portions), filter, downsample, and re-
duce the background noise. We will perform speaker diarization to
annotate the segments of the audio corresponding to the speech of
each partner. We will also annotate any segments of the audio cor-
responding to various nonverbal vocalizations such as laughs, sighs,
and also background context especially for the field data e.g. TV,
audio, indoors, outdoors, etc. Additionally, we will also transcribe
the audio in order to use the content of the speech. The speaker
diarization, annotation, and transcriptions are done manually to
ensure high data quality. Then, we will develop automated tools
to do same for the real-time recognition. Audio samples that are
found to be too noisy to be useful will not be used for data analysis.
Other sensor data such as accelerometer and gyroscope data will
be filtered and downsampled. Heart rate data will be processed to
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remove samples that were collected when there was no or poor
contact with the skin since the smartwatch provides that data.

3.3 Feature Extraction
We plan to extract features using feature engineering and transfer
learning approaches.

3.3.1 Feature Engineering. For audio, we plan to extract various
acoustic time-domain features such as pitch, speech rate, etc, and
also frequency domain features such as spectral energy, fundamen-
tal frequency, etc. We plan to use the OpenSMILE toolkit [32] to
extract 88 feature sets that have been shown to be a minimal feature
set that works well for the task acoustic emotion recognition [31].
We also plan to use the presence or absence of various nonverbal
vocalizations as features as they have been shown to be discrimina-
tive for emotion recognition [43]. We will also extract spectrograms
of the audio data to use as alternate features. For accelerometer
and gyroscope data, heart rate, and ambient light, we will extract
various statistics like mean, median, and percentiles over various
durations.

3.3.2 Transfer Learning. Transfer learning is an approach used
to circumvent the need to develop hand-crafted features usually
done in traditional machine learning approaches and also deal with
small labeled datasets. Transfer learning entails using a pre-trained
model on a different but related task ([34]). This process entails
using the model for feature extraction or fine-tuning in which the
whole model or later layers are retrained. Transfer learning has
shown success in various fields such as computer vision ( [44, 60]),
speech processing ([59]), and natural language processing ( [40, 65]).
Transfer learning has also been used in emotion recognition tasks
( [34, 57]). We plan to use a pretrained acoustic CNN model such
as YAMNet model [2] to extract acoustic features and a pretrained
Transformer language model — Bidirectional Encoder Represen-
tations from Transformers (BERT) [27] such as the German BERT
[1] and Sentence BERT [64] — to extract linguistic features, which
we’ve used in a previous work ([10]).

3.4 Data Analysis
To analyze the data, we plan to use various machine learning and
deep learning algorithms as well as explore unimodal and multi-
modal analysis of the data.

3.4.1 Machine Learning and Deep Learning Algorithms. We plan
to explore using traditional machine learning algorithms such as
random forest, support vector machines and for deep learning, we
will explore using convolutional neural networks and recurrent
neural networks such as Long Short-Term Memory (LSTM) — with
and without attention — bidirectional LSTM (BLSTM), together
with handcrafted features ([61]). We will also explore using the raw
signal in an end-to-end approach leveraging 1D CNNs and LSTMs.

3.4.2 Unimodal andMultimodal Analysis. We plan to evaluate mod-
els separately for each modality. Additionally, we will explore mul-
timodal fusion using different combinations of modalities at the
feature level, the decision level, model level or some hybrid ap-
proach.

4 EXPERIMENTS AND EVALUATION
We will train models separately for males and females to perform
binary classification of valence and arousal as has been done in
previous works. We plan to perform an evaluation with leave-one-
couple-out cross-validation similar to previous works such as [22]
with the metrics confusion matrix and balanced accuracy since the
data is likely to be imbalanced which is characteristic of real-world
data. We plan to evaluate performance when various modalities are
left out. We will also compare the performance of using features
extracted with data annotated manually vs automatically.

We will then pick the best performing algorithm and then op-
timize it to run in real-time and develop a smartwatch app using
the model. We will then run another user study to evaluate the
performance of the model in real-time in everyday life. The system
will trigger data collection when an interaction is detected like the
previously described Study 2. We will additionally for evaluation
purposes trigger at some random times also. After 5 minutes of
data collection, subjects will be asked to respond to self-reports
about emotions using the Affective Slider. These self-reports will be
compared with the system’s predictions to evaluate its performance.

5 RESULTS AND CONTRIBUTIONS
We have developed the DyMand mobile and wearable system along
with a smartwatch-based VAD system for sensor and self-report
data collection for study 2 [12, 13]. We have performed preliminary
analysis using the data from study 1 on speech emotion recognition
among couples. We performed an evaluation of the segments of
an audio conversation that best predicts the end-of-conversation
emotions of couples. We leveraged the peak-end rule, and a used
transfer learning approach to extract features from (1) the audio
segments with the most extreme positive and negative ratings,
and (2) the ending of the audio. We used a pre-trained CNN to
extract these acoustic features and a linear SVM to perform binary
classification of the valence of partners. Our results showed that
the segments from the peak produce the best results for recognizing
the emotions of female partners with 74.3% balanced accuracy and
better than chance and a human baseline [14].

There are two main potential contributions of my research work
if the research questions are adequately answered.

(1) A novel machine learning method for emotion recognition
using multimodal real-world smartwatch data from couples

(2) A novel smartwatch app for real-time emotion recognition
among couples in everyday life

These contributions would provide an easy assessment of emo-
tions and could enable research both in the lab (e.g. couple therapy)
and in daily life (e.g. assessment of chronic disease management
or relationship quality) and enable interventions to improve the
emotional well-being, relationship quality and chronic disease man-
agement of couples.
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