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Abstract

Background: Conversational agents, also known as chatbots, are computer programs designed to simulate human text or verbal
conversations. They are increasingly used in a range of fields, including health care. By enabling better accessibility, personalization,
and efficiency, conversational agents have the potential to improve patient care.

Objective: This study aimed to review the current applications, gaps, and challenges in the literature on conversational agents
in health care and provide recommendations for their future research, design, and application.

Methods: We performed a scoping review. A broad literature search was performed in MEDLINE (Medical Literature Analysis
and Retrieval System Online; Ovid), EMBASE (Excerpta Medica database; Ovid), PubMed, Scopus, and Cochrane Central with
the search terms “conversational agents,” “conversational AI,” “chatbots,” and associated synonyms. We also searched the gray
literature using sources such as the OCLC (Online Computer Library Center) WorldCat database and ResearchGate in April
2019. Reference lists of relevant articles were checked for further articles. Screening and data extraction were performed in
parallel by 2 reviewers. The included evidence was analyzed narratively by employing the principles of thematic analysis.

Results: The literature search yielded 47 study reports (45 articles and 2 ongoing clinical trials) that matched the inclusion
criteria. The identified conversational agents were largely delivered via smartphone apps (n=23) and used free text only as the
main input (n=19) and output (n=30) modality. Case studies describing chatbot development (n=18) were the most prevalent,
and only 11 randomized controlled trials were identified. The 3 most commonly reported conversational agent applications in
the literature were treatment and monitoring, health care service support, and patient education.

Conclusions: The literature on conversational agents in health care is largely descriptive and aimed at treatment and monitoring
and health service support. It mostly reports on text-based, artificial intelligence–driven, and smartphone app–delivered
conversational agents. There is an urgent need for a robust evaluation of diverse health care conversational agents’ formats,
focusing on their acceptability, safety, and effectiveness.
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Introduction

Background
Conversational agents or chatbots are computer programs that
simulate conversations with users [1]. They are increasingly
adopted in many different fields, including finance, commerce,
marketing, retail, and fitness, with favorable reception from
customers [2]. Conversational agents are often deployed via
messaging apps, a website, or a mobile phone app. They can
also be integrated into cars and television sets or in the form of
a stand-alone device such as speakers. They can converse
through a range of methods such as text, image, and voice.
Conversational agents that can interpret human speech and
respond via synthesized voices as well as manage tasks
requested by the user are also known as voice assistants. Some
of the most popular voice assistants include Apple’s Siri,
Amazon’s Alexa, Google Assistant, and Microsoft’s Cortana,
mostly delivered using voice-activated or smart speakers such
as Amazon’s Echo and Google Home. They are utilized for
aiding or executing tasks such as web-based shopping, control
of smart home devices, and disseminating news or for
entertainment [3-5].

Conversational agents cover a broad spectrum of aptitudes
ranging from simple to smart [2]. Simple conversational agents
are rule based, meaning that they depend on prewritten
keywords and commands programmed by the developer. The
user is therefore restricted to predetermined options when
answering questions posed by the conversational agents, and
there is little or no opportunity for free responses. If a user enters
a question or sentence without a single keyword, the
conversational agents will be unable to understand the input
and will respond with a default message such as “Sorry, I did
not understand” [2]. Despite these restrictions, simple
conversational agents are increasingly used in executing tasks
such as booking appointments, purchasing merchandise,
ordering food, and sharing information without the need for
human involvement [2].

In contrast, smart conversational agents do not respond with
preprepared answers but with adequate suggestions instead.
This is enabled by machine learning, a type of artificial
intelligence (AI), which allows for broadening of the computer
system’s capacity through its learning from data (in this case
conversations) without being explicitly programmed [2,6]. The
process whereby the machine translates human commands into
a form in which the computer can understand, process, and
revert to the user is called natural language processing (NLP)

[6] and natural language understanding or interpretation [6,7].
This degree of programming allows for personalized
conversational agents to be generated. Smart conversational
agents have the potential to undertake more complex tasks that
involve greater interaction, reasoning, prediction, and accuracy.
Although the technology behind smart conversational agents is
continuously developed, they currently do not have full
human-level language abilities, resulting in misunderstanding
and users’dissatisfaction [8]. Furthermore, as machine learning
algorithms develop, it is becoming increasingly challenging to
keep track of their development, evolution, and the reasoning
behind their responses. This is known as the black box effect
[9,10]. Although the black box effect appears to be an
unavoidable consequence of the use of AI, there is some
emerging research on making AI transparent and explainable
[11]. However, at the moment, its use may affect the safety and
accuracy of treatment and should be carefully monitored and
evaluated when used in health care [9].

The first conversational agent ELIZA was developed by
Weizenbaum [12] in 1966, with ELIZA taking on the role of a
person-centered Rogerian psychotherapist (Figure 1). This was
a groundbreaking contribution to the field of AI and was
reported to have a positive impact on patients who
communicated with the conversational agent [13]. A step up
from ELIZA was achieved when PARRY, a conversational agent
representing a simulated paranoid patient with schizophrenia,
was developed [14,15]. These first examples of conversational
agents, chatterbots (as they were referred to then), in health
care were valuable in demonstrating that virtual agents have the
potential to mimic human-human conversation and successfully
pass the Turing Test, a test of a machine’s ability to replicate
human intelligence, and the machine passes the test when the
tester cannot distinguish it from the human [16].

The literature over the next few decades does not explicitly
mention chatbots or conversational agents in health care, but
it does refer to talking computers [17-21], a less sophisticated
version of today’s conversational agents previously used for
conducting patient satisfaction surveys [17], altering adult eating
habits [18], aiding health care service delivery through diagnosis
aid [19], and promoting patient-physician communication [20].
Although not presented in the literature, chatbot Jabberwacky
was released in 1988. It was one of the first few AI agents
developed for human interaction and entertainment and
introduced the shift from text- to voice-operated conversational
agents. Soon after, ALICE gained plenty of attention in 1995,
after which it went on to win the Loebner Prize 3 times in 2000,
2001, and 2004.
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Figure 1. Evolution of conversational agents from 1966 to 2019.

The next big milestone for conversational agents was in 2010
when Apple released Siri. The interest in conversational agents
increased exponentially at this point as evidenced by Google,
Amazon, and Microsoft all developing their own versions over
the coming years: Google now, Alexa, and Cortana, respectively
[14]. Year 2016 was named the Year of the Chatbot as a number
of major information technology companies started to use
conversational agents: Facebook launched its messenger
platform for conversational agents, Google announced its
procurement of the conversational agent development tool
API.ai, LinkedIn revealed its first messaging bot, and Viber
released Public Accounts for chatting with businesses [22-25].
Currently, the title of the world’s best conversational agent is
held by Mitsuku, a 4-time winner of the Loebner Prize, an
annual competition in AI [26].

Health care, which has seen a decade of text messaging on
smartphones, is an ideal candidate for conversational
agent–delivered interventions. Conversational agents enable
interactive, 2-way communication, and their text- or
speech-based method of communication makes it suitable for
a variety of target populations, ranging from young children to
older people. The concept of using mobile phone messaging as
a health care intervention has been present and increasingly
explored in health care research since 2002 [27]. A series of
systematic reviews on the use of text messaging for different
health disorders have shown that text messaging is an effective
and acceptable health care intervention [28,29]. With a global
penetration rate of 96% [28], mobile phones are ubiquitous and
avidly used, and can be efficiently harnessed in health care [30].
Conversational agents are increasingly used in diverse fields,
including health care, and there is a need to identify different
ways and outcomes of the use of conversational agents in health
care. Existing reviews on conversational agents focus on a
certain subtype of agents such as virtual coaches [31-33] or
embodied conversational agents (ECAs) [34] or on specific
functionalities of these agents such as behavior change [35] or
mental health applications [36,37]. Other reviews report solely
on the technical aspects of conversational agents such as system
architecture and dialogues [38] or on the funding component
of health care conversational interfaces [39].

Objectives
Our objective was to provide a comprehensive overview of the
existing research literature on the use of health care–focused
conversational agents. We aimed to examine how conversational

agents have been employed and evaluated in the literature to
date and map out their characteristics. Finally, in line with the
observed gaps in the literature, we sought to provide
recommendations for future conversational agent research,
design, and applications.

Methods

Search Strategy
We adopted methodological guidance from an updated version
of the Arksey and O’Malley framework with suggestions
proposed by Peters et al [40] in 2015 to conduct our scoping
review. To identify literature pertaining to the application of
conversational agents in health care, a broad literature search
was conducted in April 2019 in MEDLINE (Medical Literature
Analysis and Retrieval System Online; Ovid), EMBASE
(Excerpta Medica database; Ovid), PubMed, Scopus, and
Cochrane Central. Given the novelty of the field, the amount
of ongoing research happening in the area, and to increase
comprehensiveness, we also searched for the gray literature in
the OCLC WorldCat database, ResearchGate, Google Scholar,
OpenGrey, and the first 10 pages of Google.

We used an extensive list of 63 search terms, including various
synonyms for conversational agents (Multimedia Appendix 1).
These synonyms were generated using a web-based search and
by identifying specific terms or phrases used in the titles of
articles discussing health care conversational agents. The
reference list of relevant articles and systematic reviews were
also searched for further articles related to the review.

Inclusion and Exclusion Criteria
To map out the current conversational agent applications in
health care, we included primary research studies that had
conducted an evaluation and reported findings on a
conversational agent implemented for a health care–specific
purpose. We excluded articles that just presented a proposal for
conversational agent development, articles that mentioned
conversational agents briefly or as an insignificant part of a
review, as well as opinion pieces and articles where primary
research was not conducted or discussed. A further point of
exclusion was articles with poorly reported data on chatbot
assessments where there was minimal or no evaluation data. In
addition, we excluded articles concerning ECAs, relational
agents, animated conversational agents, or other conversational
agents with a visual or animated component.
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ECAs are computer-generated virtual individuals with an
animated appearance to enable face-to-face interaction between
the user and the system [41]. Relational agents are a type of
ECA designed to create long-term deep and meaningful
relationships with individuals [42]. ECAs are similar to
conversational agents in that conversation is central to their
function; however, ECAs are more complex as hand movements
and facial expressions can be conveyed to the user as well [41].
The user’s interaction may be affected by nonverbal behaviors,
graphics, and layout of the program, and it was decided that the
complexities associated with ECAs are beyond the scope of this
review and were therefore excluded.

Screening, Data Extraction, and Analysis
Screening of articles for inclusion was performed in 2 stages:
title and abstract review and full article review, undertaken
independently by 2 reviewers. Following an initial screening
of titles and abstracts, full texts were obtained and screened by
2 reviewers. From the included studies, 2 reviewers
independently extracted relevant information in an Excel
(Microsoft) spreadsheet. We extracted data on the first author,
year of publication, source of literature, title of article, type of
literature, study design and methods, geographic focus, health
care sector, conversational agent name, accessibility of
conversational agent, dialogue technique, input and output
modalities, and nature of conversational agent’s end goal. We
piloted the data extraction sheet on at least five articles. Potential
discrepancies in the extracted data were discussed between the
authors and resolved through discussion and consensus.

We performed a narrative synthesis of the included literature
and presented findings on (1) study specifics, such as study
design, geographic focus, and type of literature; (2)
conversational agent specifics (ie, conversational agent delivery
channel, dialogue technique, personality, etc); (3) conversational
agent content analysis; and (4) study evaluation findings.

We used the principles of thematic analysis to analyze the
content, scope, and personality traits of the conversational

agents. Two researchers familiarized themselves with the
literature identified, generated the initial codes in relation to
personality and content analysis, applied the codes to the
included studies, compared their findings, and resolved any
discrepancies via discussion.

The need to present information on conversational agent
personality was motivated by the concepts presented in the study
by de Haan et al [43], which posits that personalities are not
just limited to humans but can be extended to nonhuman artifacts
to explain their actions and behavior [43]. Furthermore, it states
that personality traits are especially important in the design of
socially interactive robots, such as conversational agents. The
5 dimensions of personality presented in this paper were derived
from the following: extraversion, agreeableness,
conscientiousness, emotional stability, and culture. We have
used these headings to guide our analysis of the conversational
agents’ personality traits in this review. We also aimed to
identify and analyze the patterns in the description of
conversational agents pertaining to personality traits. Multiple
codes were sometimes assigned to the same agent where
necessary, but this was limited to a maximum of 3 codes to
maintain some degree of specificity.

Results

Search Findings
The initial database searches yielded 11,401 records, and another
28 records were retrieved through additional sources such as
the gray literature sources and screening of reference lists of
relevant studies. A total of 196 duplicates were identified and
removed, leaving 11,233 titles and abstracts that needed to be
screened. Title and abstract screening led to the exclusion of
11,099 records, resulting in 134 full texts that needed to be
assessed for eligibility. Of these, 87 articles were excluded,
resulting in a final pool of 47 reports comprising 45 studies and
2 ongoing trials (Figure 2).
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Figure 2. PRISMA flow chart.

Characteristics of Included Studies
In this scoping review, 40 included studies were from
high-income countries (HICs) and 6 were from low- and
middle-income countries (LMICs). A total of 22 studies were
from European countries, including Italy [44,45], Switzerland
[30,46-52], France [53,54], Portugal [55], The Netherlands [56],
the United Kingdom [57-61], Spain [62,63], and Sweden [64].
Moreover, 8 studies originated from Asian countries: Philippines
[65], China [66], Japan [67,68], Pakistan [69], India [70,71],
and Hong Kong [72]. Other geographic regions acknowledged

in the studies of this review were Australia [73,74], Canada
[75], New Zealand [76,77], South Africa [78], and the United
States of America [79-89].

A variety of study designs were used in the included studies,
comprising 20 case studies [44,48,51,61-63,66,69,71,
73-79,82,84,85,89], 4 surveys [55,56,59,65], 3 observational
studies [53,86,87], 11 randomized controlled trials
[46,49,50,57,64,67,72,80,81,83,88], 3 diagnostic accuracy
studies [58,60,68], 3 controlled before and after studies
[30,45,70], 2 ongoing trials [51,54], and 1 pilot study [47]
(Figure 3).
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Figure 3. Bubble plots showing the distribution of identified study designs, types of conversational agents and healthcare topics in the included articles,
plotted against the year of the publication. The scale on the right indicates that the size of the bubble is associated with the number of studies whereby
the smallest denotes 1 study and the largest, 10 studies.

The types of literature included 25 journal articles
[44,48,55-57,61-65,67,69,72,74-76,80-87,89], 11 conference
abstracts [45,47,49,50,52,59,70,71,73,78,79], 4 conference
papers [30,46,66,77], 1 poster abstract [68], 4 electronic
preprints [53,58,60,88], and 2 clinical trial protocols [51,54].

There was an increase in the number of publications each year,
from 3 in 2015 to 5 in 2016, 10 in 2017, and 23 in 2018. Some
author groups were highly productive and published at least
two papers within 2 years. Kowatsch et al published 3 papers
between 2017 and 2018 based on their open source behavioral
intervention platform MobileCoach, which allows the authors
to design a text-based health care conversational agent for
obesity management and behavior change [30,46,90]. Griol et
al published articles on conversational agent for chronic
conditions, including chronic pulmonary disease [63] and
Alzheimer disease [62] in 2015 and 2016, respectively. Such
productive teams reiterate the research interest in this area of
conversational agents. Furthermore, the high frequency of
publication indicates the feasibility and support to conduct
research successfully in this area.

Characteristics of Conversational Agents in the
Included Studies

Conversational Agent Delivery Channel
Conversational agents were delivered through a variety of means
in the included studies. Most (n=23) were smartphone apps
[30,46-50,53,55,58-61,64,67,70,71,75,77,81,83,85,86,88]; web
based (n=5) [57,66,73,74,82]; desktop computer based (n=2)
[65,79]; used smartphone-embedded software (n=6; eg, Siri,
Google Assistant, Alexa, etc) [44,51,62,76,84,87], Telegram
[45,78], WeChat [72], SMS and multimedia messaging service
[89], Windows live messenger [56], or Facebook Messenger
[52,80]; and 4 were made available on more than 1 platform
[53,59,68,83]. Three studies did not specify the method of
conversational agent delivery [54,63,69].

Technical Development Approach
A total of 8 studies made a reference to the technical details of
the conversational agent development process. Some mentioned
specific tools such as C and MS Access [65]. Others discussed
the application of well-known concepts, to conversational agent
development such as using the Computers are Social Actors
paradigm to develop a health advice conversational agent, or
converting the structure association technique (SAT) into digital
SAT for implementation on a LINE platform [67,83]. Some
emphasized data set creation and sources for the knowledge
base [44]. Four studies provided an in-depth workflow with a
step-by-step explanation of the technical development of the
conversational agent. Cheng et al [79] provided a very detailed
technical explanation of the development process—broken down
and explained in parts: program development on Google’s home
device, webhook and internal logic, and web interface. Galescu
et al [82] described the CARDIAC system architecture including
a knowledge base, task models, dialogue management, speech
recognition, and language generation. Griol et al [63] presented
a spoken dialogue system with specific details of the proposed
emotion recognizer. For example, it considers pitch, frequency,
energy, and rhythm of speech input from the user. Joerin et al
[75] provided a less technically dense explanation for chatbot
conversational agent development but mentioned technologies
used in the process, such as emotion algorithms and machine
learning techniques [75].

Input and Output Modalities
The conversational agents could be categorized according to
whether the user input was fixed (ie, predetermined text) or
unrestricted (ie, free text/speech). A total of 10 studies employed
fixed text user inputs [30,46,47,49,50,52,54,58,83,88], with 2
additional studies enabling fixed text and image inputs [67,68].
Moreover, 19 studies allowed free text user inputs
[45,48,51,56,57,60,61,66,69,70,72,74,77,78,80,81,85,86,89],
and 4 studies used both fixed and free text user inputs
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[53,64,65,73]. Speech was enabled in 8 studies
[44,55,63,71,76,79,82,84], whereas free text and speech were
employed in 3 studies [62,75,87]. The method of user input was
unspecified in 1 study [59] (Multimedia Appendix 2).

Similarly, output modalities largely employed text alone (n=30)
[45-47,49-51,53,54,56-58,60,61,64-66,68-70,72-74,77,78,80,81,83,85,88,89];
text and speech (n=5) [48,55,63,71,87]; speech alone (n=4)
[44,79,82,84]; text and images (n=4) [30,67,75,86]; text, speech,
and images [62]; or text, speech, images, and videos [52,76].
The input and output methods were not specified in 1 of the
studies [59] (Multimedia Appendix 2).

Conversational Agent Personality
We condensed the descriptive terms used in individual studies
to present the conversational agents into a list of 9 relevant
personality traits as presented in Table 1.

The conversational agents in the included studies were health
care professional like [57,58,62,66,71,73,74,86], informal
[46,52,53,56,61,65,81,85], coach like [47,49,52,64,66,70,80],
knowledgeable [56,60,68,72,89], human like [48,78,79,88],
culture specific [47,48,53], factual [68,76], gender specific
[46,78], and some identified explicitly as a conversational agent
[46,65].

One article [78] reported on a conversational agent personality
that was criticized for being overly formal, and some articles
did not report on the personality of the conversational agent at
all [30,44,45,50,51,54,55,59,63,67,69,75,77,82-84,87].

Table 1. Personality codes derived for the conversational agents included in this review, adapted from Haan et al.

DescriptionsPersonality codes

Encouraging, motivating, and nurturingCoach like

Explicitly identifies as a conversational agentConversational agent identity

Speaks the native language or has native namesCulture specific

Nonjudgmental, no personal opinions, and responses based on facts or
observations

Factual

Male and female versions availableGender specific

Designed to be a doctor or expert, that is, mimics a health care professionalHealth care professional like

Tries to emulate humans, for example, participants reported feeling like
they were talking to another human or researchers used features like
“typing” to make the conversation more human like

Human like

Informal, like talking to a friend. Uses exclamations, abbreviations, and
emoticons

Informal

Content created or informed by medical expertsKnowledgeable

Human Involvement
A health care administrator or professional was available via
the conversational agent for the user to communicate with in
some studies. The role of the human varied from an
administrator who could be contacted via a dedicated chat
channel for the user to ask questions or an individual whose
role was to monitor the user’s activity on the conversational
agent and provide personalized feedback to them. Seven studies
[30,46,47,70,72,78,85] reported on human involvement in the
conversation and the remaining articles did not.

Conversational Agent Goals
All the conversational agents in this review were identified as
goal oriented. Goal-oriented conversational agents have a clearly
defined end point and are employed to execute a specific
function, unlike chit chat agents that have no specific end goal,
do not delve into the details of any topic, and have a primary
aim of merely keeping the conversation going [91].
Goal-oriented conversational agents were further divided into
those that yielded long- or short-term outcomes. Of the included
studies, 22 articles focused on conversational agents with
long-term goals and 23 with short-term goals (Multimedia

Appendix 3 [30,44-89]). Two studies reported on conversational
agents with both short-term and long-term goals [45,56], for
example, answering immediate queries (short) and providing
education and increasing users’ knowledge on the topic over
time (long) [56]. Conversational agents with short-term scope
provided users with a response or service almost instantaneously,
such as answering health-related queries [84]. Conversely, those
with long-term scope needed to build a relationship with the
user, over time, to help them overcome health-related issues
such as smoking cessation [72] or working through a mental
health problem [80].

Conversational Agent Content Analysis
Five distinct themes were identified in terms of conversational
agent content: treatment and monitoring (ie, treatment
implementation, management, adherence, support, and
monitoring), health service support (ie, connecting patients to
health care services), education (ie, provision of health
care–related information), lifestyle behavior change (ie,
supporting users in tackling various modifiable health risk
factors), and diagnosis (ie, identification of the nature of a
disease or a condition). A number of included conversational
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agents spanned several different themes (Multimedia
Appendices 3 and 4 [30,44-89]).

Treatment and Monitoring
Overall, 17 articles reported on conversational agents that
focused on treatment, monitoring, or rehabilitation of patients
with specific conditions. One study reported on a conversational
agent to help preserve cognitive abilities in those with Alzheimer
disease [62]. Two other studies focused on conversational agents
to provide support and treatment for metabolic conditions such
as type 2 diabetes [70] and obesity [46]. Eight studies presented
conversational agents for managing mental health using
techniques such as counseling [67]; cognitive behavioral therapy
(CBT) [64,80] method of levels therapy [57]; positive
psychology [61]; provision of a virtual companion [66]; and a
combination of modalities such as CBT with mindfulness-based
therapy, emotionally focused therapy, and motivational
interviewing [75,81]. One study each reported on the use of a
conversational agent for monitoring patients with asthma [85],
HIV [45], heart failure [82], and chronic respiratory disease
management [63]. Non–disease-specific conversational agents
were used as a health information advisor [83] and pediatric
generic medicine consultant [65].

Health Care Services Support
Overall, 19 studies reported on conversational agents used to
support or complement existing health care services. These
tasks included remote delivery of health care services for mental
health support [67,75,81], breast cancer [53,54], dysarthria [44],
obesity [50], diabetes management [79], chronic respiratory
diseases [63], asthma [85], heart failure [82], and HIV
management [45]. Other studies discussed conversational agents
automating health care services such as patient history taking
[48,77], providing health advice [83], symptom checking [58],
and triaging and diagnosis support [60,69,74].

Education
We found 13 articles in which conversational agents were used
primarily for educating patients or users. Education focused on
topics such as sexual health [59,76] including information on
HIV [78], overcoming unhealthy habits such as alcohol misuse
[73] and smoking cessation [72], improving well-being [88],
diabetes management [79], breast cancer [53,54], and
medication-related queries [55] as well as general health
[56,84,87], which covered more than 1 topic of focus, for
example, education on sex, drugs, and alcohol for adolescents.

Lifestyle Behavioral Changes
We identified 12 studies with conversational agents for healthy
lifestyle behavior change in the general population as well as
overweight and obese individuals. Two studies discussed
conversational agents for the management of obesity in younger
patients, including adolescents [46,50]. They largely employed
a coach-like conversational agent to promote physical activity
[51] and healthy eating [52], sometimes with incentive
provision, and provided techniques on how to reverse obesity
[30,47,49,71]. Other behavioral change interventions used a
social media–driven conversational agent for smoking cessation
[72], a health coach for diabetes prevention [86], a reflection
companion to encourage physical activity in adults [89], and

emotionally intelligent agents to improve mental health [61]
and well-being [88].

Diagnosis
Seven articles presented health care conversational agents with
a primary purpose of establishing a diagnosis. Three articles
reported on conversational agents’ triage, diagnosis, or a
combination of both, mainly employing a symptom checker
function [58,60,74]. Three more studies reported purely on the
diagnostic accuracy of 2 conversational agents [69,71,77]. One
article reported on a conversational agent for diagnosing
sexually transmitted infections to overcome barriers such as
social stigma, embarrassment, and discomfort associated with
traditional diagnostic approaches that require a medical
interview with a health care professional [68].

Conversational Agent Evaluation
Included studies that evaluated conversational agents reported
on their accuracy (in terms of information retrieval, diagnosis,
and triaging), user acceptability, and effectiveness. Some studies
reported on more than 1 outcome, for example, acceptability
and effectiveness. In general, evaluation data were mostly
positive, with a few studies reporting the shortcomings of the
conversational agent or technical issues experienced by users.
Seventeen studies presented self-reported data from participants
in the form of surveys, questionnaires, etc. In 16 studies, the
data were objectively assessed in the form of changes in BMI,
number of user interactions, etc. In 12 studies, there was a
mixture of self-reported and objectively assessed outcomes and
outcomes were not reported in the two ongoing trials
(Multimedia Appendix 4).

Accuracy: Information, Diagnosis, and Triaging
Eleven studies reported on the accuracy of conversational agents
[44,58,60,66,68,69,71,74,76,77,82] (Multimedia Appendix 4).
Middleton et al [58] and Razzaki et al [60] evaluated 2 versions
of the Babylon conversational agent, respectively: Babylon
check and Babylon chatbot for triage and diagnosis. In both
studies, the conversational agents were tested on their triage
and diagnostic accuracy using clinical vignettes as in the
Membership of the Royal College of General Practitioners
exams, and their performance was compared with that of
doctors. The conversational agents were found to be more
accurate, faster, and provided safer triage and diagnosis
compared with doctors and nurses. Similarly, Ghosh et al [74]
and Danda et al [71] assessed conversational agents on their
general diagnostic accuracy, and these had a precision rate of
82% and 86%, respectively. Ni et al [77] assessed Chatbot
MANDY, designed to automate patient intake, on its ability to
adequately diagnose the patient based on their symptoms. There
was a prediction accuracy of 100%, 64%, 25%, and 14% for
respiratory issues, chest pain, headache, and dizziness,
respectively [77]. Furthermore, 2 studies tested the accuracy of
conversational agents employed for sexual health purposes
[68,76]. The conversational agent used by Kobori et al [68]
diagnosed sexually transmitted infections with an accuracy of
77.7% and had high effectiveness (97.7%) in encouraging
patients to visit the clinic earlier. In contrast, Wilson et al [76]
compared smart assistants—Google Assistant, Siri, and Google
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search—to determine their accuracy in responding to queries
around sexual health. The Google search option was found to
provide the best answers and also had the lowest failure rate
[76]. Another study compared 3 known virtual assistants—Siri,
Google Assistant, and Amazon Alexa—on their abilities to
recognize speech from individuals with dysarthria [44]. They
all performed similarly (50-60% recognition), with Siri being
the only agent attempting to parse all the dialogue inputted [44].
Two studies discussed the accuracy of 2 conversational agents
in making diagnoses in children and adolescents [66,69].
Teenchat had a 78.34% precision rate in diagnosing stress [66],
whereas Aquabot had an accuracy of 85%, 86.64%, and 87.2%
(3 groups aged 18-28 years) for achluophobia and 88%, 87.6%,
and 87.53% (3 patient groups aged 1-7 years) for autism [69].
Finally, Galescu et al [82] discussed the accuracy of a
conversational agent CARDIAC in speech recognition for heart
failure patients. A significant number of errors were detected
and attributed to insufficient vocabulary coverage in the
language model as evidenced by an out-of-vocab rate of 3%
[82].

Effectiveness
The effectiveness of health care conversational agents was
assessed in 8 studies [47,52,57,61,70,75,81,84]. Furthermore,
10 studies reported on the effectiveness and acceptability, of
which 5 are presented here [49,64,67,80,86] and the remainder
are presented under Acceptability (Multimedia Appendix 4).
Five studies described conversational agents targeting a healthy
lifestyle change specifically for healthy eating [52], active
lifestyle [49], obesity [47], and diabetes management [70,86].
Casas et al [52] reported improvements in food consumption,
whereas Stasinaki [47] and Heldt et al [49] noted increases in
physical activity performance with high compliance. Shaikh et
al [70] reported successful reduction in HbA1c (glycated
hemoglobin) levels postengagement with Wellthy diabetes,
whereas Stein et al [86] reported successful weight loss (2.38%)
and satisfaction was high, rated at 87% for the diabetes
prevention chatbot.

Eight studies noted the effectiveness of conversational agents
for mental health applications [57,61,64,67,75,80,81,84]. The
conversational agent Tess by Fulmer et al [81] initiated a
statistically significant improvement in depression and anxiety
compared with the control group. Two studies looked at the use
of machine learning–based conversational agents for CBT in
young adults [64,80]. The conversational agent was both
effective (reduced levels of depression and perceived stress and
improved psychological well-being) and well received (high
engagement with the chat app and high levels of satisfaction)
[64,80]. This positive effect was reproduced by Joerin et al [75],
where emotional support from Tess decreased symptoms of
anxiety and depression by 18% and 13%, respectively [75].
Inkster et al [61] employed the Patient Health Questionnaire-9
self-reported depression scale to note significant improvements
in depression scores in the high user group compared with the
low user group [61]. In addition, 67.7% of users found the app
usage to be helpful and encouraging [61]. In the study by Kamita
et al [67], the counseling bot encouraged significant
improvements in users’ self-esteem, anxiety, and depression
compared with the control condition. Besides effectiveness,

user ratings of acceptability, using the technology acceptance
model, were higher in the conversational agent condition
compared with the control [67]. Gaffney et al [57] proposed a
conversational agent MYLO that was significantly better than
the existing conversational agent ELIZA in problem solving
and helpfulness, but both were equally effective in lowering
distress. Miner et al [84] compared Apple’s Siri, Microsoft’s
Cortana, Samsung’s S Voice, and Google Now on their abilities
to respond to questions about mental health, interpersonal
violence, and physical health. Siri responded appropriately and
empathetically to issues concerning depression and physical
health, and Cortana responded appropriately and empathetically
to matters involving interpersonal violence [84].

Acceptability
A total of 26 studies commented on the acceptability of
conversational agents (Multimedia Appendix 4). Five studies
commenting on acceptability and effectiveness were discussed
above [49,64,67,80,86] (see the Effectiveness section), and the
remaining 21 studies are presented here
[30,45,46,48,50,53,55,56,59,62,63,65,72,73,78,79,83,85,87-89].
Several studies (n=6) were targeted at children or adolescents.
Three studies discussed conversational agents for health
education on medication, asthma management, drugs, sex, and
alcohol [56,65,85]. Acceptability was generally denoted by high
response rates and scores like strongly agree or agree for
user-friendliness, appropriateness, consistency, and speed of
response [65]. In addition, users in the study by Crutzen et al
[56] favored the conversational agent over existing methods of
information provision. In another 3 studies, conversational
agents were employed for the management of obesity in
adolescents [30,46,50]. Acceptability was high in all studies,
as evidenced by enjoyment of the chats; bonding; formation of
social and emotional relationships; and high perceived ease of
use, usefulness, and intention to use [30,46,50]. In the study by
L’Allemand et al [50], high compliance was attributed to the
rewarding game system.

In 4 studies, health care conversational agents were targeted at
chronic conditions [55,62,63,79]. The specific conditions
addressed were Alzheimer disease, diabetes, heart failure, and
chronic respiratory disease. In the study by Cheng et al [79],
users responded positively, particularly to features of
conversational agents that allowed for personalization and the
conversational agent’s ability to understand and respond to
natural conversation flow. Some difficulties included learning
commands, restricted answer options, slow processing speed,
and some problematic responses [79]. Lobo et al [55] reported
user acceptability in the form of usability, where the
conversational agent had a system usability score of 88, which
was considered very good. Griol et al [62] considered the
Alzheimer patients’ caregiver’s perspective when judging the
acceptability of the conversational agent. The global rate for
the system (on a scale from 0 to 10) was 8.6, and the application
was thought to be attractive, adequate, and appropriate for its
purpose. In another study, Griol et al [63] employed an
emotionally sensitive conversational agent for chronic
respiratory disease patients who rated this agent significantly
higher for interaction rate, frequency, and empathy than the
baseline version.
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A further 3 studies were concerned with sexual health and/or
HIV management [45,59,78]. They indicated that in this field,
conversational agents could be used for a variety of functions
such as booking an appointment, getting test results, therapy,
and event reminders [45]. In addition, the conversational agent
in the study by van Heerden et al [78] was well received when
used as a counseling tool because it was given an avatar-like
profile image and the conversation was embedded in a familiar
chat interface, which users associated with talking to another
human being. In the study by Nadarzynski et al [59], users
favored the conversational agent because of its ubiquity as a
convenient smartphone app and its ability to perform remote
services such as video consultation, potentially alleviating any
inhibitions users may have around discussing sexual health in
person.

Two studies employed an emotionally sensitive conversational
agent for mental health counselling and general health
information advice [83,88]. In the study by Liu et al [83], the
sympathetic conversational agent was rated more positively
than the advice-only condition. Another conversational agent
for well-being improvement procured positive feedback from
participants who thought it was an interesting experience, pretty
quick, and fun [88].

In 3 studies, conversational agents were used for healthy
behavior change, specifically targeting smoking cessation,
alcohol misuse treatment, and physical activity promotion
[72,73,89]. For smoking cessation, participants indicated
enjoyment when conversing with the conversational agent, and
effectiveness was also insinuated by 38.3% reporting not having
smoked in the past week and 69.4% admitting to a reduction in
smoking frequency [72]. In the study by Elmasri et al [73], the
participants (young adults) reported a higher satisfaction rate
with the use of the conversational agent to manage and treat
alcohol misuse. For physical activity promotion through the use
of a reflection companion, response rates were high (96% at
baseline, 90% at follow-up), insinuating high engagement
throughout the study. Furthermore, use of the system beyond
the stipulated study period was an indicator of viability.
Moreover, 16 of the 33 participants opted to continue without
any reward, suggesting participants found some added value in
using the conversational system [89].

Two studies examined the acceptability of conversational agents
for health care service delivery [48,87]. Outcomes were reported
qualitatively, including comments on ease of use, humanity of
the chatbot, and users’ comfort with the input functionalities
available to them as well as criticisms on technical difficulties
[48]. Bickmore et al [87] more specifically compared
conversational assistants Siri, Alexa, and Google Assistant on
their provision of health information and found satisfaction to
be lowest with Alexa and highest with Siri. Overall, there was
a neutral rating for satisfaction, with a median score of 4 (IQR
1-6) [87].

One study discussed a condition-specific conversational agent
application targeted at improving the quality of life and
medication adherence of breast cancer patients [53]. Participants
implied a positive experience when interacting with the
conversational agent, whereby 88% said it provided them with

support in tracking their treatment and mentioned that they
would recommend the conversational agent to their friends.
There was an overall satisfaction of 94% [53].

Discussion

Principal Findings
Our scoping review identified 45 studies and 2 ongoing clinical
trials. Although conversational agents have been widely
employed in various fields, their use in health care is still in its
infancy, as evidenced by the study findings that indicate much
of the literature being published recently (2016-2018). Most
conversational agents used text input and were machine learning
based and mobile app delivered. The 3 most commonly reported
themes in the health care conversational agent–related literature
were treatment and monitoring, health services support, and
patient education. Results from the studies evaluating
conversational agents were generally positive, reporting
effectiveness, accuracy, and acceptability of the conversational
agent. However, there is currently a dearth of robust evaluations
and a predominance of small case studies.

Our review shows that most of the health care conversational
agents reported in the literature used machine learning and were
long-term goal oriented. This suggests that conversational agents
are evolving from conducting simple transactional tasks toward
more involved end points such as long-term disease management
[80] and behavior change [30]. The majority of the
conversational agents identified in this review targeted patients,
with only a few aimed at health care professionals, for example,
by automating patient intake or aiding in patient triage and
diagnosis. In addition, research into the use of conversational
agents to support both formal and informal caregivers is limited
and could be a productive area to explore, given that previous
systematic reviews on the use of digital technology for
caregivers of patients with psychosis [92] or dementia [93] have
shown positive outcomes.

Our findings show a predominance of text-based conversational
agents, with only a few apps using speech as the main mode of
communication. Yet, certain populations, such as older people,
may be more comfortable interacting via speech, as some
individuals may find the dexterity involved with typing on small
keypads on smartphones challenging and time consuming.
Furthermore, most conversational agents included in our review
were app based. Research shows that the use of apps (which
need to be downloaded and regularly updated) is often associated
with high dropout rates and low utilization [94]. Such
disadvantages do not seem to apply to messaging apps such as
Facebook Messenger, iMessage, Telegram, WeChat, or
WhatsApp, which are already commonly used in the general
population. Future research should aim to overcome this
limitation brought on by smartphone apps by embedding future
health care conversational agents in platforms, which the target
population already uses regularly. The advantage of having
numerous publishing platform options is the novelty of
conversational agents over smartphone apps, and this should
be further explored.
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A recent systematic review on the effectiveness of ECAs and
other conversational agents noted a lack of an established
method for evaluating health care conversational agents in health
care and a dearth of data on adverse effects [32]. This
corresponds to our findings, with most studies being case studies
and lacking information on potential adverse effects. Side effects
to consider may relate to the content of the conversational agent
conversations, which may not be accurate, evidence based, or
suitable for the specific circumstance. For example, if a mental
health conversational agent user has suicidal tendencies, the
conversational agent may not be best equipped to handle such
a situation and may provide inappropriate advice, leaving the
user at fatal risk. Additional unwanted effects could arise from
the black box effect associated with the use of machine
learning–based conversational agents, whereby their suggestions
are somewhat unpredictable [95]. Furthermore, conversational
agents allowing for free text input may lead to significant
privacy concerns, especially for vulnerable populations, as
individuals can share private and sensitive data in conversations
[96]. There is a need for stringent certification from a regulatory
board in cases where conversational agents are given roles akin
to health care professionals.

The health care sectors for conversational agent application
identified in the review were generally very broad, with
references to only a few specialties including mental health
[97], neurodegeneration [62], metabolic medicine (obesity [47]
and diabetes [70,79]), and sexual health [68]. Future applications
could expand toward other health care fields where evidence
has suggested potential for digital health interventions such as
dermatology [98], primary care [99], geriatrics [100], and
oncology [101].

There is also a need for more geographically diverse research.
Although our review identified 12 articles with a geographical
focus in Asia, the evidence stemming from middle-income
countries was scarce, and there were no studies from a
low-income country. However, digital health initiatives are
becoming more common in developing countries, often with a
different, context-specific scope, such as ensuring access to
health care using social media [102]. To ensure safe and
effective use of solutions developed in HIC settings, there is a
need for more research to corroborate the safety, effectiveness,
and acceptability of these agents in LMICs too. Furthermore,
it is important to explore the integration of conversational agents
into the existing health systems and services. A hybrid system,
where digital technology supplements health care services, is
increasingly seen as the optimal solution [103]. This mirrors
our acknowledgment that conversational agents will be most
advantageous in supporting rather than substituting health care
professionals. In most studies, conversational agents were
developed and presented independently, unsupported by humans,
and separate from the existing health care delivery models,
which may prove unsustainable in the long run. Future research
should consider evaluating hybrid systems encompassing
conversational agents in their health care delivery, as reported

in some of the included studies where conversational agents
were complemented by frequent meetings and phone calls with
the physicians.

Although the studies reported accuracy, efficacy, effectiveness,
and acceptability as outcomes, there were no measurements of
cost, efficiency, or how the solution led to improved productivity
when used instead of or to augment the work of a health
professional. Therefore, it was not possible to ascertain whether
the solutions developed were cost-effective compared with
alternative approaches.

Strengths and Limitations
We conducted a comprehensive literature search of multiple
databases, including gray literature sources. We prioritized
sensitivity over specificity in our search strategy to capture a
holistic representation of conversational agent usage uptake in
health care. However, given the novelty of the field and the
employed terminology, some unpublished studies discussed at
niche conferences or meetings may have been omitted.
Furthermore, although classification of the themes of our
conversational agents was based on thorough analysis, team
discussions, and consensus, it might not be all inclusive and
may require further development with the advent of new
conversational agents. In addition, although some conversational
agents belong to more than 1 theme, we mostly classified them
based on the dominant mode of application for the sake of
clarity. Finally, we excluded articles with poorly reported data
on chatbot assessments; therefore, we may have missed some
health care conversational agents (Multimedia Appendix 5
[36,97,104-188]). We decided to exclude these because they
did not appear to contribute anything additional or noteworthy
to our review. The personality traits presented were guided by
a reference paper on chatbot personality assignment [43] and
also a condensation of descriptive terms from several articles.
The lack of depth and breadth in the description of the content
and development of many conversational agents led us to
organically develop a framework for this paper. This framework
is, therefore, still exploratory and adapted to suit the purposes
of this review and may well be explored and further refined
with more in-depth analysis such as previously published
frameworks [189].

Conclusions
Conversational agents are an up-and-coming form of technology
to be used in health care, which has yet to be robustly assessed.
Most conversational agents reported in the literature to date are
text based, machine learning driven, and mobile app delivered.
Future research should focus on assessing the feasibility,
acceptability, safety, and effectiveness of diverse conversational
agent formats aligned with the target population’s needs and
preferences. There is also a need for clearer guidance on health
care –related conversational agents’development and evaluation
and further exploration on the role of conversational agents
within existing health systems.
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