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Abstract

In recent years, simulation techniques have been applied to investigate the spatio-
temporal dynamics of crime. Researchers have instantiated mobile offenders in agent-
based simulations for theory testing, experimenting with prevention strategies, and crime
prediction purposes, despite facing challenges due to the complex dynamics of crime and
the lack of detailed information about offender mobility. This paper presents an agent-
based model to explore offender mobility, focusing on the interplay between the agent’s
awareness space and activity nodes. To instantiate a realistic urban environment, we use
open data to simulate the urban structure, location-based social networks data to represent
activity nodes as a proxy for human activity, and taxi journey data as a proxy for human
movement between regions of the city. 35 mobility strategies have been tested, combining
search distance strategies (e.g. Lévy flight, inspired by insights from human dynamics
literature) and destination selection strategies (enriched with Foursquare and taxi data).
We analyze and compare the different mobility strategies, and show the benefits of using
large-scale human activity data to simulate offender mobility. Our strategy provides a basis
for comparing offender mobility in crime simulations by inferring offender mobility in urban
areas from real world data.

1. Introduction

Criminology is a multidisciplinary research field that aims to explain, predict and prevent
criminal behavior. Although criminals only represent a minority of the overall population,
people can come into contact with criminal behavior (either by being criminal or by being
a victim) anytime or anyplace. Crime can be intrusive in everyday life.

One of the main research interests within criminology is understanding when crime will
occur. The most influential theory that addresses this challenge is the Routine Activity
Theory (RAT) (Cohen & Felson, 1979). This theory states that crime will occur when a
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motivated offender meets a suitable target without a capable guardian present. Although
this theory has shown itself to be very useful in explaining various criminological phenomena,
it does not directly address the question of where crime will occur (before it does). Based
on RAT, the näıve assumption would be that crime is evenly distributed over time and
space. However, it is known that the location(s) of criminal behavior are typically not
evenly distributed over urban areas (Brantingham & Brantingham, 1993). So how can this
uneven distribution be reproduced? Moreover, can we simulate offender mobility patterns
reproducing such distributions? In the current paper we address this question by using an
explicit agent-based model and by generating a synthetic population of offender agents to
navigate the urban environment.

Previous studies (Brantingham & Brantingham, 1995) have shown us that higher crime
concentration rates are found within an offender’s awareness space. An awareness space
is defined as the area in which the offender frequently resides. The awareness space of an
offender can be determined, for example by his home, work space, recreation areas, etc.,
including the routes towards them. So, what occurs to us is that the area lying ‘between’
frequently visited activity nodes should be the field of operation for offenders. Hence, to
study the spatio-temporal dynamics of crime, we find that it is useful to examine the mobility
patterns of offenders in detail and those patterns in situ. Due to the complex spatially
and temporally distributed nature of these processes, an often-used approach is to employ
the simulation technology of Agent-Based Modeling (ABM). Indeed, previous authors and
researchers have attempted to simulate crime patterns using ABM. Unfortunately, many of
these simulations were based on highly incomplete data (e.g. based solely on police records
of known offenders) or were not related to real world data at all (Liu & Eck, 2008). Often
these simulations contained uninformed offender mobility strategies. As an alternative,
this paper proposes an ABM technology that describes offender mobility based on more
complete large-scale human mobility data.

As a case study, our model is applied to the surface road network of New York City
(NYC), where a number of offender agent mobility strategies are compared to each other.
Parting from the notion that crime is a legal definition and does not necessarily define
group behavior (Tappan, 1947), the strategies developed here are not only inspired by
theories in criminology but also use human activity proxies valid for the general population.
For example we’ve inferred home addresses from census data (land use information and
population density), venues and check-in counts from location-based social networks (LBSN)
as a proxy for activity nodes and human activity, transitions within the city from taxi
journey data as a proxy for travel patterns, and historic crime location data as a proxy for
attractive areas of the city. The performance of the model is assessed in terms of: (1) the
ratio of crimes covered over distance traveled by the agents; and (2) crime locations covered
within different areas of the city. Finally, we note that this model could be applied to study
social behavior other than criminal behavior by adapting the performance measurement
and by including other relevant environmental factors.

This paper is organized as follows. Section 2 describes related work and Section 3
introduces relevant notions for the purpose of this simulation. Section 4 introduces the
data included in the simulation. The simulation model is presented in Section 5 and the
results are shown in Section 6. In Section 7 we end this paper with a conclusion and outlook.
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2. Related Work

Criminology (the study of crime) involves many aspects, whose inter-relationship may be
mathematically complex. In the context of related work, we believe that computational
social science (CSS) (i.e. using computational approaches to study social phenomena) has
begun to present itself as an important explanatory tool for analyzing and predicting crime.
We also note that the technologies of CSS, such as simulations, have emerged as tools with
the potential to offer explanatory insight across many other complex social issues (Cioffi-
Revilla, 2010), but we believe these tools are particularly relevant for criminology. Across
several fields and several decades, the technologies of CSS have consistently demonstrated
interdisciplinary explanatory power, especially through the use of agent-based simulation
(consider Axelrod, 1986; Crooks & Wise, 2013; Rouly, 2018; Schelling, 1969; Kohler, Kresl,
van West, Carr, & Wilshusen, 2000).

In the field of criminology in particular, scientists are discovering the power of agent-
based simulation for various applications involving theory testing (Birks, Townsley, & Stew-
art, 2014; Brantingham & Tita, 2008; Groff, 2007a; Liu & Eck, 2008), testing of prevention
strategies (Bosse & Gerritsen, 2010; Devia & Weber, 2013; Dray, Mazerolle, Perez, & Ritter,
2008; Gunderson & Brown, 2000), and forecasting the development of crime (Gunderson
& Brown, 2000; Malleson, Heppenstall, & See, 2010; Peng & Kurland, 2014). Liu and
Eck (2008) provide an overview of the basic characteristics of crime simulation models. In
general, simulating crime patterns contributes to the understanding of crime in a spatial
environment. First generation crime simulations have mainly been built in synthetic envi-
ronments without the use of real world data (e.g. Brantingham & Tita, 2008), to study the
underlying mechanisms of crime. However, including real data in a simulation allows an
instantiation to support a more realistic environment and allows for a better transfer of the
gained information, even though it may complicate the user’s comprehension of underlying
mechanisms. Indeed, existing simulation models have included road-network and land-use
data in combination with robberies to test RAT with basic offender agents moving between
a set of static and predefined activity nodes, and deciding whether to offend (Groff, 2007b).
Others have considered road and subway networks in combination with burglary data and
agents moving between connected nodes at random and/or with heavy-tailed distribution
waiting times (inspired by research on human mobility patterns) to test if crime patterns
can be reproduced (Peng & Kurland, 2014). Then too, some have looked at road networks
and household information (census and building data) in combination with burglary data
to gauge the utility of ABM to prediction crime. There we see agents modeled in a complex
manner using PECS (Physical conditions, Emotional states, Cognitive capabilities and So-
cial status) (Urban & Schmidt, 2001). These latter simulations consider frameworks that
model offender behavior as a series of random home and work locations where the agents
build a cognitive map of possible targets within their awareness space (Malleson et al., 2010;
Ward, Evans, & Malleson, 2016). One of the common elements characterizing all of the
above detailed simulations is their instantiation of offender behavior. All of these examples
concentrate on the cognitive reasons for an offender to commit a crime by including agent-
individual characteristics, e.g. wealth measure or target characteristics, and guardianship
level of the possible targets, leading to the offender’s decision of whether to offend or not.
In contrast, the offender agent mobility characteristics are rather neglected and based on
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simplified assumptions, with the exception of emergent crime patterns in a 2-D space by
means of basic mathematical models.

Given all of the above we ask: Is it possible that by explicitly modeling the movement of
offenders, their direction choices, and distances traveled, and by comparing random walks to
more realistic non-random human movement, we might discover that a simple mobility rule
could be used together with other behavior rules to reproduce crime patterns that arrive at
a better predictive result? We therefore argue that more realistic and generalizable offender
(spatial-temporal) mobility would improve crime simulations.

Thus, in this paper, we consider the importance of studying the basic simulation rules
governing offender mobility by building a simulation model to compare a large number of
offender-agent mobility strategies using large-scale mobility data for NYC and assess the
value of those strategies using historic crime location patterns.

3. Criminal Offender Mobility

In RAT, routine activities are described as everyday activities that tend to happen at the
same locations, such as home, work and shopping areas. Offenders are thought to engage in
routine activities, while research has shown that they are more prone to commit crimes close
to the areas connecting the different activity nodes (Reid, Frank, Iwanski, Dabbaghian, &
Brantingham, 2014), i.e. within the offender’s awareness space. Consequently, including
offender agents’ home locations and some set of activity nodes in a crime simulation is
common practice. On one hand, some of the models rely on police records for recorded
home addresses as starting points to derive their trajectories (Malleson, See, Evans, & Hep-
penstall, 2014). Such a setup is constrained to simulating reported offenders and especially
the ones for whom home addresses have been reported by the police. On the other hand,
little effort has been devoted to defining appropriate activity nodes and reproducing real-
istic human (e.g. offender) spatial-temporal mobility patterns in simulations. In the era of
social media and crowdsourced/location-based user data (Crooks & Wise, 2013), patterns
of human activity can be inferred from openly available data. Human mobility patterns
have been intensively studied by means of GPS-generated user data (Gonzalez, Hidalgo,
& Barabasi, 2008; Song, Qu, Blumm, & Barabasi, 2010), as well as by means of LBSN
e.g. Foursquare (Noulas, Scellato, Lambiotte, Pontil, & Mascolo, 2012), and even taxi data
(Tang, Liu, Wang, & Wang, 2015). Such research has confirmed the high regularity of
individual human movement and determined basic rules governing it, e.g. suggesting in-
dividual human travel distances should be modeled by means of Lévy flight, which is the
name given to an actor’s set of seemingly random spatial movements where those actual
incremental displacements are better represented by a heavy tailed probability distribution
(Mandelbrot, 1982). Not only can information about mobility patterns and rules governing
such movement be gained from LBSN, but information from social media about the location
attractiveness can be used as a proxy to model the pull of specific locations within urban
areas (Resch, Summa, Zeile, & Strube, 2016), and taxi data can give insights into frequent
travel volume from one region of a city into others (Liu, Wang, Xiao, & Gao, 2012). More-
over, activity nodes and city centers as a special case, have been identified as attracting
offenders as well as the general population (Frank, Dabbaghian, Reid, Singh, Cinnamon, &
Brantingham, 2011).
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Figure 1: Number of crime locations per road in
1 month.

Figure 2: Number of crime locations per CT in
12 months.

4. Data

The simulation described in the next section includes sufficient geographic data to simulate
a virtual environment projected onto the NYC area using projected coordinates (per North
American Datum of 1983 – NAD83) and allowing measurement in feet. In particular,
the simulation builds a road network for NYC including 117,320 road segments collected
from the NYC open data portal. The network provides the structure of the road and
public transportation system (including ferry lines), upon which the agents may find their
way. Additionally, we projected data to census tracts (CT), a statistical unit subdividing
counties, defined by the United States Census Bureau1,for the New York Region. In NYC
there are 2,168 CTs with a population of 3,000 to 4,000 and an average of 90 acres of land
area, our dataset contains 2,162 CTs excluding CTs containing only water and shorelines.
From NYC census data, we have extracted population density information for each CT and
have combined it with zoning information on NYC buildings to identify residential areas.
Furthermore, crime data has been obtained from the NYC open data portal, and includes
anonymized felony crimes at road segment level (projected to the middle or the ends of
the segment), which we projected to the road network of the simulation and to the CT for
different purposes. Figure 1 shows the counts of crime locations per road in the NYC road
network for the month of June 2016 (used for model performance assessment only), with
17 roads having more than 10 crime locations mapped (i.e. the x axis reaches 30 crime
locations per road), and Figure 2 shows the counts of crime locations per CT in NYC for
June 2015 to May 2016, with 4 CT counting more than 300 crimes in them. Note that
crime locations on roads traversing several CTs are counted twice, once for each CT.

The crime data includes information such as type of crime, date, time, and location. Our
final dataset contains the following types of crime: burglary, grand larceny, grand larceny
of motor vehicle, robbery, and felony assault. Rape and murder incidents have not been
used for simulation purposes due to low frequency (1,209 and 357 incidents in 12 months,
respectively). Crime data for 12 months (June 2014 to May 2015) has been instantiated
in the model on the CT level for one of the simulated scenario variations, which resulted

1. http://www.census.gov/
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Figure 3: Number of venues per road.
Figure 4: Number of taxi pickups per CT in 12
months.

in 104,532 crime locations mapped: 15,897 burglaries, 43,301 grand larcenies, 7,523 grand
larcenies of motor vehicles, 16,413 robberies, and 19,832 felony assaults. And crime data
for 1 month (June 2015) has been used to obtain an up-to-date overview of crime patterns
for model evaluation on road level, that resulted in 8,503 crime locations mapped: 1,287
burglaries, 3,555 grand larcenies, 580 grand larcenies of motor vehicles, 1,303 robberies, and
1,778 felony assaults.

To instantiate attractive locations, Foursquare data was collected from the Foursquare
API (Application Programming Interface)2, as in Kadar, Iria, and Pletikosa Cvijikj (2016),
Kadar, Rosés Brüngger, and Pletikosa Cvijikj (2017), including information about venues in
the area of NYC: venue name, location, check-in counts (accumulated over time), associated
categories, etc. The set is composed of 273,149 venues in the proximity of every incident
from the crime data set with over 122 million check-ins (from creation of the venue in the
platform until data collection in June 2016) associated with venue categories ranging from
arts and entertainment, college and university, events, food, nightlife, shops and services,
etc. The venues have been mapped to the roads of the NYC road network. Figure 3 shows
the distribution of venue counts per road. 54 roads contain over 60 venues with a maximum
of 120 venues per road (i.e. outliers in Figure 3). In the simulation model, Foursquare
venues are used as proxies for activity nodes and the check-ins are used to quantify the
attractiveness of the activity nodes. Serving as a proxy for human dynamics, taxi data,
including information about travel starting and ending points, are projected on the CTs
and give insights into the connectivity and popularity of transition between CTs. This latter
dataset is composed of over 248 million taxi trips within 12 months (July 2014–June 2015)
obtained from the official website NYC 3. See Figure 4 for taxi journey pickup frequency
per CT.

2. http://www.foursquare.com/

3. http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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5. The Simulation

Inspired by previous ABMs simulating crime, in this paper we study offender mobility by
assessing the performance of different agent mobility strategies in several scenarios emulating
a large-scale urban environment. In the simulation, offender agents travel the road network
of an urban area, which includes geo-located information about historic crime locations.
These agents move from one spatial destination to another and memorize the historic crime
locations as they pass throughout the simulation (i.e. as a proxy for measuring mobility
performance). The agents represent criminal offenders and travel from a starting location
to a number of activity nodes before returning to the starting location. The goal of the
simulation is that agents pass as many new crime locations as possible along the path.
Each simulation step (epoch) represents 1 day of the month and the model runs for 30
days, consistent with one-month crime data. The performance of all agents is evaluated
after the total period of 30 steps.

In order to simulate offender mobility, the following aspects are relevant: (1) the opti-
mal number of agents influencing the spatial coverage area; (2) the characteristics of the
simulation environment, including a road network, spatial destinations representing activ-
ity nodes, and geo-spatial reported crime data; (3) the agents starting positions affecting
the future possibilities, due to path dependency; and (4) the movement preferences and
strategies of the agents. These points are formalized in the next section.

Using Mesa, an agent-based modeling framework in Python (David Masad, 2015), a
simplified version of NYC is instantiated in this model, providing the structure of the
road network, zoning features for residential areas with population densities, as well as
venues with their popularity from location-based social networks, aggregated taxi trips,and
aggregated crime data and crime locations per type of crime (burglary, robbery, grand
larceny, larceny of motor vehicles, and felony assault).

5.1 Basic Functionality Formalization

The variables in Section 5.1 are used in the following section to introduce the model features
in detail.

The simulation model instantiates agents traveling from a starting position s to a des-
tination position x, before returning to position s at the end of the epoch (step). Agents
are created and newly positioned at each step, whereas starting and ending at a location
s can be assumed. Over one model run (30 steps), the agents collect information about
the historic crime locations c they pass by, including details about the type of crime. As
the agents embody anonymous offenders, s is inferred from residential areas weighted by
the population density of each area. Agents are placed on the closest road within 80 feet
from a residential building. The residential building is chosen by weighting each building
according to the population density of the CT where it is situated.

Within the same step, the agents search for a destination x in area a to travel to, while
the value of a and the possibilities of x depend on the offenders’ strategies. Strategies for
choosing a and x are combined into different simulation scenarios, detailed in section 5.2.
The number of trips xtrip an agent performs between several x, within the same epoch, be-
fore returning to s, is drawn from U(0,2×atrip), where atrip is the statistical average number
of trips performed by the NYC population (3.8 trips per day) (New York State Department
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Level Name Explanation

Model n number of agents instantiated
rd road in NYC road network
c historic crime locations
d distance (length) of NYC road network
v activity node (i.e. Foursquare venue)

atrip average number of travel trips in a day

Agent s starting position
x travel destination
tc traveled crime locations
td traveled distance
r radius distance
a search area

xtrip number trips in a day

Table 1: Variables in the simulation model.

of Transportation, 2012), thus the number of x each agent visits per step varies. The
model is run for the different scenarios and their performance is assessed using the results
of tc (crime locations traveled) and td (distances traveled) by the agent. The performance
is measured using several metrics: (1) comparing an adaption of the Predictive Accuracy
Index (PAI) (Chainey, Tompson, & Uhlig, 2008) over the scenarios. PAI is a standard mea-
sure applied in criminology to evaluate performance of crime prediction models, overcoming
the challenges posed by sparseness of point processes for performance measurement. For
assessing the performance of this model, PAI has been adapted as follows:

adapted PAI =
Σ tc
Σ c
Σ td
Σ d

(1)

The adapted PAI shows the relationship between percentage of distinct crime locations
passed by the agents and the percentage of distinct distances traveled (i.e. length of new
roads within the road network). The higher the resulting index, the better the performance
of the model, i.e. traveling between more crime locations per distance. The index is
computed counting each different crime locations passed by any agent only once.

Besides assessing the scenario’s performance at the road level, (2) we also assess the
performance of the most successful scenarios on the CT-level, comparing the coverage area
(crime locations traveled) over different CTs within one scenario, giving us information on
whether the agents cover crime locations equally across various CTs of the city.

Additionally, the optimal number of agents is determined by comparing the performance
of the simulations with different numbers of agents, ranging from 5 to 1,000. Note, that
no significance test was conducted for comparing the performance of different scenarios
following the recommendations in White, Rassweiler, Samhouri, Stier, and White (2014),
where they advised against it for social simulations.

5.2 Mobility Scenario Strategies

Thirty-five agent mobility scenarios were built by varying agent mobility strategies and by
applying the knowledge described in section 3. In particular, the Lévy flight distribution
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was built to mimic realistic distance choices for each agent’s movements, alternatively ag-
gregated taxi journey data was included as a proxy for travel patterns, and aggregated
historic crime data was included as a proxy for the general attractiveness of areas with
previous crime, while venues from location-based social networks (including information
on the popularity of each venue) were derived as a proxy for activity nodes and human
activity, accounting for the attractiveness of specific destinations within the general pop-
ulation. The scenarios combined 5 options for area-selection strategies and 7 options for
destination-selection strategies, resulting in thirty-five strategy combinations as described
in the following.

Area selection:

1. Static: The static distance allows agents to move only in one specific distance, set
to a radius of 40,000 feet with a 5% boundary, resulting in area a, the average trip
length for NYC’s population (New York State Department of Transportation, 2012).

2. Uniform: The uniformly distributed distance builds upon the static distance, uni-
formly drawing distances from a distribution with an average trip length for NYC’s
population: R ∼ U(0, 2r) so that E[R]= r with a 5% boundary, resulting in area a.

3. Power: The Lévy flight distance draws distances from a power law distribution using
Lévy flight. The Lévy flight formula is transformed to allow drawing distances from
the probability distribution within NYC, with β =0.6, determined to be the optimal
value for NYC (Brockmann, Hufnagel, & Geisel, 2006), and an extra boundary of 5%,
resulting in area a:

P (r) ∼ r−(1+β) → r ∼ 1

P (r)
× e

1
1+β (2)

4. Taxi: The taxi distance provides agents with a list of destination areas corresponding
to census tracts weighted by the frequency of trips between the census tract at the
starting position s and any other census tract in NYC. Census tracts with higher
transition frequencies are weighted higher.

5. Crime: The crime distance provides agents with a list of destination areas corre-
sponding to CTs weighted by crime location counts (all crimes combined) and by
their distance to the starting position s. CTs with higher historic crime location
counts and closer to s are weighted higher.

Destination selection within area a :

1. Random roads: The first option is the most basic one, offering any random road as
a destination.

2. Random venues: The second destination choice is any random activity node (Foursquare
venue).

3. Random venues-center: The third destination choice accounts for the attractive-
ness of the city center, allowing a choice of any activity node, and weighting roads in
the direction of the center of NYC higher. The center score assigns values from 10 to
100 to the venues, decreasing in value with increasing distance from the city center.
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4. Random venues-type: The fourth option offers a choice of activity nodes weighted
by their popularity, determined using check-in counts from Foursquare as in equation
3. The higher the number of check-ins, the higher the weight of the venue.

P [x] =
check-ins

Σ check-ins within r
(3)

5. Popular venues: The fifth strategy offers a choice of activity nodes weighted by
their popularity (determined using check-in counts from Foursquare) and by their
proximity to the center of the city, using the center score (described in item 3 of this
section).

P [x] =
check-ins

Σ check-ins within r
× center score (4)

6. Popular venues-center: The sixth strategy offers a choice of random activity nodes
weighted by the popularity of the venue category, determined by total check-in count
per venue category in all of NYC. The higher the overall number of check-ins for a
category, the higher the weight of the venues within this category.

P [x] =
Σcheck-ins category

Σ check-ins total
(5)

7. Popular venues-type: The seventh strategy offers a choice of activity nodes weighted
by their popularity (determined by check-in counts) and by the popularity of the venue
category (determined by the total check-ins count per venue category in all of NYC).
The higher the number of check-ins at the venue and for the category in general, the
higher the weight of the venue.

P [x] =
check-ins

Σ check-ins within r
× Σcheck-ins category

Σ check-ins total
(6)

6. Simulation Results

For the purpose of assessing the performance of various offender mobility strategies described
in the previous section, we ran multiple simulations across several different scenarios. In
the following subsections: (1) we highlight the most interesting results over all simulated
scenarios for all types of crimes and choose the two best performing strategies; (2) we engage
in a deeper analysis of the scenario performance for different types of crimes; and (3) we
assess the spatial performance of the best strategy on the CT level.

6.1 Scenario performance for all types of crimes

In the first step, we explored the performance of the scenarios on road level for all types
of crimes. Each of the thirty-five scenarios was evaluated in terms of adapted PAI for a
varying number of simulated agents n (5, 25, 50, 75, 100, 125, 150,..., 1,000). To ease
readability of the overall result, we’ve grouped the adapted PAI results into five graphs, one
for each area strategy in combination with the various destination strategies. See Figure 5
for destination strategies combined with static area strategy. See Figure 6 for destination
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strategies combined with uniformly distributed area strategy. See Figure 7 for destination
strategies combined with power-law distributed area strategy. See Figure 8 for destination
strategies combined with taxi area strategy. And see Figure 9 for destination strategies
combined with crime area strategy.

A preliminary visual inspection of the resulting graphs reveals the consistent under-
performance of the most basic destination strategy (offering a choice between random roads)
compared to more elaborate destination strategies across all five figures. The remaining
destination strategies perform rather similarly and can be split into the broad categories of
activity nodes (random venues, random venues-center, random venues-type) and of proxies
for human activity at those nodes (popular venues, popular venues-center, popular venues-
type), with the latter showing overall slightly higher adapted PAI values throughout the
figures.

For a thorough investigation of the overall performance of each scenario, we applied a
holistic measure. We considered the area under the curve (AUC) for each result line in the
previously seen graphs (see Table 2). This allowed us to compare the average performance of
each scenario in terms of adapted PAI over a varying number of agents. Overall, combining
static area strategy with popular venues-center performs best, and showed an AUC value
corresponding to an average adapted PAI of 1.35. The scenarios combining static area
with popular venues-type (1.34 average adapted PAI) and static area with popular venues
(1.33 average adapted PAI) followed as second and third best overall performing scenarios.
Conversely, power-law, uniform random, and static area selection strategies, each combined
with random roads, performed worst with average adapted PAI values between 1.15 and
1.18.

Defining the most basic strategy (static area combined with random roads destination)
as the baseline, we compare the relative AUC improvement of each scenario while grouping
destination selection strategies by area selection strategies. In Table 2, we conclude that
when static area selection strategy is combined with a popular venues-center strategy it
performs best, gaining a 14.31% improvement over the baseline. Then, followed by crime
area strategy combined with popular venues-type, a 12.63% improvement is seen. Using a
power-law strategy combined with popular venues-center results in only 9.75% improvement.
Further, when empirical taxi data is combined with a simple popular venues strategy, a
9.46% improvement is seen. Finally, a uniform random area strategy combined with popular
venues-center strategy delivers only a 9.03% improvement. However, a pattern emerges
as the special cases for popular venues perform best within each of the area strategies.
Additionally, the difference in performance for popular venues, popular venues-center and
popular venues-type is very smal, within each scenario grouped by area strategies.

From the previous analysis, we observed the best performing scenarios for each area
selection strategy and used this information to analyze the efficiency of those scenarios by
looking into the percentage of crimes spots covered within each simulated scenario (see
Figure 10). We defined efficiency to mean achieving the highest adapted PAI value while
covering a reasonable amount of the crime locations within a simulation needing the least
number of agents (percentage of crime locations traveled). For a crime locations coverage
of 80% and 90%, we determined the adapted PAI value and number of agents (see Table 3).
To cover 80% of total crime locations, the adapted PAI values vary between 1.33 and 1.44,
while the highest adapted PAI value is achieved by taxi area combined with popular venues
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Figure 5: Adapted PAI (all crime types) for
static distance and number of agents.

Figure 6: Adapted PAI (all crime types) for uni-
form distance.

Figure 7: Adapted PAI (all crime types) for
power distance.

Figure 8: Adapted PAI (all crime types) for taxi
area.

Figure 9: Adapted PAI (all crime types) for
crime area.

Figure 10: Crime locations coverage for the 5
best performing scenarios.
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Distance Destination AUC

Overall Avg. adapted PAI Improvement

Static Random roads 1,172.38 1.18 0.00%
Random venues 1,299.69 1.31 10.86%
Random venues-center 1,322.00 1.33 12.76%
Random venues-type 1,296.07 1.30 10.55%
Popular venues 1,325.57 1.33 13.07%
Popular venues-center 1,340.10 1.35 14.31%
Popular venues-type 1,328.54 1.34 13.32%

Uniform Random roads 1,156.94 1.16 -1.32%
Random venues 1,256.75 1.26 7.20%
Random venues-center 1,259.40 1.27 7.42%
Random venues-type 1,251.11 1.26 6.72%
Popular venues 1,274.25 1.28 8.69%
Popular venues-center 1,278.21 1.28 9.03%
Popular venues-type 1,273.78 1.28 8.65%

Power Random roads 1,144.43 1.15 -2.38%
Random venues 1,259.58 1.27 7.44%
Random venues-center 1,271.79 1.28 8.48%
Random venues-type 1,246.03 1.25 6.28%
Popular venues 1,280.04 1.29 9.18%
Popular venues-center 1,286.73 1.29 9.75%
Popular venues-type 1,278.11 1.28 9.02%

Taxi Random roads 1,225.00 1.23 4.49%
Random venues 1,260.04 1.27 7.48%
Random venues-center 1,254.06 1.26 6.97%
Random venues-type 1,257.54 1.26 7.26%
Popular venues 1,283.25 1.29 9.46%
Popular venues-center 1,279.06 1.29 9.10%
Popular venues-type 1,275.94 1.28 8.83%

Crime Random roads 1,278.31 1.28 9.04%
Random venues 1,305.52 1.31 11.36%
Random venues-center 1,304.03 1.31 11.23%
Random venues-type 1,306.97 1.31 11.48%
Popular venues 1,311.59 1.32 11.87%
Popular venues-center 1,317.35 1.32 12.37%
Popular venues-type 1,320.49 1.32 12.63%

Table 2: Overall performance comparison for all scenarios, improvement over static combined with random
roads.

Distance Destination 80% crime locations coverage 90% crime locations coverage area

n Adapted PAI n Adapted PAI

Static Popular venues-center 275 1.38 775 1.25
Uniform Popular venues-center 200 1.35 575 1.23
Power Popular venues-center 250 1.33 675 1.22
Taxi Popular venues 125 1.44 325 1.28
Crime Popular venues-type 175 1.42 475 1.29

Table 3: Efficiency and coverage of crime locations over the simulation.
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option, with only 125 agents within the simulated scenario. In turn, to cover 90% of total
crime locations the values for adapted PAI vary between 1.25 and 1.29, the highest value is
achieved by the scenario combining crime with popular venues-type for 475 agents, noting
that taxi combined with popular venues achieves a very similar adapted PAI value (1.28)
for only 325 simulated agents. These results give us an idea about the number of agents
needed for each scenario that depends on our desired crime locations coverage within the
simulation.

6.2 Performance for single types of crimes

In this subsection, we engage in a deeper analysis of the two best performing strategies
determined by the analysis conducted so far. In particular, we look into the performance of
taxi area combined with popular venues and crime combined with popular venues-type, over
adapted PAI by varying number of agents for different types of crime: burglary, robbery,
grand larceny, larceny of motor vehicle, and felony assault. See Figure 11 for taxi combined
with popular venues and Figure 12 for crime combined with popular venues-type. A vi-
sual inspection of the graphs reveals a clear over-performance of the scenarios for robbery,
followed by grand larceny, which performs similar to all types of crimes combined. Both
scenarios under-perform for the remaining crime types of burglary, grand larceny of motor
vehicle, and felony assault compared to all types of crimes aggregated. We note that both
over-performing crime types can be grouped into a larger crime category referred to as street
crimes. Consistent with the analysis in the previous subsection, we show in Table 4 that the
application of a holistic measure for assessing the overall performance of the different crime
type within the scenarios has value. We calculate AUC and the corresponding average PAI
over varying numbers of agents as well as the percentage of AUC improvement over the
baseline (all crimes combined), resulting in two baselines, one for each scenario.

The highest AUC value is achieved by robbery within the taxi combined with popular
venues scenario, corresponding to an average adapted PAI of 1.39. This is followed by
grand larceny within the same scenario (1.33 average adapted PAI) and by robbery in crime
combined with popular venues-type (1.32 average adapted PAI). In terms of improvement
over the baseline, for the scenario combining taxi with popular venues, robbery shows the
highest improvement (4.38%) followed by grand larceny (-0.12%). Both slightly under-
perform compared to all types of crimes combined. Likewise, for the scenario that combines
crime areas with popular venues-type, robbery shows the highest improvement (2.61%)
followed by grand larceny (0.08%) which slightly over-performing when compared to the
baseline. The results over both scenarios are highly consistent.

Again, we analyze the efficiency of the best performing crime types within each scenario,
covering 80% and 90% of total crime locations within the simulated scenarios. The results
of this are shown in Table 4. For 80% coverage of crime locations the adapted PAI values
vary between 1.45 and 1.63, and for 90% coverage the adapted PAI values vary between
1.28 and 1.41. By comparing the adapted PAI values for all crime types combined (see
previous section), simulations ran to account only for robbery and grand larceny revealed
themselves to be more efficient in terms of adapted PAI. The highest adapted PAI value
was achieved by robbery within the scenario combining crime with popular venues-type for
80% and for 90% coverage, with respective adapted PAI values of 1.63 and 1.41, for 100 and
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Figure 11: Adapted PAI for different types of
crimes in taxi & Popular venues.

Figure 12: Adapted PAI for different types of
crimes in Crime & Popular venues-type.

Scenario Crime type AUC

Overall Avg. adapted PAI Improvement

Taxi & Popular venues All crimes 1,320.49 1.33 0.00%
Burglary 1,232.26 1.24 -6.68%
Robbery 1,378.38 1.39 4.38%
Grand larceny 1,318.86 1.33 -0.12%
Grand larceny of motor vehicle 1,251.42 1.26 -5.23%
Felony assault 1,259.67 1.33 -4.61%

Crime & Popular venues-type All crimes 1,283.25 1.29 0.00%
Burglary 1,208.46 1.21 -5.83%
Robbery 1,316.73 1.32 2.61%
Grand larceny 1,284.22 1.29 0.08%
Grand larceny of motor vehicle 1,210.07 1.22 -5.70%
Felony assault 1,231.87 1.24 -4.00%

Table 4: Performance comparison for best scenarios and all types of crime.

300 agents within the simulation. Both scenarios perform slightly better for robbery than
for grand larceny. This strongly indicates the usefulness of simulating specific scenarios for
street crimes rather than for other types of criminal behaviors.

Scenario Crime type 80% crime locations coverage 90% crime locations coverage area

n Adapted PAI n Adapted PAI

Taxi & Popular venues Robbery 100 1.55 225 1.38
Grand larceny 125 1.45 325 1.28

Crime & Popular venues-type Robbery 100 1.63 300 1.41
Grand larceny 150 1.45 500 1.28

Table 5: Efficiency and coverage of crime locations per type of crime for the best simulated scenarios.

15



Rosés, Kadar, Gerritsen, & Rouly

6.3 Best scenario performance on CT

In this section, we present the results of our investigation of the spatial distribution of crime
locations coverage on the CT level. We look at the two best performing scenarios, that of
crime area combined with popular venues-type destination strategy and taxi area combined
with popular venues destination strategy, both for robberies only. And then, we compare
the real number of robberies in each CT from the original crime dataset to the robberies
covered by the agents within the mentioned simulated scenarios and assess whether there
is a pattern of CTs in which the scenario under-performs.

For this part of the experiment we mapped the robberies at the road level onto CTs,
resulting in 1,303 robberies spread over 781 CTs, with a maximum of 9 robberies in a CT
(see Figure 13). In contrast, our simulated scenario using crime areas covered 1,178 of those
robberies, leaving 125 (9.59%) robberies in 53 (6.79%) CTs untraveled (see Figure 14). The
number of untraveled robberies per CT varies between 0 and 3. A visual comparison of the
Figures 13 and 14 reveals little difference between actual robberies and robberies traveled
within the simulated scenario. Our simulated scenario using a taxi area strategy covered
1,175 robberies, leaving 128 (9.82%) robberies in 52 (6.66%) CTs untraveled (see Figure 15).
For this scenario the maximum number of undiscovered robberies in a CT is also 3. In our
opinion, the differences between real and traveled robberies do not seem to be clustered
in specific regions of the city, even though not all robbery locations are traveled by the
agents within each simulated scenario. This suggests a good performance balance across
the simulated scenario strategies in space.

7. Conclusion

The goal of the simulation was to find strategies governing offender mobility from start-
ing positions to daily activities as inspired by RAT. In order to achieve this, and taking
into account that literature in criminology suggests that criminals are prone to offend be-
tween frequently visited activity nodes (i.e. their awareness space), we proposed and tested
thirty-five offender mobility scenarios with specific criminal movement patterns. Our model
instantiated structural and large-scale mobility data for NYC: (1) the NYC road network
with an abstract notion of residential areas and NYC population density; (2) a set of NYC
crime locations (June 2015) mapped to the roads and CT for model evaluation; (3) venues
and check-ins from LBSN (i.e. Foursquare) as proxies for activity nodes and human activ-
ity;(4) aggregated taxi journey data mapped to CTs as a proxy for travel patterns; and (5)
NYC crime location data for the previous year (June 2014–May 2015) mapped to CT as a
proxy for attractive crime areas. Moreover, by explicitly creating a simulation experiment
with behavioral heuristics driving the mobility of the agent offenders, we gave ourselves a
solid quantitative, spatial basis for evaluating our work in terms of a comparison between
experimental results and known, empirical data.

7.1 Discussion and implications

To determine the most useful strategies for simulating offender mobility, we analyzed and
compared the simulated scenarios for various numbers of agents in terms of adapted PAI
(a measure based on calculating a ratio between historic crime locations passed and the
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Figure 13: Robbery locations per CT from the
original data set, for 1 month (June 2015).

Figure 14: Traveled robbery locations for crime
area strategy combined with popular venues-type
per CT.

Figure 15: Traveled robbery locations for taxi
area strategy combined with popular venues per
CT.
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distance traveled by the agents). In fact, our results showed that all of the scenarios
produced very high adapted PAI values (i.e. high performance) when simulating a low
number of agents. We understand this to be a consequence of a reduced accumulated
travel distance. As an artifact-of-simulation, this was a result of the agents not needing
to cover (travel by) a minimum percentage of historic crime locations within the simulated
environment. Knowing this in advance was, in part, why we ran the simulations with various
numbers of agents and assessed them for a minimal crime coverage percentage. We achieved
improved results with more plausible numbers of simulated criminal perpetrators.

Our overall analysis based on average adapted PAI over varying numbers of agents within
the simulation, revealed a consistent over-performance of destination selection strategies
inferred with proxies for human activity (derived from LBSN). Indeed, using information on
activity nodes, including the popularity of those nodes, brings a benefit to the simulation
of offender mobility. In terms of agent area selection strategies, it appears using static
distance selection (agents always traveling between 38,000 and 42,000 feet) performs best
but only when assessing the average PAI over a varying number of agents. This result was
somewhat surprising because according to the mobility literature presented in Section 3, a
strategy that applied a Lévy Flight trajectory selection (one that mimics individual human
movement) should have produced a better result, at least compared to agents traveling static
distances. Nonetheless, our work confirmed a hypothesis that finely tuned input parameters
— in this case adapted explicitly to NYC and in accordance with the average trip length
of the NYC population — leads to plausible output results, which are comparable to more
elaborated parameters inferring data from large-scale human mobility sources.

However, a more relevant measure to observer the overall adapted PAI performance is
to consider which simulation scenarios performed best for covering a minimum percentage
of historic crime locations within the simulation, i.e. 90%. The highest adapted PAI
value was achieved using a proxy for attractive crime areas (from historic crime data for
the previous year) combined with a human activity proxy, simulating 475 agents. The
next highest performance was achieved by using a travel patterns proxy (from taxi journey
data) combined with a human activity proxy, simulating 325 agents. Consequently, the
scenarios including rich real data (LBSN in combination with taxi data or historic crime
data) performed best compared to various strategies only using average travel distance
within NYC. This was again consistent with our hypothesis that an empirically-grounded
and explicit ABM using large-scale mobility data was a powerful complex system diagnostic
tool.

We engaged in a deeper analysis of the results, focusing on exploring the two best
performing scenarios in terms of simulated crime types (i.e. evaluating only agents passing
a specific type of crime locations). In terms of average PAI over varying number of agents,
both scenarios (proxies for travel patterns and attractive crime areas combined with a
human activity proxy) performed best for robbery, followed by grand larceny (performing
similar to all crime types combined). This result still holds when assessing the scenarios
for a 90% coverage of crimes, and both scenarios perform best for robbery. The highest
performance was achieved by an attractive crime areas proxy combined with a human
activity proxy for 300 agents, with an adapted PAI reaching a value of 1.41. The next
best performance was the scenario combining a travel patterns proxy with a human activity
proxy in a simulation using 225 agents, which achieved an adapted PAI value of 1.38. Hence,

18



Agent-Based Simulation of Offender Mobility

we conclude that those scenarios that included large-scale human activity data proved most
useful for simulating offender mobility in robbery simulations. Moreover, adding taxi data
as a proxy for travel patterns resulted in simulation outputs comparable to using historic
crime data as a proxy for attractive crime areas.

Consequently, our scenarios, especially the ones including real data, are most useful for
simulating offender mobility for specific street crimes opposed to other crime types, or all
crime types combined. On one hand, these results are in line with our previous research,
which showed that accounting for human activity (e.g. Foursquare venues and check-ins)
and travel patterns (taxi data) improved predictive accuracy, especially for models predict-
ing robbery and grand larceny (Kadar et al., 2017; Kadar & Pletikosa, 2018). On the other
hand, the range of adapted PAI values achieved for our models was within the lower but
acceptable rate compared to PAI values in the works of others, e.g. between 1.2 and 3.37
for burglary prediction models (Adepeju, Rosser, & Cheng, 2016). Note that the values for
adapted PAI achieved in this simulation are not directly comparable to the original PAI
applied in crime prediction models. In this simulation we counted historic crime locations
seen by agents without accounting for crime committing capabilities. The original PAI only
counts crime occurrences.

Finally, we evaluated the spatial coverage of historic crime locations at the CT level for
our best performing scenarios, to gain insight as to whether or not there were recognizable
spatial patterns of crime locations not covered by the agents within the simulation. We
did not recognize any spatial patterns and therefore conclude that the simulation for these
scenarios was balanced and covered crime locations equally throughout the CTs.

The results presented by this paper provide extensive insights into the construction
of more accurate rules governing offender mobility in crime simulations and conclude that
integrating more realistic offender mobility strategies informed with novel large-scale human
mobility data can improve such simulations.

7.2 Limitations and future work

Simulating criminal behavior can improve our understanding of the mechanisms underlying
crime and contribute to: (1) more informed testing of crime prevention strategies, and (2)
more accurate crime predictions. Developing informed rules governing the spatial movement
strategies of mobile agents is crucial for crime simulations. Building on our previous work
(Brantingham & Tita, 2008; Rosés Brüngger, Bader, Kadar, & Pletikosa Cvijikj, 2017;
Rosés, Kadar, Gerritsen, & Rouly, 2018) and the work of many others, this paper extends
the state of the art by proposing and testing numerous offender mobility scenarios.

We caution that our study was only conducted for NYC and may not be valid for other
cities, especially those cities with basic structural differences. Additional suggestions for
future work could easily compare the performance of mobility strategies across different
cities. Moreover, to understand the impact of improving offender mobility rules in yet more
general crime simulations, our crime simulation could be extended to include agents having
the capability to decide whether or not to commit a new crime (as in Peng & Kurland,
2014). This additional capability can be implemented with or without the mobility behavior
described in this paper. Overall, we think quantitatively valid mobility results, as we have
shown in this work, combined with the use of qualitative behavioral heuristics that drive
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agent mobility and crime committing decision strategies, would add plausibility. In general,
the combination of heuristic mobility strategies along with the capability of the agents to
decide whether to offend (commit a new crime) or not along their travel paths would provide
further insights into the utility of crime simulation.

Further limitations encompass the bias in the data sets we have used for inferring differ-
ent types of proxies. First, Foursquare data has geographical and social biases (user age).
Second, Taxi journey data is also biased towards specific areas of the city, such as Manhat-
tan and the airports. Considering that we have aggregated data from those datasets, these
issues are mitigated. We also acknowledge the inherent bias in crime locations data, as it
only contains crimes reported to the police, therefore leaving unreported crimes unaccounted
for.

In terms of model evaluation, we suggest that future work might involve a Machine
Learning technique using an Artificial Recurrent Neural Network to assess the emergence
(or non-emergence) of patterns in the data, especially when assessing how the simulation
covers crimes over various areas of the city.

In addition to highlighting the importance of offender mobility within crime simulation,
this work also highlights the impact of explicit ABM techniques that include: (1) environ-
mental data into crime simulations; (2) LBSN data; (3) and taxi journey data. These can
all improve crime simulations by plausibly accounting for human activity. We argue for the
importance of including newly available, rich data sources to improve crime simulations, es-
pecially for increasing the transferability of simulated results to the real world. In summary,
we believe scientific research like ours, and like the many other works we have cited in this
paper, have the potential to contribute to the success of law enforcement organizations and
individual police officers around the world as they test crime prevention strategies in-silico.
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