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ABSTRACT 
The rise in diet-related non-communicable diseases suggests that 
consumers find it difficult to make healthy food-related purchases. 
This situation is most pertinent in fast-paced retail environments 
where customers are confronted with sugar-rich or savory food 
items. Counter-measures such as front-of-package labelling are 
not yet mandated in most regions, and barcode scanning mobile 
applications are impractical when purchasing groceries. We thus 
applied a mixed reality (MR) wearable headset-mediated 
intervention (N = 61) at vending machines to explore the potential 
of passively activated, pervasive MR food labels in affecting 
beverage purchasing choices. Through conduction of a between-
subject randomized controlled trial, we find significant, strong 
improvements in nutritional quality of the selected products 
(Energy: -34% KJ/100ml, Sugar: -28% g/100ml). Our post-hoc 
analysis suggests that the intervention effect is especially effective 
with existing food literacy. This study motivates further research 
on MR food labels due to the promising, observed intervention 
effects.  
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• Consumer health • Human computer interaction (HCI) • 
Information visualization • Empirical studies in visualization   

KEYWORDS 
Mixed reality, Nutri-Score, Food labels, Product selection 

ACM Reference format: 

Klaus Fuchs, Tobias Grundmann, Mirella Haldimann and Elgar Fleisch. 
2019. Impact of Mixed Reality Food Labels on Product Selection: Insights 
from a User Study using Headset-mediated Food Labels at a Vending 
Machine. In Proceedings of ACM MADiMa '19, October 21, 2019, Nice, France. 
ACM, New York, NY, USA. 8 pages. https://doi.org/ 
10.1145/3347448.3357167 

1 Motivation 
Unhealthy food choices are a known risk factor that contribute to 
the increasing prevalence of non-communicable diseases and 
premature deaths [44, 45]. In particular the consumption of sugar-
sweetened beverages in this context have been highlighted [30, 
35]. Consequently, dietary intake has become a recognized public 
health priority [10], and support for healthier food selection 
behavior is of key importance to achieve changes in consumer 
behavior and population health [23].  

To address this issue, selected national regulators have begun 
to introduce front-of-package labels (FoPL), that indicate the 
degree of nutritional quality for a packaged food item. The 
important advantages of FoPL in comparison to back-of-package 
(BoPL) declaration of nutrients and daily intake estimates are their 
color-encoding and immediate visibility before making a purchase. 
Such FoPL include most notably the Multiple Traffic Light (MTL) 
and the Nutri-Score (NS) [22, 38] and have been shown to 
positively influence food choices [22, 25]. Despite growing 
evidence between FoPL and healthier food choices, most 
consumers cannot benefit from FoPL today, as only very few 
countries have successfully implemented FoPL at significant scale. 
Multiple barriers to FoPL label adoption exist. First, regulators may 
be confronted with resistance from retailers, brands or 
manufacturers who worry about negative economic impacts due 
to increased administrative and logistical efforts associated with 
the introduction of mandatory food labels. Second, companies and 
retailers that offer potentially ‘negatively’ labelled foods fear 
declining revenues [41]. Third, societies and public debates might 
turn against regulators, since individuals may dislike being 
patronized by regulators about dietary consumption. 
Consequently, only few countries have successfully managed to 
introduce FoPL, including Australia with the Health Star Rating 
(HSR) [38], France with NS or England with the MTL label [22]. As 
a result, today most consumers cannot yet benefit from easy-to-
compare FoPL on their food choices. 

As a result of these developments, a series of barcode scanning 
mobile Health (mHealth) applications have been developed with 
the intent to display support healthy food choices, for example by 
displaying FoPL in absence of such regulation [6, 9, 31]. These 
apps are seen as an inclusive and scalable support system for 
healthy food [7]. However, the prevalence of such apps remains 
limited and many suffer from self-selection bias [27] and low rates 
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of retention [36]. Several factors appear to limit the impact of such 
technology-based interventions. First, the manual activation 
hinders continuous usage [16], as users must actively remember to 
manually scan barcodes of all purchased products. Second, to 
actively scan a barcode requires aligning smartphone and 
products, requiring both hands of the consumer, which is usually 
impossible, as customers are usually not hands-free during 
shopping, e.g. carrying bags or products [12, 36]. Third, studies 
show that current diet-related mHealth are usually primarily 
retained by users with an above average interest in nutrition [28], 
an interest that is particularly not often prevalent amongst 
sociodemographic segments prone to diet-related diseases [13, 27].  

In order to overcome the shortcomings of current food label 
practice and barcode scanning mHealth, there exists thus the 
potential for the joint application of FoPL and wearable, mixed 
reality (MR) headsets. MR headsets such as Microsoft HoloLens or 
MagicLeap One are expected to be increasingly adopted by 
consumers in the near future and offer multiple advantage in 
supporting healthy food choices. For example, MR headsets feature 
multiple continuously active cameras that scan their nearby 
environment and can discover packaged products through 
computer vision without requiring active user input [40]. Such MR 
headsets also allow for the display of three-dimensional 
visualization of interventions, because spatial computing allows 
for relative positioning of visualizations to the user’s field of view 
and detected objects, thereby achieving high degrees of presence, 
salience and immersion, important prerequisites for interventions. 

2 Related Work 
Computer vision (CV) as an alternative, less intrusive method to 
scanning product barcodes has been by multiple scholars, offering 
higher degrees of ease-of-use and pervasive monitoring  [11, 15, 
36, 42]. Through computer vision [36], wearable MR headsets can 
detect nearby packaged products and display FoPL, thereby 
overcoming some of the drawbacks of current barcode scanning 
mHealth. Specifically, wearable headsets do not require the wearer 
to manually align camera and product barcode but rather rely on 
built-in cameras that constantly produce an interpretable video 
feed [16]. Therefore, they allow the wearer to remain hands-free 
during object detection is especially important during the usually 
fast-paced food selection processes. In addition, automatic 
detection of packaged products through CV do not rely on the 
customer’s salience, involvement or interest in nutrition to 
remember or remain willing to actively scan barcoded products. 
Last, but not least, another important advantage of wearables in 
this context is the possible assessment of packaged products even 
when a barcode is hidden or absent, as can be the case in vending 
machines where products are usually positioned front facing and 
barcodes and ingredient declaration usually remain hidden [32]. 

To detect packaged product within retail environments from 
the MR headset’s video feed, different approaches have been 
suggested and validated. Ever since the development of ImageNet 
[29], increasingly more complex architectures have been 
developed to recognize objects from images, such as convolutional 

neural networks (CNN) (e.g. MobileNet [34], ResNet [17], 
DenseNet [18]) or more recently, generative adversarial networks 
(GAN) [3]. Different, recent studies have demonstrated the 
feasibility to recognize packaged products through computer 
vision on a large scale from labelled images [14, 26, 39, 40].  

Counterintuitively, given the technological feasibility to 
identify packaged products from images or video feeds 
automatically, it seems surprising that existing research on MR 
mediated purchase interventions has so far rather remained in a 
rather nascent state. Until today, studies on MR-mediated 
interventions for supporting consumers in selecting healthy food 
items have so far focused on the general design of such novel 
interventions, mainly demonstrating early-stage prototypes, or 
conducting field studies using smartphones rather than headsets. 
For example, smartphone-mediated MR application have been 
designed to leverage CV in supporting consumers in identifying 
vegetables [43], to estimate portion sizes of composed dishes [5, 
37], to help users navigate around the supermarket and discover 
healthy food items [1]. Smartphone-based MR applications were 
found to be easy-to-use [1], to alter consumer behavior [4, 19], and 
to positively improve food choices [19], yet still suffer under 
similar shortcomings when compared to barcode scanning 
applications, i.e. requiring constant manual holding of the device, 
seen as inconvenient during shopping. 

In contrast to smartphone-mediated MR interventions to 
improve food choice, headset-mediated MR interventions can be 
used handsfree by the user. For example, a Google glass based 
intervention was found feasible to automatically detect vegetables 
and fruits through computer vision, enabling food monitoring and 
interventions [21]. El Sayed demonstrated a variance of MR 
visualizations aimed at improving user performance on search, 
selection and rank tasks on supermarket shelves [8]. Similarly to 
smartphone-based applications, also wearable cameras were 
shown to be effective in monitoring consumption of composed 
dishes using computer vision [2]. Microsoft even patented a 
wearable headset able to deliver MR interventions for eating 
activities [20]. Albeit the overall feasibility of MR headset-
mediated interventions on food selection has been shown, little is 
known about their potential impact on user choice, and about 
users’ opinion on such a system’s performance.  

Therefore, this study represents one of the first in-the-wild 
validations of mixed reality mediated purchase interventions 
aimed at improving food choices. In this exploratory study, we 
were thus interested to examine the potential of wearable, MR 
headsets in a common food selection context: vending machines. 
Specifically, this study assesses whether food cues in form of FoPL 
can influence the preference and selection for healthy or 
unhealthy foods. This field study with vending machines examines 
whether FoPL via wearables lead to more sales of healthy over 
unhealthy foods compared to regular selection. The aim of this 
paper is then to describe the development and functionality of the 
implemented application, report usage and experience statistics, 
and discuss the implications of our findings. 
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3 System Design 
In the following, the trial setup composed of a vending machine, 
packaged products, wearable headset and the study application 
will be introduced. The decision was made to trial mixed reality 
wearable headsets at a vending machine setup for four reasons. 
First, vending machines represent sources of predominantly 
unhealthy food items, especially rich in sugar and saturated fats. 
Second, vending machine users tend to be prone to consumption 
of processed foods, a behavior suspected to correlate with diet-
related diseases in the long run. Third, the product assortment of a 
typical vending machine is limited and rather static, so that 
manually collecting ingredient data is feasible for training of a 
computer vision-based system. Fourth, in order to develop a mixed 
reality application, the fixed grid of the vending machine offers an 
ideal layout that can be used as digital anchor in order to map 
interventions relative to respective products and the machine.  
 

 
Figure 1: System setup with user, headset, vending machine. 

3.1 Vending Machine 
For the trial, we wanted to choose a representative vending 
machine. We therefore selected Selecta (Figure 1) since they are 
the European market leader with 125’000 machines worldwide, 
with which they cater to 5 million consumers a day. Specifically, 
we conducted the user trial at vending machines at the Zurich 
main train station in Switzerland, where Selecta claims to reach 
10% of the Swiss population daily. Additionally, as most Selecta 
machines are similarly or even equally assorted, choosing the 
vending machine as study subject increases the applicability of 
this study since its impact goes beyond the few machines used in 
the study and could potentially be reproduced and applied in 
similar form across vending machines internationally.  

3.2 Food Labelling and Focus on Beverages 
In terms of designing the mixed reality intervention on improving 
food selection, we consulted together with dietary experts from 
the Swiss Society for Nutrition (SGE-SSN). Together with the SGE-
SSN’s dietary experts, the decision was made to focus the MR 
headset-mediated intervention on beverages for multiple reasons. 
First, in particular the consumption of sugar-sweetened beverages 
have been shown to play a major role in the increased prevalence 
of diet-related diseases [30, 35]. Second, the Selecta machine offers 

a equal distribution of beverage products ranging from healthy 
(e.g. mineral water) to unhealthy items (Table 1), thereby offering 
ideal substitutes for consumers to choose from. To label the 
different food items, we decided to draw on the Nutri-Score (NS) 
framework [24] for three reasons. The NS includes visual food 
quality cues that can be displayed with MR. Second, growing 
evidence exists that already links this form of FoPL with healthier 
food choices in purchasing environments [23].  Third, the NS 
framework includes a beverage-specific rating for nutritional 
quality. Therefore, the intervention relied on a Nutri-Score, when 
study participants considered purchasing beverage items (“drinks”) 
at the vending machine. 
 
Table 1: Available Products in Vending Machine (N=43) 

 
In order to realize the Nutri-Score in its original, intended 

form, not only the products’ nutrients, but also their relative share 
of fruit, vegetable and nuts requires accounting, as the Nutri-Score 
credits such ingredients with a bonus on the score. In the context 
of the vending machine, none of the products fulfilled the 
minimum criteria of at least 40% though. Although ‘snack’ items 
could have been added to the study, we ultimately decided against 
this inclusion to study the headset intervention’s effect in the 
presence of healthy substitutes (i.e. for snacks, there exists an 
assortment biased towards unhealthy items which in addition vary 
strongly in their characteristics, as for example chewing gums 
might not be a perfect substitute for a chocolate bar). Examining 
the vending machine content (see product characteristics and NS 
ratings in table 1), available types of snacks were skewed towards 
unhealthy Nutri-Scores from B to E. 

3.3 Product Selection 
For realization of the study, we purchased all products available in 
the vending machine and manually entered their properties 
including nutritional composition in a database hosted on a 
dedicated server. In total, the number of products (snacks and 

Snacks 
      Weight (g) 
      Price (CHF) 

Mean (SD) 
58.2 (26.8) 
2.77 (0.63) 

Snacks in VM by Nutri-Score 
      A (Healthy) 
      B 
      C 
      D 
      E (Unhealthy) 

Count (%) 
0 (  0%) 
3 (13%) 
6 (26%) 
7 (30.5%) 
7 (30.5%) 

Drinks 
      Weight (ml) 
      Price (CHF) 

Mean (SD) 
400 (118.3) 
3.18 (0.61) 

Drinks in VM by Nutri-Score 
      A (Healthy) 
      B 
      C 
      D 
      E (Unhealthy) 

Count (%) 
4 (20%) 
4 (20%) 
4 (20%) 
4 (20%) 
4 (20%) 

VM: Vending machine. 
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beverages) available over the course of the trial preparation in the 
vending machines was 60. However, because of cyclical changes in 
the product assortment by Selecta, and the focus on beverage 
items, the final product universe that was available in the user 
study was a reduced set of 20 products that users could choose 
from for their purchases (Table 1). Beverages in the vending 
machines used in this trial contained on average 400ml and had an 
average cost of CHF 3.18 with a rather small standard deviation, 
indicating a more or less identical price across different types of 
beverages. Available types of beverages were equally distributed in 
regard the degree of nutritional quality according to Nutri-Score 
from A to E (Table 1) and included mineral water (still and 
sparkling), energy drinks, energy reduced and sugared soft drinks.  

3.4  Headset and Mixed Reality Intervention 
This study on MR purchase interventions has been realized on a 
Microsoft HoloLens device. The implemented study application by 
the name ‘HoloSelecta’ was developed as a universal windows 
platform (UWP) and was developed in Unity (Version: 2017.4 LTS) 
and C#, .Net Mono and made substantial usage of the Microsoft 
Holo-Toolkit 2017.4.3, pre Mixed-Reality-Toolkit. The application 
made use of the following features: MixedRealityCamera-Parent 
(including Camera, Motion Controller, and Boundary), Default 
Cursor and Spatial Mapping, Input Manager (with 
MouseInputControl, TouchInputControl, GesturesInput, 
EventSystem, and ControllerPointStabilizer).  

For the conduction of the in-the-wild field study on the impact 
of MR interventions on purchase decisions, we needed to ensure a 
fast detection on products relative to the headset wearer’s 
position, to prevent latencies in object detection to impact the 
user’s decision. Therefore, to guarantee a stable user study without 
waiting times for the identification of products, we hard-coded the 
relative position and mapping of products to the fixed vending 
machine layout. This enabled instant visualization of the Nutri-
Scores and product details for a user. This layout is actually 
equivalent for almost all Selecta vending machine in Switzerland; 
thus the positions of the hardcoded layout could be re-used for 
other machines as well. The main visual objects of the app include 
the machine layout, 49 boxes that surround each possible product, 
an explanation menu that comprises a start button and 
introductory explanation text, and a sub-menu, utilized to display 
nutrients about a particular product. We did in fact also implement 
the object detection and image classification for the in total 60 
possible products that were available in the vending machine 
during the user study (due to changing assortments), using CNNs 
and image pooling, thereby achieving high accuracy rates for 
detection for all products within one second. The approach and 
performance of the computer vision implementation will be 
published in a separate study. Given the feasibility of fast, reliable 
object detection and classification, this study builds on the 
assumption that in the near future, such detection of packaged 
products will be available for most retail environments in the near 
future. The visualized objects, including the Nutri-Score frames 
and detailed nutrient displays (Figure 2) were designed with 
FreeCAD and the remaining components (e.g. menus, buttons) 

were created from Unity UI elements. To scale all boxes of the 
layout simultaneously, the boxes are aligned on an invisible quad, 
which has the side ratios of the original machine. Each box 
includes a box collider and a script based on the IInputHandler and 
IInputClickHandler from the Holo-Toolkit. This script allows 
feedback to a user clicking on any of the boxes, for example for 
presenting the nutrients or other data. The board displaying the 
detailed nutritional information applies the product key to query 
all the nutrients and the respective colors, and the submenu 
adjusts the layout accordingly. The layout submenu for treatment 
(TG) and control group (CG) exist simultaneously, and at setup 
time either one or the other are set active. The product database is 
specified as an object in the C# code. Also, the nutrients for the 60 
possible products in the Selecta vending machine were cached 
locally on the HoloLens device to minimize interaction time. At 
setup time, each box in the vending machine is assigned a product 
key, which grants access to all the displayed nutrients at runtime. 
Even if the allocation of products onto boxes changed (e.g. by 
introduction of a new product), respective changes could be made 
relatively fast, and the updated app could be re-deployed on the 
study device within minutes, after retrieving the new product data 
including nutrients from the study’s server. The nutrients include 
energy, sugar, saturated fat, sodium, protein, fiber, the share of 
fruit/vegetable/nuts (for calculation of the Nutri-Score), as well as 
the respective Nutri-Score value ranging from A (healthy) to E 
(unhealthy). In addition, each product was labeled as being a 
“Snack” or “Drink” based on the product identifier allocated to 
each box. Before each new user could use the app, the supervisor 
prepared the headset and HoloSelecta app. As the entire 
experiment (i.e. TG and CG) was implemented within one app, the 
supervisor manually entered the user identifier and user allocation 
on the headset prior to each new user receiving the headset. In 
addition, the supervisor selected the menu language (English or 
German) for each user and re-calibrated the vending machine 
layout to fit perfectly onto the box grid, using hand gestures to 
manually position the simulated quad onto the four corners of the 
vending machine window. The machine transformation 
(transpose, scale and rotate around the y-axis), is handled through 
the TwoHandManipulatible which is provided with the Holo 
Toolkit. This allows the tester to transform the quad layout of the 
machine to create a perfect fit with the real machine.  

Besides the manual mapping we also investigated automated 
tracking through markers, scaling to three-point ray traces and 
transposing along a sticky surface. However, all of those versions 
still required the ability to adjust the machine manually, since the 
spatial mapping tends to be erroneous due to the reflecting glass 
window in the machine. To support the mapping from virtual to 
reality, the machine sized quad was displayed with 50% 
transparency. The spatial map was displayed during the machine 
mapping to ensure the machine was not hidden behind the spatial 
map during the experiment. Around 20 times per second the app 
logs all the interactions of the user, including the center of view, 
the status of the submenu and which product is selected. This 
tracking together with the survey is sent to a server for continuous 
evaluation and stored on-device for persistence. 
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4 Methodology 

4.1  Experiment Design 
The aim of the study was to examine the impact of a MR headset-
mediated nutrition label, in this case Nutri-Score (NS) on actual 
food selection. To this end, we conducted a non-blinded, 
supervised randomized controlled trial RCT with follow-up survey 
involving 61 users at a vending machine at the main train station 
in Zurich, Switzerland. During the trial, users were either allocated 
either to a treatment group (TG) that received the Nutri-Score in 
color (Figure 2, right) or to a control group (CG) that received 
white frames (Figure 2, left) during the purchase process.  

We used convenience sampling for this study, as users were 
pro-actively asked for their participation by the study supervisor 
when they approached the vending machine area. Initially, the 
supervisor would set a new three-digit user identifier on his 
laptop. Next, the supervisor would ask the prospective user for a 
short introductory survey after initialization of the survey with the 
respective user identifier and user language. The user would enter 
information on gender, age and education. In addition, the 
supervisor would guess the height and weight of the user for 
sampling. The decision not to ask the user directly for age and 
gender was made in order to not prime the users towards wanting 
to select healthy food items. The correct weight and height were 
collected in a post-hoc survey after usage of the HoloSelecta app. 
After the user completed the introductory survey, the supervisor 
retrieved the pseudonymized data on his machine. Next, an 
algorithm decides to place the user into either treatment group or 
control group based on balanced sampling, such that the sum of 
differences between the groups for each the basic items (age, 
gender, (estimated) height, (estimated) weight, education) is 
minimal, with the goal to have balanced samples between TG and 
CG. When the user received the HoloLens device, he was 
presented with a welcome screen and tutorial which explained the 
control of the app via head movement and clicker by showing an 
overview of available snacks (and the corresponding Nutri-Scores 
for the TG, or white frames for the CG). The decision was made to 
use the HoloLens Clicker for product selections in the app instead 
of gestures, since gestures by novice users might not have been 
detected immediately.  

After the tutorial, the experiment would require the user to 
conduct the four following choice tasks. Each task was described 
on an explanatory screen, before the user was able to begin the 
task. For the first task, users were asked to purchase a beverage of 
their own choice. Second, users were asked to select the healthiest 
beverage. During each task, the users were only allowed to select 
one box related to the task. If the user pre-selected any displayed 
box, he was presented with a submenu that revealed further 
information, including the nutritional values for the treatment 
group or general product information for the CG (Figure 2). Via 
the “Select” button, users were able to purchase their respective 
selected product and finish the task. The selections made were 
logged under each user identifier. Finally, the user underwent a 
final, post-hoc survey including items on usage antecedents and 

randomization checks (Table 4). All items were scored using a 7-
point Likert scale (1:  strong disagreement to 7: strong agreement). 
The final survey marked the end of the experiment, and each user 
was awarded the selected items for free. 

4.2  Data Analysis 
The analysis for general characteristics and education levels of 
subjects was performed by frequency analysis to obtain frequency 
(n) and percentage (%). Chi-square and independent sample t-tests 
were used to test for differences in the background characteristics 
(age, level of education, BMI) of the experimental and control 
users. Collected questionnaires were coded into numbered data 
using a spreadsheet program, and all statistical analyses were 
performed using Python. Significance between treatment and 
control group were measured by Mann-Whitney U tests since our 
sample did not follow a normal distribution. Additionally, we 
thematically examined user feedback and integrated vignettes into 
the results and discussion to underscore individual findings 
whenever possible.  
 

 
Figure 2: Mixed Reality Intervention: left) CG selecting 
beverages (with details), right) TG selecting beverages. 

5 Results 

5.1  Descriptive Statistics 
Participants included in the study had a mean age of 29.83 (SD = 
13.38) years, 33% were female, and 53% tertiary educated. While 
56% of the study participants stated that they rarely use vending 
machines, 21% of users reported monthly usage and 16% reported 
weekly or daily usage. We did not find any significant differences 
between the Treatment Group (TG) (N=31) and Control Group 
(CG) (N=30) across any of the sample dimensions, indicating a 
successful randomization for the RCT (Table 2 and Table 4).  

5.2  Experiment Results 
In regard to purchasing a beverage of own choice, significant 
differences were observed. Users with the Nutri-Score intervention 
selected products with on average -5.8 Nutri-Score points, with 
28% less sugar and 34% less calories per 100ml, albeit only on a 90% 
confidence interval. The Nutri-Score reduced from 4.8 (CG) down 
to -0.97 (TG) (Scale -15 = healthy to 40 = unhealthy). Sugar content 
of the selected beverage reduced from 6.79g/100ml (CG) down to 
4.88g/100ml (TG). Energy content of the selected drink reduced 
from 33.47KJ/100ml (CG) down to 22.03KJ/100ml (TG).  
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Table 2: Sample Description (N=61) 
Age (years) 
 

Mean (SD) 
29.83 (13.38) 

Weight (BMI) 
      underweight 
      normal 
      overweight 
      obese 

Count (%) 
  2 (  3.3%) 
46 (75.4%) 
  7 (11.5%) 
  6 (  9.8%) 

Gender 
      female 
      male 
      other 

Count (%) 
20 (32.8%) 
38 (62.8%) 
  3 (  4.9%) 

Education 
      primary 
      secondary 
      tertiary 
      NA 

Count (%) 
12 (19.7%) 
14 (23.0%) 
32 (52.5%) 
  3 (  4.9%) 

VM usage frequency  
      infrequently 
      monthly 
      weekly 
      almost daily 
      NA 

Count (%) 
34 (55.7%) 
13 (21.3%) 
  5 (  8.2%) 
  5 (  8.2%) 
  4 (  6.6%) 

Wearable headset experience  
      none at all 
      some (e.g. tried before) 
      a lot (e.g. frequent usage) 
      NA 

Count (%) 
26 (42.6%) 
29 (44.3%) 
4 (  6.6%) 
4 (  6.6%) 

VM: Vending machine. 
 

 
Table 3: Comparison between Treatment Group (N=31) and 
Control Group (N=30) for task 1) Select an item of your 
choice, task 2) Identify the healthiest beverage available. 

      Item 
Task 

Beverages 
ΔTG-CG P 

1. Select 
NS  
Energy  
Sat. Fat 
Sugar 
Salt 
Protein 
Fiber 

-5.8 
-11.4 (-34%) 
+.02 (+66%) 

-1.91 (-28%) 
0 (0%) 

+ .11 (+48%) 
0 (0%) 

0.009* 
.06 
.37 
0.049* 
.43 
.38 
.50 

2. Identify 
NS 
Energy  
Sat. Fat  
Sugar 
Salt 
Protein 
Fiber 

-0.8 
-1.26 (-67%) 

0 (0%) 
-0.29 (-66%) 

0 (0%) 
-0.02 (-100%) 

0 (0%) 

.27 

.27 

.16 

.28 

.35 

.16 

.50 
* : significant at 5% level  

 

Table 4: Nutrients of Selected Beverages for users differing 
in BMI, Education and Food Literacy 
BMI 
 BMI >25kg/m2 BMI ≤ 25kg/m2 

P TG 
N=7 

CG 
N=3 

P TG N=22 CG 
N=26 

M (SD) M (SD) M (SD) M (SD) 
NS 0.010* -12.7(6.1) 3.7(3.5) .068 2.9(8.1) 5.0(8.1) 
EN 0.005* 0.4 (1.1) 41.3(23.6) .41 28.8(20.6) 33.2(29.8) 
SF 0.017* 0.0(0.0) 0.2(0.3) .07 0.1(0.2) 0.0(0.0) 
SU 0.003* 0.0(0.0) 7.8(3.0) .28 6.4(4.3) 6.8(4.6) 
SO .101 0.0(0.0) 0.0(0.0) .28 0.0(0.0) 0.0(0.0) 
PR 0.017* 0.0(0.0) 1.7(2.5) .23 0.5(1.3) 0.1(0.2) 
DF 0.5 0.0(0.0) 0.0(0.0) 0.5 0.0(0.0) 0.0(0.0) 
FNV .10 0.0(0.0) 0.0(0.1) .40 0.0(0.0) 4.6(16.3) 

Education 
 Education high Education low 

P TG 
N=17 

CG 
N=15 

P TG N=12 CG 
N=14 

M (SD) M (SD) M (SD) M (SD) 
NS .07 -3.3(10.5)  2.7(8.2) 0.049* 1.0(10.2) 6.6(6.7) 
EN .29 21.2(24.0) 26.8(31.7) .07 21.6(20.0) 39.4(25.2) 
SF .24 0.1(0.2) 0.1(0.2) .34 0.0(0.0) 0.0(0.0) 
SU .31 4.4(4.7) 5.0(4.6) .07 5.1(5.0) 8.4(3.4) 
SO .45 0.0(0.0) 0.0(0.0) .47 0.0(0.0) 0.0(0.0) 
PR .40 0.6(1.5) 0.4(1.2) .19 0.0(0.1) 0.1(0.2) 
DF .50 0.0(0.0) 0.0(0.0) 0.5 0.0(0.0) 0.0(0.0) 
FNV .43 0.0(0.0) 4.0(15.5) .18 0.0(0.0) 4.3(16.0) 

Food Literacy (FL) 
 FL >3.5 FL ≤ 3.5 

P TG 
N=25 

CG 
N=25 

P TG N=6 CG 
N=4 

M (SD) M (SD) M (SD) M (SD) 
NS 0.025* -0.8(10.5) 4.6(8.1) .13 -1.8(10.3) 6.0(4.9) 
EN .17 23.5(23.2) 32.7(30.3) .052 16.0(14.6) 42.3(20.1) 
SF .31 0.1(0.2) 0.0(0.0) .38 0.0(0.0) 0.2(0.3) 
SU .11 5.2(5.0) 6.5(4.6) .052 3.7(3.4) 9.0(3.2) 
SO .30 0.0(0.0) 0.0(0.0) 0.033* 0.0(0.0) 0.0(0.0) 
PR .42 0.4(1.2) 0.1(0.2) .38 0.1(0.2) 1.1(2.3) 
DF .50 0.0(0.0) 0.0(0.0) .50 0.0(0.0) 0.0(0.0) 
FNV .10 0.0(0.0) 4.8(16.6) .27 0.0(0.0) 0.0(0.0) 
* : significant at 5% level, N varies as answers were skippable 
NS: Nutri-Score, EN: Energy in KJ/100ml, SF: Saturated Fat, SU: 
Sugar, SO: Sodium, PR: Protein, DF: Dietary fiber, FNV: Share of 
fruit/vegetable/nuts 
P: P value, M: Mean, SD: Standard deviation 
Healthiest mean values for each nutrient in bold 

 
When selecting the healthiest beverage, no significant 

differences between TG and CG were observed. The average 
Nutri-Score went from -13.48 (CG) down to -14.37 (TG), both very 
close to the perfect score of -15, as most users correctly selected 
mineral water to be the healthiest drink, a widely known fact that 
even most users in the control group were well aware of. 
Qualitative feedback in both, TG and CG, included spontaneously 
remembering mineral water being the healthiest, when being 
asked to identify the healthiest beverage. This correct 
identification of the two different mineral waters as being the 
healthiest options seems possible for most users, with only few 
selecting orange juices to be the healthiest option.  
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When comparing overweight (BMI over 25kg/m2) to non-
overweight users, the intervention seems more effective among 
overweight users (Table 4), while both, overweight and non-
overweight users have seen improved values for sugar, energy and 
Nutri-Score for the selected beverages when receiving the 
intervention (TG). When comparing higher educated (e.g. tertiary 
education) to less educated users, the intervention seems to 
supportive for both segments: Less educated users experience a 
significant improvement of the Nutri-Score of the selected 
product, while higher educated citizens choose healthier products 
on average. Similarly, pre-existing food literacy (measured on a 
food literacy questionnaire) correlates with significant 
improvements in the Nutri-Score of selected products. Still, also 
less food literate users experience improvements for Nutri-Score, 
sugars and energy of the selected products. Further statistical tests 
comparing overweight versus non-overweight, highly educated 
versus less educated, food literate versus illiterate receivers of the 
intervention do not suggest that either group shows significantly 
better task performance through the intervention.  

5.3  Survey Results 
All participants filled in a final survey regarding usage antecedents 
and additional randomization checks. All items were encoded as 7-
stage Likert scales, ranging from 1 (strong disagreement) to 7 
(strong agreement). All users stated on average positive usage 
antecedents, with all of the five constructs indicating an average 
value ranking higher than the neutral value of 3.5 (on usage 
intention, performance expectancy, social influence, hedonism, or 
feeling observed). Between all study participants, users with 
intervention treatment (TG) expressed significantly higher 
intention for future use (esp. if the app was available on 
smartphones), to recommend the app, and had a higher opinion 
about the app. Also, TG users perceived the application’s 
performance significantly higher, i.e. more helpful, educative, 
enabling faster and healthier product decisions, more supporting 
for start or maintenance of a healthy diet. Also, social influence 
was rated higher by TG users, stating that society, friends, family 
were supportive of such an application. Interestingly, users of both 
groups felt rather unobserved and claim to have selected their 
‘true, unbiased’ behavior. Also, the users indicate to have enjoyed 
the HoloSelecta experiment and consider the experience ‘fun’, and 
‘exciting’. Both, TG and CG did not differ in food literacy, personal 
innovativeness, previous experience with wearable headsets. 
Therefore, neither group had an unfair advantage in selecting 
healthy food items with the wearable headset (Table 5). Lastly, 
there were no significant differences in time taken between both 
groups to complete the four tasks and survey. 
 
 
 
 
 
 

Table 5: Survey Comparison between Treatment Group 
(N=31) and Control Group (N=30) 
Construct  
(# Items) 

TG (N=31) 
mean (SD) 

CG (N=30) 
mean (SD) 

P(X) 
 

Usage Antecedents  
Intention (3) 5.84 (1.30) 4.98 (1.55) .017 
Perf. Expect. (5) 5.44 (1.47) 3.53 (1.74) <.001 
Social Infl. (2) 4.77 (1.51)  3.67 (1.44) .0048 
Hedonism (2) 6.35 (0.79) 6.00 (1.17)  .27 
Unobserved (1) 5.23 (1.71) 4.79 (1.95) .29 
Randomization Checks 
Innovativeness (3) 5.80 (1.03) 5.60 (1.03) .27 
Food Literacy (2) 5.02 (1.45) 5.11 (1.41) .44 
Wearable Exp. (1) 0.79 (0.99) 0.55 (0.51) .20 
Duration 
Time taken (sec.) 37.2 (20.0) 31.58 (13.7) .12 
Perf. Expect.: Performance Expectancy, Social Infl.: Social 
Influence, Wearable Exp.: Experience w/ wearable headsets 

6 Discussion 
Out-of-home eating is widely considered a part of the modern 
lifestyle and the public food environment has a central role to play 
in providing a sense of quality in diets and ensuring public health. 
Yet, research suggests that out-of-home eating is linked to more 
energy dense meals, larger portion sizes, and poor nutritional 
intake, leading to an increase in population rates of overweight 
and non-communicable diseases. This exploratory study examined 
the potential of smartglasses to support healthier beverage 
selections at vending machines, where consumers may intend to 
purchase unhealthy foods and beverages.  
 

This study sought to implement and validate the potential of 
mixed reality (MR) headset mediated interventions aimed at 
improving food selection. Specifically, we found that relatively 
large improvements were observed in respect to the average 
Nutri-Score, energy and sugar content for selected beverages 
when wearing the MR headset and seeing the passively triggered 
intervention. The identification task revealed that independent of 
the intervention, most users correctly identified mineral water as 
the healthiest beverage among the available product in the 
vending machine. We interpret, that MR interventions may thus 
be especially successful in rising saliency on topics, where users 
already have corresponding food literacy and ability to identify 
healthy alternatives (i.e. mineral water) even without support. To 
this end, the explorative assessment of the impact on food literate 
and food illiterate users revealed that primarily food literate users 
show highly significant improvements in the Nutri-Score of the 
selected beverages compared to the control group. But still, also 
less food literate users benefit from non-significant improvements 
in terms of sugar, energy and Nutri-Score of the selected products.  
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Furthermore, the usage antecedents collected via post-hoc 
surveys indicate high degrees for intention to use and 
performance expectation, as well as hedonic motivation. 
Concluding, MR headset-mediated purchase interventions have 
potential to not only become a very effective, but also still very 
popular purchase intervention in the near future, especially with 
the expected uptake of MR headsets as consumer devices. 
 

This study contributes to existing work on purchase-related 
mHealth [6, 7] and FoPL labels [23] that both examine two-
dimensional static cues and the degree to which they can affect 
food decisions. Our findings contribute to this research suggesting 
that dynamic, three-dimensional environmental cues can achieve a 
similar effect. Moreover, the proposed solution in this study does 
not require salience or active input from the users, allowing for a 
handsfree shopping experience, thereby overcoming one of the 
strongest barriers of mHealth-based solutions. Also, we examined 
the impact that such interventions can be effective in influencing 
beverage purchasing decisions, even when unhealthy beverages 
were originally intended by visiting a vending machine. These 
findings also add to literature on priming goals in the context of 
hedonic eating behavior. While laboratory research has repeatedly 
demonstrated the food-reducing or food-increasing influence of 
environmental cues, less is known about environmental cues' 
impact on actual purchase decisions. Overall, the present findings 
are in line with priming research, revealing that environmental 
cues in form of MR induced food labels can influence choices in 
favor of healthy beverages.  
 

Our findings regarding the potential of food labelling via 
smartglasses at vending machines are subject to certain limitations 
of which we believe three limitations warrant special attention. 
First, we applied a convenience sampling for our study, capturing 
mainly (male) commuters and travelers, who might not be entirely 
representative for a population. Further studies could apply a 
stratified sampling approach. Second, it is possible that the 
technology and ‘single-blindedness’ study set-up may have 
affected the outcome of the study. Although the research 
supervisor aimed at being neutral and impartial when supporting 
consumers, especially those who were unfamiliar with 
smartglasses, certain support or observation may have led users to 
act differently. However, we found that users who were less 
familiar with the intervention technology did not significantly 
differ with respect to nutritional quality of their selected items. 
Nonetheless, with further investment in the technological set-up 
of the study, future research designs could allow the user to 
conduct the tasks feeling less observed. Another limitation of the 
study is the comparability of findings, especially in regard to 
current mHealth approaches. While we have mostly theorized 
about the benefits of wearables over hand-held smartphone 
approaches, we did not include a smartphone treatment group to 
examine this aspect. Aside from the theoretical arguments made 
about the inconvenience of hand-held devices, the placement of 
products in vending machines would have hindered users in 
barcode-scanning BoPL’s. Future studies however could include 

such a treatment group by replicating a MR app on a mobile 
phone. Such studies would lend itself to compare passively and 
actively triggered just-in-time interventions (JITAI) [33].  
 

In the future, research is needed to leverage computer vision 
to scale such MR interventions to supermarket shelves with 
thousands of products.  Also, validation studies are needed for 
comparing interventions to printed labels (e.g. inside the vending 
machine) or mHealth interventions aimed at improving food 
selection. In a distant future, when wearable smartglasses become 
widely adopted consumer devices, integration of MR interventions 
into personnel-based counseling programs are expected. In turn, 
these approaches can complement traditional nutrition 
interventions in situations where consumers intend to make food 
purchase selections. Future research can shed light on more 
comprehensive system designs and different interactions between 
associations, concepts, goals and awareness, as well as outcomes 
which could lead to optimized MR-based nutrition interventions. 
Finally, MR headsets can support development of future FoPL 
labels, as they can be tested with MR glasses, measuring eye-
tracking and gaze. This aspect may be especially useful for the 
development of new or tailored FoPL labels, allowing to compare 
different labels without physical changes.  

7 Conclusion 
To the best of our knowledge, this is one of the first in-the-wild 
studies that assess the impact of a spatially displayed FoPL (in this 
case Nutri-Score), displayed in three-dimensional space via a 
mixed reality (MR) wearable headset. Limited success of public 
awareness campaigns and health warning with respect to 
prevention of NCDs require additional measures to alter consumer 
behavior and to self-manage affective impulses (e.g., temptation, 
self-control conflicts). The presented study suggests that 
automated, passively-triggered, non-invasive and hands-free 
approaches mediated through MR headsets could be meaningful, 
popular and effective in improving purchase choices. That is, 
environmental cues in form of wearable MR applications can be 
applied as interventions for researchers, application developers or 
policy makers to shape people’s behavior towards healthier diets. 
Interestingly, the introduction of MR-mediated purchase 
interventions (e.g. FoPL such as Nutri-Score) can also be achieved 
in regions where FoPL have not (yet) been mandated, potentially 
due to resistance from industry or regulators. Similar to MR 
interventions on smartphones, which require manual handling 
during the shopping process, shown to improve sugar content of 
chosen products by 32% [19], our study suggests that automated, 
passively triggered MR headset-mediated purchase interventions 
can also reduce energy (-34%, TG vs. CG) and sugar content (-28%, 
TG vs. GC) of purchased products. 
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