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ABSTRACT
Smartwatches provide a unique opportunity to collect more
speech data because they are always with the user and also
have a more exposed microphone compared to smartphones.
Speech data could be used to infer various indicators of men-
tal well being such as emotions, stress and social activity.
Hence, real-time voice activity detection (VAD) on smart-
watches could enable the development of applications for men-
tal health monitoring. In this work, we present VADLite, an
open-source, lightweight, system that performs real-time VAD
on smartwatches. It extracts mel-frequency cepstral coeffi-
cients and classifies speech versus non-speech audio samples
using a linear Support Vector Machine. The real-time imple-
mentation is done on the Wear OS Polar M600 smartwatch.
An offline and online evaluation of VADLite using real-world
data showed better performance than WebRTC’s open-source
VAD system. VADLite can be easily integrated into Wear OS
projects that need a lightweight VAD module running on a
smartwatch.
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INTRODUCTION
Smartwatches as a platform provide a unique opportunity to as-
sesses the mental health of individuals because of their sensors
which have high proximity to the human body. Multimodal
sensing of gestures (from the gyroscope and accelerometer),
heart rate, physical activity, ambient light, Bluetooth signal
strength, among others could be used to infer the mental state
of people [1].

On the specific topic of audio data, smartwatches provide a
unique opportunity to collect more speech data in the everyday
lives of individuals since they are more likely to always be
with the user given they are worn on the wrist. Additionally,
the microphone is also prone to be more exposed as compared
to a smartphone, which might be in a bag or a pocket.

Speech data could be used to infer various indicators of mental
well being such as emotions [26], stress [17] and social activity
[28]. Hence, real-time voice activity detection (VAD) on
smartwatches could enable the development of applications
for mental health monitoring. Researchers and developers that
need real-time VAD on smartwatches, which use the Wear OS
operating system have to build their own custom module since
an API is not provided.

Prior work have developed VAD systems but they have not
focused on real-time implementation of the developed algo-
rithms [35, 29, 9, 23]. Important aspects such as computational
efficiency, latency and accuracy in a naturalistic context were
not addressed. Hence, it is not clear how well they will perform
if they are implemented to run in real-time on smartwatches.

On the other hand, there are VAD systems that have been
implemented to run in real-time as a smartphone app [34, 33,
18]. Unfortunately, the machine learning models that were
used are not easily available for others who want to simply use
those pre-trained models in their work. It is also not clear how
well the models will work when they run on smartwatches
with reference to computational efficiency and latency.
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There was another VAD system developed to run on a smart-
watch as a component of context recognizer [11]. The authors
use 13 mel-frequency cepstral coefficients (MFCC) features
and a convolutional neural network. Using three seconds of
data, it takes 1.9 seconds to give a classification. The per-
formance evaluation (eg. accuracy) is not provided and most
importantly, the software component is not available for others
to easily use in their smartwatch-based sensing work.

Then there are also open-source VAD systems such as We-
bRTC’s VAD [12]. It is, however, a computer-based system,
which does not have a module for smartwatches. Additionally,
it has been reported that WebRTC’s VAD performs poorly on
real-world data collected with smartwatches [16].

Given the gap in obtaining an easy-to-use smartwatch-
based VAD system, we developed VADLite, an open-source
lightweight software system that performs real-time voice ac-
tivity detection on smartwatches. VADLite extracts MFCC as
features and classifies speech versus non-speech audio samples
using a linear Support Vector Machine (SVM). We designed
VADLite to meet our specific requirements; it is lightweight
(i.e. runs efficiently on a constrained system such as a smart-
watch), and also performs well in a real-world context in which
we will be deploying the devices. In this work, we describe
the process of developing and evaluating VADLite, and com-
paring its performance to WebRTC’s VAD system since it is a
widely used open-source VAD system.

The real-time implementation is done on a Wear OS smart-
watch and our project files with the source code are available
for use by others 1. VADLite can be used by including the Java
source code files in a Wear OS project. Also, the parameters
of the trained model are in the Java files and hence, users can
use our model parameters to build their own VAD pipeline for
their Wear OS projects.

The rest of this paper is organized as follows. First, we give
the motivation and use case of VADLite. Next, we give an
overview and describe the development of VADLite. Then, we
describe the real-time implementation of VADLite. After,we
detail our experiments and results including a comparison of
VADLite with WebRTC’s VAD system. We address ethical
implications and privacy concerns of our work. Finally, we
summarize and conclude.

MOTIVATION
Our primary motivation for developing VADLite was our pre-
vious work DyMand, an open-source mobile and wearable
system for assessment of couples’ dyadic management of
chronic diseases in everyday life [7]. The DyMand system
collects self-report data about health behavior, and emotions,
and sensor data about couples’ dyadic management of chronic
diseases. DyMand first determines if the partners are close
using the Bluetooth signal strength between their watches.
Then, VADLite is used as the next optimizing step to trigger
collection of multimodal sensor data (heart rate, accelerometer,
gyroscope,and ambient light) ensuring that data is collected
only when the partners are speaking. This two-step process in
which VADLite plays a key role ensures that DyMand collects
1https://bitbucket.org/Jojo29/vadlite/

Figure 1. Overview of VADLite System

more relevant speech data which is an improvement over how
social psychologists currently collect ambulatory audio data
for analysis: triggering data collection at random times of the
day. [20, 21, 30, 31, 36].

Our secondary motivation for developing VADLite is for it to
be used in the development of a real-time smartwatch-based
app for recognizing emotions of couples using speech prosody
and the semantics of speech [26]. Emotion recognition from
speech will then be used in combination with other sensor
modalities from the smartwatch to perform real-time multi-
modal emotion recognition among couples [6]. Prior work
has shown that social support among couples results in better
health behavior when one partner has diabetes and also affect
the emotions of the couple [22, 27, 14]. Real-time emotion
recognition among couples would give an assessment of a key
outcome of social support which could be used to develop just-
in-time adaptive interventions [24] to enable couples better
manage chronic diseases. In order to accomplish that goal,
speech episodes in everyday life need to be recognized accu-
rately and efficiently. VADLite fills that gap.

Beyond these specific use cases, real-time VAD in combination
with other sensors could be used to infer social isolation or a
lack of social activity, which is a predictor of mental health
issues such as depression or suicidal ideation [37, 28]. An
accurate measure of speech data could enable better prediction
of social isolation. Using VADLite which runs on smartwatch
will adequately enable the accomplishment of this goal.

OVERVIEW AND DEVELOPMENT OF VADLITE
VADLite is a 2-stage system consisting of a no-silence detec-
tor as the first part, and a voice activity detector as the second
part (Figure 1). In developing VADLite, we used the pipeline
of data collection and preprocessing, feature extraction and
classification. We used a linear SVM. An SVM is a classifier
that constructs a high-dimensional hyperplane to separate data
of different classes [13]. SVM selects a hyperplane that maxi-
mizes the distance to the nearest data points on either side of
the hyperplane in the case of binary classification. Previous
work have used SVM for VAD successfully [9, 29, 2, 8, 15].

We use a linear SVM because it is memory and computation-
ally efficient when incoming data is classified. For example, in
comparison with a linear SVM, a radial basis function (RBF)
SVM though only slightly outperformed a linear SVM for
VAD took twice as much time for classification [15]. Prior
work have used an implementation of linear SVM for real-time
prediction on smartwatches for stress detection [5] and activity
detection [3, 4].



Data Collection
We collected real-world data using a protocol that was ap-
proved by the ethics commission of ETH Zurich. We collected
data using a Polar M600 smartwatch where subjects (1) in the
lab read a written text as a smartwatch recorded audio data for
approximately 1-2 mins and (2) in the everyday life wore a
smartwatch during waking hours as it continuously collected
audio data. We used 16-PCM mono audio data and a sampling
frequency of 8KHz. The data was annotated as speech or non-
speech data. The speech data contained mostly conversations
among several people (with at least 10 distinct speakers) at
varying distances from the smartwatch’s microphone. The
non-speech data contained sounds from cars, trams, buses,
wind, and music. The overall duration of the recorded sound
data was 3.5 hours.

Data Preprocessing
We processed the data by first removing silence portions of
the data using a one-second time window. Liaqat et al. found
out that the real-world audio data they collected contained
about 61.7% of silence and hence they implemented a silence
detection algorithm to remove the silence part of their data [16].
Given that we use real-world audio data, we also removed
silence segments of the data. We computed the root mean
square (RMS) of each one-second time window of the whole
data. We then check if the RMS value is below a certain
threshold, in which case we mark that segment as silence
and then remove it. To determine the threshold, we created
a scatter plot of the RMS values of silence, speech and noise
signals and then chose the value that separates silence from
both speech and noise.

Feature Extraction
We extracted 13 MFCC features and use 12 of them (excluding
the 1st coefficient, which is the DC component) over a time
window of 25 ms. MFCC features have been widely used for
VAD [11]. The parameters we used are as follows: 8KHz
sample rate, window length of 25 ms, window step, 12 coef-
ficients, 26 filters in the filterbank, FFT size of 512, 0 Hz as
lowest band edge of mel filters, 4KHz as highest band edge of
mel filter of (i.e., half the sampling rate), 22 lifters to apply to
final cepstral coefficients and a Hamming windowing function.
We used a Java implementation for the feature extraction.

Classification
Using the feature sets, we trained a linear SVM to classify
speech or non-speech. We also perform grid search to pick the
most optimal hyper-parameters of the linear SVM. We first
normalized the features by subtracting the mean and dividing
by the variance. This normalization is important for various
algorithms such as SVM whose optimization assume that the
features have a normal distribution [13]. We use the following
metrics for evaluation: accuracy, speech hit rate (SHR), and
false alarm rate (FAR). The SHR is the ratio of correctly
detected speech frames to the total number of speech frames.
By contrast, FAR is one minus the noise hit rate, where noise
hit rate is the ratio of correctly detected noise frames to the
total number of noise frames.

Figure 2. Real-time running of VADLite

REAL-TIME IMPLEMENTATION
We coded VADLite in Java for smartwatches that use the Wear
OS operating system (formerly Android Wear). We used the
Android Studio Integrated Development Environment (IDE)
and the Android Software Development Environment (SDK).
VADLite can potentially work on every Wear OS device. We
used a Polar M600 smartwatch running Wear OS version 2.1
for testing which has the following specifications: Dual-Core
1.2GHz processor based on ARM Cortex-A7, 512MB RAM,
4GB flash storage, 500 mAh Battery.

Our implementation of VADLite is a Wear OS app, which
collects 16-PCM mono audio data every second at a frequency
of 8KHz (see Figure 2). We check if the one-second data is a
non-silence segment by using an implementation of the non-
silence detector from the previous section. We then process
the data if it is non-silence. The one-second non-silence signal
is then segmented into 25 ms frames. We then extract 12
MFCC features for each frame, which is then fed to a linear
SVM for classification. We used the settings described in the
previous section for the feature extraction. We used the Java
implementation from the offline evaluation for extracting the
MFCC features online.

We normalized the features using the stored normalization
vectors before performing classification with a linear SVM.
Our implementation of the linear SVM is a dot product of the
stored coefficients with the features:

y = wx+b (1)

where y is the result of the evaluation, w is the coefficient
vector of length 12, and b is the intercept. We then assign y
to be 1 (speech) if it is greater than zero, otherwise we assign
it to be 0 (non-speech). We obtained w and b from the previ-
ously trained linear SVM. We output speech or non-speech
classification for the whole one-second data. To accomplish
this, we use majority voting of all the classified 25 ms samples
within the one-second data.

VADLite had an average processing time of 2 ms for each
25 ms frame and 76 ms for the total one-second duration.
As a result, throughput was met since the frame processing



Table 1. Evaluation results from the offline evaluation of VADLite and
WebRTC’s VAD

Model Accuracy SHR(%) FAR(%)

WebRTC(0) 66.7 91.6 60.7

WebRTC(1) 71.7 89.0 47.4

WebRTC(2) 71.4 79.5 37.5

WebRTC(3) 75.9 55.3 2.1

VADLite 83.7 83.4 16.0

time was less than the 25 ms segment duration. Likewise, the
processing time for whole duration was less than one second.

EXPERIMENTS AND RESULTS
We evaluated VADLite offline and also online. Additionally,
we compared the classification performance of VADLite with a
popular open-source VAD system, WebRTC’s VAD [12]. We-
bRTC’s VAD uses frequency band features and a pre-trained
Gaussian Mixture Model (GMM) classifier [32]. We used a
Python implementation of the system [38]. It gives the op-
tion to set an aggressiveness mode using an integer from zero
to three with zero being the least aggressive about filtering
non-speech audio. It only accepts 16-bit PCM mono audio
sampled at 8KHz, 16KHz, 32KHz or 48KHz. It also processes
data in frames with a duration of either 10, 20 or 30 ms. Our
implementation used 8 KHz sampling rate and 20 ms time
window to match the settings of VADLite.

Offline Evaluation
We split the data into train and test using about 70%-30%
split. The speech and noise train data were 73.9 and 71.8
minutes long respectively. The speech and noise test were 24.6
and 22.4 minutes long respectively. We performed 10-fold
stratified cross-validation on the train data using VADLite’s
linear SVM model. We used the scikit-learn library for our
experiments [25]. The model achieved 82.6% accuracy, 80.2%
SHR and 14.9% FAR. We then trained the VADLite model
on the whole train dataset and then we used the test data to
evaluate both the VADLite’s model and those of WebRTC’s
VAD. The results of the evaluation are shown in Table 1.

VADLite’s model outperforms WebRTC’s VAD when its ag-
gressiveness mode is two and three. WebRTC’s VAD with
settings zero and one though have very high SHR, their FAR
are high, which will result in a lot of noise being classified as
speech, which is not acceptable. VADLite’s model provides a
good enough tradeoff between SHR and FAR. These results
indicate that VADLite is better than WebRTC’s VAD. These re-
sults support those by Liaqat el al. who found that WebRTC’s
VAD performed poorly on real-world smartwatch-based audio
[16].

Online Evaluation
To evaluate the real-time performance of VADLite with real-
world data, we recorded audio data from a naturalistic context.
We then played the recorded audio through a loudspeaker as
the VADLite app performed real-time classification of the au-
dio just like was done by Feng et al [10]. The audio had a

duration of 15 minutes each for speech and noise. We stored
the classification and compared it with real labels of the audio.
We report the classification results below. We also ran the
audio data through WebRTC’s VAD. VADLite had SHR and
FAR of 91.6% and 5.5% respectively. WebRTC’s VAD’s best
performing mode had SHR and FAR of 73% and 18% respec-
tively. Consistent with the results from the offline evaluation,
VADLite outperforms WebRTC’s VAD. Once again, these re-
sults supports those by Liaqat el al. who found that WebRTC’s
VAD performed poorly on real-world smartwatch-based audio
[16].

ETHICAL IMPLICATIONS AND PRIVACY CONCERNS
This work has ethical implications as the system could be used
in a manner that violates the privacy of others. We envision
that this system can be used in two main ways.

The first is that it could be used to collect raw speech data
from subjects, which will be stored for processing later. For
this approach, it is especially important that the study protocol
is subjected to review and approval from the ethics committee
of the overseeing institution, as is standard practice. And
additional steps need to be taken such as giving subjects the
option to listen to the recorded audio and to delete any as they
wish without any explanation. This approach has been used in
our studies [19] and those of others [30, 31]. Depending on
the use case, the app may need to give subjects the option to
completely disable audio recording as needed. Also, to protect
the privacy of subjects not taking part in the study, it might
be necessary to have subjects wear a tag indicating to others
around them that they may be recorded.

The other way we envision this system being used is to derive
important summary statistics. In this case, no raw audio will
be stored. Rather, various inference such as conversation
frequency and duration (total duration of speech per day, times
of the day with most speech etc.) will be computed [28]. This
use case is less invasive but again as usual, ethical approval
needs to be obtained for such a study since summary data
could be considered personal and private for some subjects.

FUTURE WORK
VADlite could be extended so that it additionally makes
various inference such as conversation frequency and dura-
tion. These additions would make VADLite more useful in
smartwatch-based applications that seek to improve the mental
well-being of people.

CONCLUSION
In this work, we developed VADLite an open-source
lightweight software system for real-time VAD on smart-
watches. VADLite uses MFCC as features and classifies
speech versus non-speech audio samples using linear SVM
with a real-time implementation on a Wear OS smartwatch.
Our evaluation of VADLite showed SHR and FAR of 83.4%
and 16.0% respectively for offline, and 91.6% and 5.5% re-
spectively for real-time classification. Benchmarking of our
system against WebRTC’s VAD showed better performance.
Our open-source system, VADLite can be easily integrated
into Wear OS projects that need a lightweight voice activity



module running on a smartwatch. VADLite can be integrated
into the development of various well-being specific apps.
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