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ABSTRACT

Watching sports events via 3D- instead of two-dimensional video
streaming allows for increased immersion, e.g. via mixed reality
headsets in comparison to traditional screens. So far, capturing
3D video of sports events required expensive outside-in tracking
with numerous cameras. This study demonstrates the feasibility of
streaming sports content to mixed reality headsets as holographs
in real-time using inside-out tracking and low-cost equipment only.
We demonstrate our system by streaming a race car on an indoor
track as 3D models, which are then rendered in an Magic Leap One
headset. An onboard camera, mounted on the race car provides the
video stream used to localize the car via computer vision. The local-
ization is estimated by an end-to-end convolutional neural network
(CNN). The study compares three state-of-the-art CNN models in
their respective accuracy and execution time, with PoseNet+LSTM
achieving position and orientation accuracy of 0.35m and 3.95◦.
The total streaming latency in this study was 1041ms, suggesting
technical feasibility of streaming 3D sports content, e.g. on large
playgrounds, in near real-time onto mixed-reality headsets.

Index Terms: Augmented Reality—Visualization—Head mounted
display—Sport streaming; Deep learning—Image processing—
Pattern recognition—Localization

1 INTRODUCTION

Despite allowing for increased immersion, research on capturing
and streaming three-dimensional (3D) video to consumer devices
has been under-discussed and not yet been adopted by content
creators or developers. With the advent of augmented, virtual and
mixed reality devices (altogether referred to as XR) , consuming
three-dimensional (3D) video content has become more accessible
than ever before. Compared to watching two-dimensional (2D)
video on traditional screens, 3D video streaming on XR devices
allows for increased perceived immersion in relation to the displayed
content. In fact, 3D video streaming allows for content to be
perceived as more vivid, salient, enjoyable and interactions as more
natural compared to 2D videos [2]. In order to be perceived as
enjoyable, such XR applications have to run at least 60 frames
per second for a decent user experience and at least 30 frames per
second as a minimum requirement to ensure stable and smooth
movements of the displayed holograms [15]. A large latency in the
streaming pipeline would result in a poor update of the live event
and the user would miss fast-changing situations. Therefore, it is
key to get the actual position of the sport agent frequently, requiring
fast capturing and processing of video feeds to produce a 3D video
feed in near real-time, allowing viewers to observe sports events as
they unfold. Surprisingly, 3D streaming of applications or videos in
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real-time has been lacking focus of attention among researchers and
practitioners [14]. Despite the recent developments and the rapidly
increasing advances in hardware and software, the commercial
breakthrough to towards mass adoption has not yet been observed,
as most applications still remain rather simple prototypes [11].

A significant barrier towards capturing 3D video content of sports
event is the technical requirements, as the practice requires outside-
in tracking via numerous, expensive cameras, preventing most sports
events to stream 3D content in real-time. Examples of 3D video
applications in the sports domain include the commercial product
FreeD’s Replay [1]. To create volumetric replay, high tech camera
equipment is necessary. For example, to stream a 3D tennis game
match, 28 cameras with a 5K resolution have to be installed around
the tennis court [22]. The equipment cost for 3D modeling with
multi-view cameras to stream 3D sport events scales with the size
of the playground. As an example, for a soccer stadium, 38 ultra-
high-definition cameras are necessary to capture the entire soccer
field as an outside-in tracking shown in figure 1. Unfortunately,
most current approaches of modeling 3D sport events still rely on
outside-in capturing of 3D video provided by multiple static cameras
around the sports field.

Figure 1: Outside-in tracking of
a soccer stadium with 38 ultra-
high-definition cameras

Figure 2: Inside-out tracking of a
race track with one onboard cam-
era mounted on the race car

Computer vision can support generating 3D videos of sports
events at substantially lower costs by enabling systems to infer 3D
content by leveraging the current location of players (e.g. humans,
race car) from 2D video feeds. Recently, a study demonstrated
feasibility of converting 2D YouTube videos of historic soccer
matches into 3D videos [18], thereby not only enabling reviewing
old soccer matches in 3D, but also allowing generating 3D videos at
low costs. To infer the location of players on a field, a convolutional
neural network is trained on 3D data, extracted from soccer video
games to estimate the depth map of each player in every pose.
After localizing the player on the field and estimate the pose, the
trained neural network calculates the corresponding depth map.
Their solution uses the field localization approach, which only
works on fields with dominant visual features, such as a soccer
field that has pre-defined layouts (i.e. white lines, green grass, four
corners). Therefore, the approach of [18] is limited for playgrounds
with dense static mono cameras around the field, not allowing for
capturing sports content on larger outdoor areas, e.g. race tracks,
and requiring the system to be calibrated for a specific field outline
only.
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For larger playgrounds like a car or bicycle races, the costs
for generating and streaming such 3D models with multi-view
cameras would simply become unrealistically high. It is unlikely
and economically unreasonable to set up the required number of
cameras around such large tracks in order to capture 3D videos.
Similar to generating 3D videos from 2D recordings of historic
soccer matches through computer vision [18], we propose to create
low-cost 3D models from the single, but non-static, inside-out
tracking player-based point-of-view camera. This study’s approach,
therefore, demonstrates an inside-out tracking with only one camera,
mounted on the race car as shown in figure 2. This paper provides
a solution for streaming large-scale sports events, which is sparse
or not fully covered with cameras around the playground such as
racing tracks, alpine skiing or public streets [5, 26]. Our solution
uses only one onboard camera to localize the sports agent, for
example, a race car as seen in figure 2. The camera is attached to
the sports player and is a standard mono camera, which is widely
used in mobile phones or GoPros. With only one onboard camera
per sports agent, our approach does not depend on the size of the
sports playground, but on the number of players participating in the
event. To improve the localization robustness of the sports agent, we
use deep learning technology and compare several state of the art
convolutional neural networks (CNN) in regards to their accuracy
performance and observed latency. Harsh environments like big
illumination changes, blurred images or big viewpoint changes are
handled better with deep learning-based localization instead of
feature-based localization. To handle the deep learning drawback of
large computing power demand for fast execution, we run our model
on a cloud instance which delivers computing power on-demand.
Our system includes two data streams: 1) Camera video stream
from the sports agent to the cloud instance, 2) the predicted position
vector of the sports agent from the cloud instance to the mixed
reality headset.

In this paper, we propose a novel computer vision based system
that infers a players position on a playground in near real-time
via a single player-mounted inside-out camera. In the study, we
therefore primarily focus on the localization problem and the related
latency. Our experiments indicate a clear relation between position
accuracy and calculation time. However, the most accurate position
calculation is still 10x faster than the video data stream. We provide
a first demonstration of a remote-controlled race car, driving around
a small race track and stream the event to the augmented reality
headset. The main contributions of our work are summarized as
below:

• Novel end-to-end pipeline to stream sports events practiced on
large-scale playground with low-cost equipment

• Comparison between different deep learning architectures in
their position and orientation accuracy as well as in their exe-
cution time

• Time analysis between the position calculation and the stream-
ing latency

2 RELATED WORK

2.1 Sport Analysis

Computer vision (CV), convolution neural networks (CNN) and
augmented reality (AR) are extensively used in academia [10, 19]
as well as in commercial applications [1, 16] for sports analysis.
Analyzing sport content includes many tasks like segmentation,
localization, detection or environment modeling. Because most
of the sports events are practiced in stadiums, the environment is
static and therefore can be pre-modeled with RGB-D cameras [29]
or with visual odometry technique [6]. To capture free-viewpoint

navigation or 3D replays in small playgrounds including soccer,
football or basketball, multiple high tech cameras are used. Intel
FreeD provides a commercial solution for streaming volumetric
data (voxel), which can be used for sports scene reconstruction in
3D [25]. With this outside-in tracking method, 38 cameras are
necessary to capture a soccer game. To cover a larger playground
like a car race track would require more expensive high tech
cameras. A different approach uses 2D YouTube videos to create 3D
videos at low costs by applying deep learning technology to estimate
the 3D shape of the sports agent [18]. This approach reduces the
number of necessary cameras to create 3D videos. However, it
relies still on the outside-in tracking method and requires multiple
cameras around the field to track the individual sports agents.

In our approach, we use a player-mounted inside-out camera as an
input stream to localize the sports player which in our experimental
setup is a race car. Localization the camera is equivalent to localize
the race car’s position. The position vector can then be used to virtual
place the pre-modeled car in the virtual environment. Our approach
requires much less equipment (one camera per sports player) and is
hence less expensive for large scale playgrounds.

2.2 Feature Based Localization

The localization problem has been studied extensively in the last
couple of years. One solution takes geotagged images which are
stored in a database [3]. Comparing the stored images with the query
image by using different retrieval techniques gives the approximated
position of the query image. A more accurate method to localize the
camera is to use the Structure-from-Motion (SfM) technique [21].
SfM estimates all 6 degrees of freedom (DOF) by extracting and de-
scribing features with algorithms including the scale invariant feature
transform (SIFT) or binary robust independent elementary features
(BRIEF), of the query image and calculate the similarity [27] to the
keyframe features. Random sample consensus (RANSAC) is used to
reduce the outliers and the PnP or direct linear transformation (DLT)
algorithm estimates the camera pose. The accuracy heavily relies
on the extracted features. Therefore the SfM fails in texture less
environment, blurred images, strong illumination change or strong
viewpoint changes.

2.3 Machine Learning Based Localization

Considering image retrieval, convolutional neural network are com-
petitive with the feature-based methods [17]. Depending on the
application, CNN shows great potential to handle difficult lighting
or motion blur better than the traditional technique. Kendall presents
the first end-to-end, real-time pose estimation with a convolutional
neural network [12]. The paper regresses a 6-DOF pose of the cam-
era, using the spatial information of an RGB image. Based on [12],
an extended version is using the additional temporal information
along with the spatial information including a Long-Short-Term-
Memory (LSTM) [7, 8].

3 SYSTEM DESIGN

In this paper, we propose a new system to stream large playground
sports events to mixed reality headsets in near real-time. Our solu-
tion uses a single mobile player-mounted inside-out camera instead
of a magnitude of fixed pre-installed, static outside-in cameras. We
use convolutional neural network (CNN) models to infer the lo-
cation and orientation of the movements of the sports agent. The
camera feed is uploaded to a cloud-based computing infrastructure
to leverage high-speed computing on-demand for the CNN models
in real-time. A system overview is shown in figure 3. The camera
that is mounted on the sports agent (i.e. race car) with the mounted
onboard camera (race car in real-world perspective) streams images
(onboard perspective) to the cloud instance. The CNN model is
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Figure 3: Streaming pipeline for live sports events to mixed reality headset. The pre-modeled player is placed in the pre-modeled environment as
seen in the augmented individual perspective. The spectator can choose any individual perspective, including the top view perspective. The
correspondent real-time, real-world player is shown in the real-world perspective. The onboard perspective is used for the position calculation,
running on the cloud instance. The output is the position vector Pcar

running on the cloud infrastructure and calculates the position vec-
tor Pcar. The pre-modeled sports agent (race car) is placed in the
pre-modeled environment (race track). The sport event (car racing)
is rendered on the mixed reality headset and can be watched in dif-
ferent angles including top view (augmented top view perspective)
or any individual perspective (augmented individual perspective).
Similar to related study [28], we benchmark four different CNN
architectures in their localization accuracy as well as in their execu-
tion time. We also analyze the streaming latency. Decomposing the
total streaming pipeline in three components: 1) T1 video stream,
2) T2 position calculation and 3) T3 vector streaming, gives a more
detailed inside over the total streaming latency. An overview of the
streaming latency analysis can be seen in figure 4.

3.1 T1 Video Stream

Our approach uses one onboard camera, mounted on the sports
agent. The camera is a low-cost RGB mono camera, oriented in
the direction of translation. Therefore, localize the moving camera
is equivalent to localize the sports player. The number of used
cameras depends on the number of sports players and not on the
size of the playground and for that reason, it is especially interesting
for large-scale sport disciplines such as Formula 1, Tour de France
or marathons.

The player-mounted camera uploads the video stream through
a website. The frame rate of the streaming video is 30 images per
second. We use a WebSocket protocol to send the images from
the camera to the cloud instance, where our deep learning model
calculates the player’s position. The images, streamed from the

Figure 4: Overview of the streaming latency analysis

camera are stored in a memory buffer on the cloud instance. The
CNN model takes the input image from the memory buffer as soon
as it finishes with the latest position calculation. The number of
images stored in the memory buffer depends on the camera frame
rate, image upload speed and the execution time of the chosen deep
learning model.

3.2 T2 Position Calculation

Convolutional neural networks require a lot of computing power
for training and fast execution. Usually, a graphics processing
unit (GPU) is necessary to achieve rapid computing time for
real-time applications. Latest mixed reality headsets, as well

256

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 14,2020 at 15:27:52 UTC from IEEE Xplore.  Restrictions apply. 



as current used onboard cameras, do not have the hardware
capacity to run very deep CNN on their device. Therefore,
to provide enough computing power and to ensure scalability
of the solution, our deep learning model runs on cloud infrastructure.

The CNN model estimates the position P of the sports player,
based on the input image I. The vector Pi = [pi,qi] contains the

relative position vector pi ∈R
3 (equation 1) and rotation vector qi ∈

R
4 (equation 2). The rotation vector qi is represented in quaternions

because of the singularity problem or better known as gimbal lock.

pi = px · ex + py · ey + pz · ez (1)

qi = qr +qi · i+q j · j+qk ·k (2)

To calculate the absolute position Pabs,i with respect to the world
coordinate system, we transform the quaternions to the rotation
matrix Ri and multiply it with the relative position vector pi as seen
in equation 5.

Ri =

⎡
⎢⎣

1−2s(q2
j +q2

k) 2s(qiq j−qkqr) 2s(qiqk +q jqr)

2s(qiq j +qkqr) 1−2s(q2
i +q2

k) 2s(q jqk−qiqr)

2s(qiqk−q jqr) 2s(q jqk +qiqr) 1−2s(q2
i +q2

j)

⎤
⎥⎦s=|| q ||−2

(3)

pi =

⎡
⎣

px

py

pz

⎤
⎦ (4)

Pabs,i = Ri ·pi (5)

3.3 T3 Vector Streaming

We make the assumption, that the race track environment does not
change dramatically over the time of the event (e.g. during a race)
and therefore can be considered to be static. Therefore, we pre-
modeled the environment as shown in figure 6. For the race car, we
assume the car to behave as a rigid body and pre-modeled the entire
car as illustrated in figure 7.

Figure 5: Screenshot of the
streaming webpage, running on
the player-mounted camera

Figure 6: Virtual model of the re-
search lab which is used as an
indoor race track

The mixed reality headset (i.e. Magic Leap One) is connected to
the internet via a wireless network connection. The headset sends
hypertext transfer protocol (HTTP) requests to the cloud instance
to get the position vector P of the player. The placement of the
virtual player in the virtual environment, as well as the holographic
rendering, is directly executed on the mixed reality headset itself.

4 EXPERIMENTAL SETUP

4.1 3D Modeling and Video Streaming

To validate our proposed approach towards 3D streaming of sports
events, practiced on large-scale fields, we chose to emulate a racing
scenario, similar to Nascar races via an indoor round race track
inside an office building. We make the assumption, that the race
track and the body of the race car do not change over time and
therefore can be assumed as rigid bodies. For the race track, this
assumption is valid. However, for the race car, this is a strong
assumption because the moving wheels while driving and steering
violate the rigid body assumption. But considering the car model
resolution, the rigid body assumption for the car does not decrease
the user experience significantly.

To validate the localization accuracy and computing time of our
CNN models as well as the streaming latency, we set up a small
indoor race track in our lab with a remote-controlled race car of
scale 1:16 (figure 8) driving around. On top of the race car, we
mount a mobile phone, Xiaomi Redmi 6Pro, which is used as the
onboard camera. As a race track, we chose an 18 meters long,
rectangular path in our lab. The race track and the race car are
pre-modeled with the low cost depth sensor from Structure Sensor
(figure 7 and figure 6).

A streaming website as seen in figure 5, runs on the mobile phone
to stream the onboard view of the race car. The website is hosted
on the closest Amazon Web Service (AWS) cloud server. It is the
equivalent instance as our deep learning model is running. We use
the WebSocket protocol to send the images from the onboard camera
to the cloud server. In our latency analysis, the segment T1 measures
the time it needs to send an image from the onboard camera to the
input of our deep learning model.

Figure 7: Virtual model of the
race car

Figure 8: Race car with mounted
onboard camera

4.2 Position Estimation with different CNN Models

To estimate the position of our race car, we use the CNN-based
approach. Similar to [28], we estimate the position of the race car
with an end-to-end convolutional neural network. The input for the
CNN model is an image from the onboard camera and the output
is the position vector p and orientation vector q. The initial posi-
tion is a distinctive position, similar to the start grid in a real car race.

In our experiments, we compare four different CNN architectures
in their position and orientation accuracy as well as in their computa-
tional time. The network architecture can be split into three different
main steps:

• extracting spatial information

• extracting temporal information

• regression

An overview of the convolutional neural network architecture is
shown in figure 10.
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Figure 9: Top view of the research laboratory which is used as an indoor race track with the position labels (ground truth) in green and four
correspondent onboard perspectives

Figure 10: Deep neural network architecture

4.2.1 Step 1: Spatial Information

Many different CNN are available to extract spatial information.
We compare four different architectures: GoogleNet [23], Incep-
tionV3 [24], MobileNet [20] and DenseNet121 [9]. These networks
are popular ones for features extraction tasks. Training those models
would require a large training set with corresponding ground truth.
For practical reasons, we use transfer learning. All the used models
are pre-trained on the ImageNet data set. The models are fine-tuned
by reshaping the last fully connected (FC) layer to have an output
vector of 2048 dimensions. The output vector can be seen as a
unique description of the input image.

4.2.2 Step 2: Temporal Information

In a sequence of input images, recent works show an improvement
by using the temporal information as an additional resource [4].
Similar to [4], we use a long-short-term-memory (LSTM) layer with
hidden size 1024 after step 1 to capture the temporal information.
During training, after the LSTM layer, an additional dropout layer is
used with a dropout rate of 0.5.

4.2.3 Step 3: Regression

The third step contains two dense layers. One dense layer for the
output relative position vector p and one dense layer for the output
rotation vector q.

The required input format for the pre-trained CNN models are
3x224x224 for the DenseNet121, MobileNet, and PoseNet and
the InceptionV3 3x299x299. Therefore, we scale the image from
the live stream with format 3x1920x1080 down to 3x456x256

for DenseNet121, MobileNet and PoseNet and 3x568x320 for
InceptionV3. For the correct input format, we apply a random crop
on the downscaled images.

To train the whole end-to-end deep neural network, which maps
an input image I to the position vector P = [p,q], we use the Adam
optimizer [13] with the L2 loss function from [28]:

Li = ||pi + p̂i||2 +β · ||qi−
q̂i

||q̂i||
||2 (6)

p and q are the ground truth and p̂ and q̂ the correspondent
estimated position and orientation. Because of the singularity
problem, we represent the orientation in quaternions and therefore
normalize the predicted orientation to unit length. β is a hyper-
parameter which relates the orientation error to the positional
error. Because our car object has with the no-slipping constrain
only one rotational degree of freedom, we weight the orientation
error smaller than the position error and therefore set β equal to 0.33.

The position calculation is running on an AWS cloud server. The
model runs on an EC2 instance with GPU power. The instance
has a 2.3GHz Xeon E5-2686 v4 Processor and two NVIDIA
Tesla M60 graphic units with each 8GB memory. For measuring
the computing time T2 in our latency analysis, we estimate the
executing time for the position calculation function with one image
I as an input argument and the correspondent output vector P = [p,q].

After the position calculation, the position vector P = [p,q] is
send with the hypertext transfer protocol (HTTP) to the mixed reality
headset. We use the Magic Leap One headset to render and augment
our virtual race track with the virtual race car on it. The time it needs
to send the position vector from the cloud server to the mixed reality
headset is named T3 in the latency analysis. The headset is via the
wireless local area network (WLAN) connected to the internet.

4.3 Dataset

In order to train the computer vision pipeline and in particular
the four CNN models (PoseNet, DenseNet121, InceptionV3, Mo-
bileNet), a labeled dataset is required. In fact, compared to other
classification labeling tasks, position labeling is even more effort
intensive and therefore expensive and sometimes not even a suitable
tasks for humans. For training the end-to-end model, we therefore
collect nine laps on the indoor race track. With a frame rate of eight
images per second, we collect 1680 images in total for training. A
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structure from motion (SfM) pipeline is used to calculate the corre-
spondent position vector from the images. This position vector is
then used as the ground truth for training the deep learning frame-
works. An additional three laps represent the test set to evaluate the
different models in their accuracy and respective computing time.
Figure 9 shows the race track in a top view with the position labels
in green and four onboard images.

5 RESULTS

Table 1 shows the quantitative results for the different model accu-
racy in position and orientation. The presented position and rotation
accuracy is the median value of the loss function L evaluated on the
test dataset with 630 images. Figure 12 illustrates the qualitative
results for the DenseNet121 + LSTM model, evaluated on the test
data set.

Models
Position
Accuracy

Orientation
Accuracy

PoseNet + LSTM 0.41m 6.3◦

DenseNet121 + LSTM 0.35m 3.95◦

InceptionV3 + LSTM 0.49m 6.71◦

MobileNet + LSTM 0.45m 7.79◦

Table 1: Position and orientation accuracy for different CNN models

Three different scenes of our system can be seen in figure 11.
Each line illustrates one scene with four different perspectives.
The right column is the onboard perspective of the race car. The
third column from the left is what a spectator sees if he attends the
live event. At this stage, the spectator can only see one specific
perspective of the whole track without moving around. The two
columns on the left show the augmented race track and race car
in different perspective. The spectator can see an overview of the
race in the second column from the left or one specific part of the
race track as seen in the left column. The augmented model can
be rotated, shifted or zoomed to any individual perspective the
spectator prefers to watch.

The computational time for the different models on the cloud
instances is shown in column one in table 2. The last column repre-
sents the size of the weight file.

Models Computational Time Model Size

PoseNet + LSTM 42ms 68Mb
DenseNet121 + LSTM 94ms 478.3Mb
InceptionV3 + LSTM 91ms 221.4Mb
MobileNet + LSTM 69ms 125.8Mb

Table 2: Computing time for one position vector for different CNN
models

In table 3, the results for the video stream latency T1, the position
calculation T2 and the vector streaming latency T3 are presented.
The last column in table 3 summarizes the total streaming time
(T1+T2+T3) in milliseconds.

Models T1 T2 T3 Total

PoseNet + LSTM 550ms 42ms 449ms 1041ms
DenseNet121 + LSTM 550ms 94ms 449ms 1093ms
InceptionV3 + LSTM 550ms 91ms 449ms 1090ms
MobileNet + LSTM 550ms 69ms 449ms 1068ms

Table 3: Latency analysis for the whole streaming pipeline for the
different models

6 DISCUSSION

In this paper, we propose a novel computer vision based approach
towards streaming 3D video feeds of sports events in near real-time.
In particular, we propose that sports events practiced on the large
fields can be recorded in 3D by using a single player-mounted
inside-out camera. This approach yields potential over contemporary
approaches that are either expensive as they require a magnitude
of static outside-in cameras or are impractical as they require a
static court with pre-fixed visual references (e.g. soccer field). The
main contribution of this study, therefore, lies in demonstrating that
convolutional neural networks (CNN) can be used for inferring
a player’s relative position to a pre-modeled race track in order
to generate a 3D video feed of an ongoing race event within
1041ms, indicating that near real-time 3D video streaming of
large-field sports events via a player-mounted camera is possible.
More concretely, by comparing four different CNN models in
their respective performances of estimating the agents’ position
and orientation accurately as well as their required computational
times required for location inference indicate that PoseNet+LSTM
seems to be the fastest and DenseNet121+LSTM the most accurate
architecture choice for such a task.

In addition, we decomposed the total streaming latency in three
different segments (T1: Video Stream, T2: Position Calculation,
T3: Vector Streaming) and evaluated each segment and the total
streaming pipeline in their latency time. Considering the player’s
localization accuracy, the DenseNet121+LSTM outperforms the
other CNN models with an achieved accuracy of localizing the
player within 0.35m in position and 3.95◦ in orientation accuracy.
DenseNet121+LSTM is a very robust solution with only a few
outliers as seen in figure 12. PoseNet+LSTM has shown a slightly
worse accuracy with respect to inferring player position and
orientation compared to DenseNet121+LSTM. The most inaccurate
model in position is InceptionV3+LSTM with an observed accuracy
deviation of 0.49m. In respect to orientation, MobileNet+LSTM
has inferred orientation least accurately with 7.79◦ from the true
orientation. Overall, the position and orientation calculations of
all CNN models seem accurate enough to provide a decent user
experience in the augmented perspective. Taking into account the
differences in execution times for inferring the player’s position
vector from the on-board image between the different CNN models,
a clear dependency of model size and execution time can be
observed. This seems obvious, as the model size corresponds to the
number of weights stored in each model’s file. PoseNet+LSTM is
by far the fastest and lightest model with 42ms execution time and
model size of just 68Mb. With 42ms, PoseNet+LSTM would be
able to calculate the position in near real-time with a frame rate of
24 frames per second, indicating that a decent user experience is
possible. MobileNet+LSTM is a slightly CNN model with 125.8Mb
in size and already is 27ms slower than the PoseNet+LSTM. The
longest execution time was observed with the DenseNet121+LSTM
at 94ms, being equivalent to a frame rate of 11 frames per second
and a correspondent weight file of 478.3Mb. Although the model
size of PoseNet+LSTM is seven times smaller compared to
DenseNet121+LSTM, the execution time is just two times faster.

For practical reasons, our system was tested on a 1:16 down-
scaled setup, within an indoor research laboratory. The 18 meters
test track would be equivalent to a 288 meters test track in a full-size
layout, similar to roughly a third of a NASCAR race track. Despite
the usage of a smaller setup for the purpose of this study, the
streaming latency for a full-size layout and a down-sized layout
can be expected to be in the same dimension. The accuracy in
position and orientation for the full-size setup are comparable to the
results that were observed in the study’s down-scaled experiments.
Therefore, the player-mounted camera-based approach can also be
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Figure 11: Each line shows a different scene from our system in four different perspectives. Left two columns: View through the mixed reality
headset as a spectator; third column from left: Real world view of the race car; right column: Onboard camera view

Figure 12: Calculated positions with the model DenseNet121+LSTM
(red) versus the ground truth (green)

used for very large playgrounds like Formula 1 race tracks, given
that visual features allow for inference of a player’s position on the
reference model. Analyzing the latency for the streaming pipeline
clearly shows the bottleneck of streaming live sports events on large
playgrounds. With an image upload time of 550ms, video streaming
has the highest latency in our pipeline. To send the position vector
from the cloud server to the mixed reality headset needs 449ms
which is around ten times slower than the position calculation with
PoseNet+LSTM. Vector streaming is 1.22 times faster than video
streaming, although the size of the position vector is 8290 times
smaller than the streamed image. The total streaming latency with
the fastest CNN model is 1.041 seconds (i.e. PoseNet+LSTM).
This 1.041 seconds streaming latency causes a delay in the position
transmission and is a limitation in the frequent localization updates
of the sports agent. As a consequence, the spectator does not
observe what is happening between the first 1.041 seconds of an
event. Depending on the sports player’s speed and on the scale of the

event, this streaming latency can cause an inferior user experience.
Generally, the computing time for the position vector is negligible
compared to the streaming of the images or the position vectors.
For this reason, we implemented the DenseNet121+LSTM which
gives the best localization accuracy and user experience in our demo.

The inside-out tracking approach demonstrated an economically
superior, alternative solution to streaming large-scale 3D sports
events by using a single agent-mounted camera. The possibility to
place yourself in any individual perspective or watch a race in a
top view creates new use cases for augmented as well as for virtual
reality. The approach suggested in this paper, therefore, is especially
interesting for non-professional sports disciplines and represents
an opportunity to extend 3D streaming of sports to more inclu-
sive domains (e.g. less financially affluent leagues or disciplines).
Complementary to this paper, a demo video will be published to
demonstrate the enriched experience for a spectator, watching a car
race through the Magic Leap One headset.

7 FUTURE WORK

Although this study demonstrates the feasibility of streaming 3D
renderings of large-scale sport events in near real-time, the results
need to be understood as being subject to several limitations. First,
the generalizability to other race tracks and sports arenas needs
to be demonstrated. While it could be that similar race tracks
could work equally well, sport arenas with limited visual feature
variety might prove more challenging for inference of accurate
player position from first-view inside-out tracking cameras. In
addition, to further lower the latency in video streaming, further
investigation in video compression has to be done. Third, faster
network connections (e.g. 5G) are very promising solutions towards
lowering the streaming latency of 3D video feeds. Therefore, the
system proposed in this study might even show higher performance
in the future given increased connectivity. Fourth, further research in
combining different localization sensors (including wheel odometer,
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differential global positioning systems) would increase the position
and orientation accuracy and make it even more robust against
anomalies. Another source of data for sports practice on streets
like Tour de France could also be street-based image material, e.g.
Google Street View. Fifth, investigation in dynamic modeling of
3D shapes instead of using one rigid body would increase the user
experience, as the view could be customized based on a current
perspective. For example, for video games (e.g. Formula 1), the
user experience could be further increased by using the car model
assets and race tracks from the video game directly. Finally, video
games could also be used to generate more training data for the
convolutional neural network.

As most of the limitations and future work packages would rather
strengthen the accuracy of the computer vision framework and
lower the latency observed in this study, it can be expected that the
demonstrated performance of the proposed system could be further
improved in the future, given improved accuracy from sensor fusion
and increased connectivity.
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