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Abstract— Driver identification is a growing topic which
offers a streamlined user experience in the connected car, but
potentially also highlights privacy issues of our interconnected
lives. Recent studies have reported the ability for individuals
to be reliably identified out of a group based on their driving
behavior. In particular, the state-of-the-art study claims that,
in a controlled setting, data collected on how a driver operated
the brake pedal could separately identify each of the 15 drivers
from the others. The paper at hand was not able to validate
these strong scientific claims using naturalistic driving data. In
line with the results of other studies using similar data, the
replicated identification accuracy dropped to values between
40% and 70% by applying the outlined methods. Nevertheless,
this paper further contributes to the field by presenting and
evaluating an alternative feature collection technique in order
to achieve identification results between 80% and 99.5% in this
challenging setting, thus advancing the state-of-the-art. These
findings demonstrate the real-world capabilities of data-enabled
driver identification, which both facilitates new use-cases and
potentially raises privacy questions. As such, important key
features from the identification models are presented to assist
both researchers and practitioners in this rapidly developing
topic.

I. INTRODUCTION

The recent work of multiple research groups shows the

growing interest of driver identification. A seamless driver

identification fuels the hope of a streamlined driver expe-

rience without the need of a cumbersome authentication,

and hence could be used to increase security as an intrusion

detection system, or enable personalized service models [1].

At the same time an automated identification raises questions

regarding privacy concerns, especially because of the in-

creasing interconnectivity of modern cars. As in other fields,

such as credit card payments [2], health-related data [3] or

movie ratings [4], recent studies showed the high potential

of identifying individuals reliably out of a group using car

data. In order to leverage the positive aspects and prevent the

risks of person identification, it is important to understand

its technical background and potential. This paper contributes

by investigating person identification in the realm of the car,

through data collected from the CAN bus of a fleet of 50

vehicles in a naturalistic setting.

Lab based simulation studies, where users are monitored

in a driving simulator, and controlled settings, where drivers

follow a set route and perform specific maneuvers, both
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provide valuable insights into driving behavior. However, in

practice it is important that results are validated in more

realistic and challenging real-world driving situations, where

drivers operate freely and under no instruction, otherwise

known as naturalistic driving field studies.

One of the most recent studies, where brake pedal data was

collected in a controlled setting, claims perfect identification

rates when distinguishing between 15 drivers [5]. As such,

the validation of this strong scientific claim is an important

academic task, and the paper at hand was not able to replicate

the reported results. By using the state-of-the-art methods

outlined, and naturalistic driving data, the identification ac-

curacy decreased to performances indicated in other studies

using similar data.

However, this does not imply that a strong identification

using only the brake pedal signal is impossible. Therefore,

this paper further investigates an alternative feature collection

method, motivated by an information theoretic description of

the recorded signals due to the typically sparse usage of the

brake pedal over time. The adapted method achieves higher

identification rates, and thus advances the state-of-the-art.

The paper is structured as follows: First, we present related

research on the topic of car data-based person identification.

Then we describe the study design and our field test settings,

followed by the analytical methodologies we apply. Further,

we present our results validating existing methods under a

naturalistic setting and showing results applying the novel

feature collection method. In the final section, we discuss

the results and shed some light on the implications of this

research.

II. RELATED WORK

The majority of the related research on driver identification

in the recent years is motivated by the beneficial potential

for improving driver safety, rather than raising awareness of

potential privacy issues. Similar to the approaches explored

in various other fields outside of the automotive industry,

researchers have tried to identify drivers using various dif-

ferent methods. For example, CAN bus data has been used

to classify actions, detect distraction and identify drivers

using their driving-behavior characteristics [6]. A deeper

analysis of driver re-identification using a simulator led to the

identification of drivers with an accuracy of up to 73% [7].

To achieve this result, the authors consider driving behavior

signals, such as the accelerator pedal, brake pedal, vehicle

velocity and following distance. Later, the same group was

able to optimize re-identification to 89.6% for the simulator,

which dropped to 71% for real-car data, by applying spectral



analysis methods [8]. In a study of 276 drivers measuring

simulator- and real-car signals as well as the following dis-

tance, the group was able to re-identify a driver with 76.8%

accuracy [9]. And further, a recent study focused on the

technical implementations of driver identifying methods [10].

The drivers in this lab study had to follow a predefined

route of 25 km. Results were limited to detecting subsets of

the available 11 drivers, reaching identification performances

from 52% to 98% for different settings. To achieve this,

they used an extreme learning machine network which was

applied on audio-, video-, inertial measurement unit-, frontal

laser scanner-, and CAN bus signals. Other approaches to

identify drivers used the sitting posture [11], the voice of

the driver in a vehicle security system [12], and finger-vein

technology by applying a neural network [13].

However, for privacy reasons it is important to explore

the potential of driver identification using solely CAN bus

signals. As such, one recent study was exploring driver

identification using only CAN bus signals, such as steering

wheel angle, steering velocity, throttle position, and brake

pedal position under a naturalistic driving scenario [14].

The authors limited themselves to identify a driver only by

looking at the signals generated during a turning event. The

data was collected by 64 drivers accumulating 2,098 hours

and 110,023 km of driving data. By using a random-forest

classifier a subset of 2 to 5 drivers were identified with

accuracies between 50% and 77%.

Finally, two most recent studies highlighted the high

potential of using CAN bus data for violation of drivers’

privacy. In the first study the researchers aimed to identify

up to ten drivers in the shortest time frame possible, and

achieved perfect identification within two minutes [15]. The

study used three different datasets, all containing driving data

from predefined routes. In the second study, the authors were

able to perfectly identify every participant out of a sample

of 15 drivers even when only the brake pedal signal was

used, as the drivers followed predefined routes and performed

maneuvers on a parking lot [5]. Furthermore, they came

to the result that a 99% identification accuracy could be

achieved with only 13.5 minutes of driving data for training

and 1.5 minutes for testing with the top 5 sensors. Both

Fig. 1. Schematic of the sliding window approach applied on an incoming
brake pedal signal. Each window represents one feature vector.

studies concluded, that the brake pedal signal was among

the best indicators for identifying the drivers.

Summing up, we see that studies using data from real-

world scenarios, lead to identification rates between 50%

and below 80% for 2 to 5 drivers. High identification rates

were primarily achieved in lab settings, even when the brake

pedal signal was solely used. Since there is such a strong

performance difference between results of lab studies and

results based on naturalistic data, we focus in a first step on

the validation of the lab setting results. Thereby the insights

from previous work is used, i.e. the limitation on the brake

pedal only and the potential performance improvement when

limiting the identification to specific driving moments.

III. DATA COLLECTION & ANALYSIS METHODS

To validate the results, we conducted a large naturalistic

field study. In this field study, we collected CAN bus data

from 50 professional road assistance drivers over a period of

three months, covering approximately 300,000 kilometers of

naturalistic driving. The data collection system used for this

study was introduced to the drivers as an additional driving

aid, giving feedback on their fuel consumption, which they

could use voluntarily. The drivers were not asked to perform

any special tasks or take any predefined routes and used the

system during their normal daily work. The car’s CAN bus

was accessed via the OBD-II interface, using a dongle that

sent the information via Bluetooth to a smartphone. All data

was then transmitted to the server via the cellular network.

Among other signals, we collected brake pedal position,

measured in percentages (0% = not pushed; 100% = fully

pushed) with a maximum frequency of 30 Hz. To validate

the appraoch of [5], the signal data was further pre-processed

by a quadratic interpolation and resampled at 30 Hz for a

constant sampling frequency. In the following two sections

we will outline the two fundamental approaches which we

applied, in order to validate the state-of-the-art methods, and

advance and improve current methods, respectively.

The first approach will be called sliding window feature

collection-, the second brake event feature collection ap-

proach. In the following vectors denoting sequences of the

Fig. 2. Schematic of the feature vector detection per brake event. Each
braking represents one feature vector.



sliding window approach will be denoted by ~Wi and vectors

denoting sequences of the brake detection approach by ~Bi.

A. Sliding Window Feature Collection

Based on the work of Enev et al., we replicate the sliding

window analysis on the brake pedal signal of the CAN

bus [5]. Let a recorded brake pedal signal be denoted by the

vector ~X of length N. Hence the i-th element of this vector is

denoted by ~X [i] with i ∈ [1,N], and a subsequence of length

n starting at i as ~X [i, i+n−1]. The sliding window is applied

to brake pedal signals as depicted in Figure 1. The signal in

each window is used to collect several features, which are

stacked in one feature vector. Hence, each window represents

one feature vector. The length of a window was optimized

to 3 seconds and an overlapping of the windows of 25%, i.e.

0.75 seconds. The window overlap is denoted by ol. With the

specified 30 Hz this leads to a window length (subsequence)

of n= 90. As such, the sliding-window vector can be denoted

as shown in Equation 1 below:

~Wi = ~X [(n− ol) · (i− 1),(n− ol) · i+ol− 1] (1)

∀ i ∈

[

1,

⌊

N

n− ol

⌋]

B. Brake Event Feature Collection

The second approach goes beyond the prior work and

collects feature vectors based on brake events. A similar

approach was used by Hallac et al., where the recorded

signals were restricted to turning moments [14]. The authors

showed that turns are particularly well-suited for detecting

variations across drivers. Similarly, we use braking events in

order to distinguish different behaviors among the drivers,

and limit the feature collection only to the moments where

the brake pedal is applied. Figure 2 shows an illustrative

schema of the brake event method. Each brake event, from

the moment the brake is applied until the moment it is

released, is used to calculate one feature vector. Due to the

possible loosening of brake pedal springs, we set a threshold

of th = 8% to trigger a brake event. Hence, istart = min{ j ∈
[1,N] | ~X [ j] ≥ th}. The index of when the brake is released

Algorithm 1 Brake Event Detection Algorithm

1: Input: ~X

2: i = 1

3: while true do

4: N = len(~X)
5: istart = min{ j ∈ [1,N] | ~X [ j]≥ th}
6: if istart = /0 then

7: break

8: iend = min{ j ∈ [istart ,N] | ~X [ j]< th}
9: if iend = /0 then

10: break

11: ~Bi = ~X [istart , iend ]
12: ~X = ~X [iend + 1,N]
13: i = i+ 1

can be found by iend =min{ j ∈ [istart +1,N] | ~X [ j]< th} This

leads to the vector of the subsequence of ~B = ~X [istart , iend ].
To collect all brake events, this can be written as shown in

Algorithm 1. Note that, when compared to ~Wi from (1), the

vectors ~Bi can cover subsequences of different lengths, as it

can be seen in Figure 2 comparing the width of ~B1, ~B2, and
~B3.

We motivate feature collection by brake events by con-

sidering a sliding window where the pedal is not pushed,

e.g. ~Wi =~0. Since the probability of the signal being zero

is one, the entropy of the signal becomes zero. Following

the description of the mutual information [16], it can be

shown that I(D j, ~Wi) = 0 ∀ j, where D j describes the j-th

driver. Hence, we have no knowledge gain about the drivers

looking at these windows. Similarly, this can be shown for

the brake event approach, for subsequences, when the brake

pedal is not applied. The only information we exclude using

this approach is the time between two brake events. We argue

that the duration between two events reveals only information

about the surrounding situation, rather than the driver itself,

i.e. we assume that the reason why a brake was performed

is mainly due external factors, but only how a brake is

performed reveals information about the driver.

The benefit of this approach is further demonstrated when

considering the sparsity of brake events over time. As part

of our analysis, 1000 brake events were extracted for each

of the 50 drivers. The mean time between two brake events

lies around 25 seconds, and the maximal amount close to

100 seconds, as shown in Figure 3. Additionally, there were

several outliers which were excluded from the figure, with

extremely high durations between brake events. The time

between these outliers rose to over 20 minutes on trips

including highway segments. With the observation of sparse

brake events over time, and the property that the time where

the brake is not applied does not reveal any information about

the driver, we “condensed” the information of a driver into

fewer feature vectors. This new approach effectively removes

unimportant, and potentially uncertainty increasing, feature

vectors to improve classification accuracy.

Fig. 3. Distribution of the duration between two brake events.



C. Feature Calculation

In the following we will describe the calculation of the fea-

tures. In total, 58 features were collected for both approaches.

The statistical features contain the signals’ minimum (only

for sliding-window), maximum, average, quartiles, standard

deviation, autocorrelation, kurtosis, skewness and duration

(only for brake event). The descriptive features contain a ten

piece-wise approximation of the signal. And the frequency

features contain the frequency power components after a

Fourier transformation. We write the set of functions to

calculate the features as ~xi 7→ f j(~xi), where j ∈ [1,58] (i.e.

one of the 58 functions). The vector ~xi denotes hereby

either one of the sliding window vectors ~Wi or one of

the brake event vectors ~Bi. All functions are mapping the

signal vector onto a real number, i.e. f j(·) : Rn×1
+ → R.

The features are then stacked into one feature vector, i.e.
~Fi = [ f1(~xi), f2(~xi), ..., f58(~xi)]

T .

D. Classification

Classification of the drivers was performed using vari-

ous machine learning techniques, including support-vector-

machines, k-nearest-neighbors and naive Bayes algorithms.

The identification rates of the random-forest algorithm were

highest, since it performs well with a larger number of

features [17]. As the focus of this paper is on the feature

collection method, we exclude the results of the other al-

gorithms in the later results section for brevity, and focus

on the random-forest algorithm. We used the randomforest-

matlab [18] library for MATLAB to identify the drivers. The

random-forest algorithm constructs multiple decision trees

during the training phase. The models can be build in two

ways: pairwise, i.e. one model per class [19], or one model

for all classes. Despite each model in the pairwise classi-

fication being less complex, it was more time-consuming

in training and testing, and the results did not significantly

increase. Therefore, the results presented use one model with

5,000 trees, where each decision tree returned one vote for

which class the input feature vector fits best. The final driver

classification decision is made by majority vote. Evaluating

the performance with a sequence of N feature vectors per

class leads to a majority vote over N*5,000 feature vectors.

Fig. 4. Identification accuracy over feature vectors collected by the sliding
window approach for 5 and 15 drivers.

IV. RESULTS

The results shown below are structured in the following

way: in Section IV-A, the results validating the results from

a lab study setting are presented using 5 and 15 drivers.

Second, in Section IV-B the performances achieved by the

newly introduced brake event feature collection approach are

given for groups of 5, 15 and 50 drivers, using the same

performance indicators of [14], [5] and leveraging the full

dataset. Further the confusion matrix for the identification

of 50 drivers is given in Section IV-C. And finally a short

description on the feature importance is given, hinting which

features are strong indicators of a driver, in Section IV-D.

For each categorization task, the results are averaged over

multiple iterations where drivers in the group were picked

uniformly at random out of the 50 available drivers from

the field study. We also assessed the length of driving

time needed to train accurate identification models by using

different amounts of feature vectors from the training set

in each iteration. Moreover, the amount of test set feature

vectors for each iteration was measured, giving an indication

of driving time needed until accuracy converged on driver

identity. Finally, the feature vectors for each iteration were

picked uniformly at random from the training and test set.

Naturally, the training and test sets were not overlapping so

that the data used to validate the results were unknown to

the trained model.

A. Validation of state-of-the-art methods

The replication results of identifying 5 (blue curves), and

15 (red curves) drivers based on the sliding window approach

are shown in Figure 4. The dashed curves denote the results

for a trained model using 15 minutes of driving data and the

solid curves denote the identification accuracy of the model

trained with 90 minutes of driving data. We observe a small

increase, of less than 5%, in accuracy by using more driving

data to train the model, however, we see that this is not

a dramatic improvement. Thus, the identification accuracy

rises from 20% (random guess) to 70% for 5 drivers and

from 6.7% to over 40% for 15 drivers. Further we observe

that results using driving data from a lab setting could not

be replicated with our dataset [5], but ratifies the reported

Fig. 5. Identification accuracy over feature vectors collected by the brake
event detection approach for 5 drivers.



Fig. 6. Identification accuracy over feature vectors collected by the brake
event detection approach for 15 drivers.

results of other studies using naturalistic driving data and

applying state-of-the-art methods [14].

B. Brake event feature collection method

In the case of the brake event approach, each feature

vector corresponds to one brake event, where approximately

80 brake events equates to 30 minutes of driving time. The

results of the newly introduced brake event approach are

given in Figures 5, 6 and 8. The 200 test set feature vectors

shown in these Figures correspond to a driving time of

approximately 75 minutes on average. For all of the brake

event classification tasks, we present results with a testing

set size with a maximum of 200 brake event feature vectors,

since the accuracy converges only then for 50 drivers as

shown in Figure 8. The training set sizes range from 120

to 800 brake events, corresponding to an approximate range

from 45 minutes to 5 hours of driving time according to the

statistics shown in Figure 3. We chose a maximum training

set size of 800 feature vectors, since this would correspond

to an expected driving time of over 5 hours, therefore larger

training set sizes are unrealistic.

Figure 5 shows the performance of the random-forest al-

gorithm using the approach of brake event feature collection

for 5 drivers. Altogether, the performance increases to over

95% for a training set size of 120 feature vectors, and

Fig. 7. Confusion matrix of 50 drivers after training with 800 and testing
with 200 brake events.

Fig. 8. Identification accuracy over feature vectors collected by the brake
event detection approach for 50 drivers.

to 99.25% for 800 feature vectors after using 200 feature

vectors from the test set. In comparison to the sliding window

approach, we see a significant improvement in identification

accuracy. A similar improvement is shown for 15 drivers in

Figure 6. The accuracy increases from 40% with the sliding

window approach, to between 80% and 93% depending on

the training set size. Finally, Figure 8 shows the performance

for the full dataset of 50 drivers, where the base line accuracy

of randomly guessing the driver identity lies at 2%. From

this we see an increase to an accuracy between 70% when

training the model with 120 brake events and 85% when

using 800 brake events.

Summing up, we observe that adapting the feature collec-

tion approach to an event based method, we were able to

almost perfectly identify 5 drivers. Naturally, the accuracy

of these predictions drop when more drivers are added, and

with 45 minutes of training driving data we could identify

15 drivers with an accuracy of 80%, and 50 drivers with an

accuracy of 70%.

C. Confusion Matrix

Figure 7 shows the confusion matrix of 50 drivers in

a sorted order after training the algorithm with 800 brake

events and applying 200 brake events for testing. We see

that for more than 30 of the drivers, brake events led to a

good prediction of the actual driver. Approximately 6 drivers

(orange to green squares on the diagonal) were correctly

identified between 50% to 80% of the time, and the last

10 drivers were almost never correctly identified. Moreover,

it can be seen that there is no single driver which was used

as a default prediction, or ‘sink’, for all misclassified drivers.

Three of the poorly identified drivers were each heavily

misclassified towards one specific driver, shown by the red

squares not on the diagonal. These drivers were mismatched

with a driver from a different base location, indicating that

there was no over-fitting to the region of operation, but rather

that the drivers have a very similar driving style.

D. Feature Importance

Finally, the importance of the features calculated by the

random-forest algorithm changed for different selections of



drivers and different sizes of training sets. However for

all iterations a few features always appeared to have high

importance, such as the first, second, 9th, and 10th piece-

wise approximations. These features correspond to the down-

sampled signal at the beginning and the end of a brake event.

Additionally, the frequency components between 3 Hz and

8 Hz were strong indicators of the driver.

V. DISCUSSION AND OUTLOOK

This work contributes to the growing field of automatized

person identification. Applying this topic to the automotive

setting could enable and improve many products and services

that require driver identification, such as automatic activa-

tion of personal insurance plans, frictionless personalization

of the car experience, or car intrusion detection systems.

Meanwhile, the results presented enable policy makers and

companies to better evaluate the potential privacy concerns

of connected cars.

Recent reported results from various groups, showed the

ability for individuals to be reliably identified out of a group

based on their driving behavior. In particular, one of the

most recent studies claims that, in a controlled setting, data

collected on how a driver operated the brake pedal could

distinguish between 15 drivers with perfect accuracy. The

validation of such a strong scientific claim is an important

aspect of any academic discipline, and the paper at hand was

not able to replicate the reported results, but rather verified

results using state-of-the-art methods of other studies using

naturalistic driving data.

The results of this research should be assessed in light of

its limitations. Despite the uniqueness of the data collected,

we have to acknowledge that our analysis is based on a field

study of professional road assistance drivers. This implies

that our results may not be easily generalizable to the wider

population. However, the homogeneity of the drivers may

have reduced the variance in the feature distribution and

actually weakened the overall performance.

Nevertheless, this paper validates the high potential of

driver identification using the brake pedal, by adapting the

reported feature collection technique in order to achieve

higher identification results in this challenging setting, and

thus advancing the state-of-the-art. We motivated our ap-

proach with an information theoretic learning description,

and showed that we can increase the identification perfor-

mance significantly by only considering the times where

the brake pedal was applied. As such, the feature collection

approach derived in this paper is tailored to the sparsity of

brake events over time. Therefore, it is possible that for each

variety of CAN bus signals a different feature collection

approach will be more appropriate and hence, we believe that

immediate and perfect driver identification, even for a larger

set of drivers, can be achieved through combining multiple

signals and feature collection approaches.

These findings demonstrate the real-world capabilities of

data enabled driver identification, which both facilitates new

use-cases and potentially raises privacy questions. As such,

we are excited for the results of future work, which should

apply the approach presented in this paper to a field setting

with a variety of signals.
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