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H I G H L I G H T S

• Techno-economic model analyzing profitability of PV-battery systems.

• Heterogeneity analysis based on 4190 real-world load profiles.

• Predictor for optimal PV-battery system configuration for individual households.

• Large variance in profitability, even for households with comparable annual demand.

• Good prediction accuracy with only one month of smart-meter data.
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A B S T R A C T

Technical advances and decreasing costs of photovoltaic (PV) and battery (B) systems are key drivers for the
consumer-prosumer transition in many countries. However, the installation of a photovoltaic-battery (PVB)
system is not equally profitable for all consumers. This study systematically assesses how heterogeneity in real-
world electricity load profiles affects the optimal system configuration and profitability of PVB systems. To that
end, we develop a techno-economic simulation model that optimizes the PVB configuration for given electricity
load profiles. The analysis uses real-world energy consumption data from 4190 households and is conducted for
current electricity rates and weather conditions in Zurich, Switzerland. To account for future price reductions of
PV and PVB systems, we conduct a sensitivity analysis that assesses how different cost scenarios influence
optimal system configuration and profitability. Finally, we develop and validate a machine learning algorithm
that can predict system profitability based only on a limited set of features and on shorter measurement time-
frames of smart-meter data. We find that under the current cost scenario (PV: 2000 €/kWp, B: 1000 €/kWh) and
without subsidies, about 40% of the analyzed households reach a positive net present value (NPV) for a PV-
system, but only for 0.1% of households is the integration of a battery profitable. Under the most optimistic cost
scenario for both technologies (PV: 1000 €/kWp, B: 250 €/kWh), 99.9% of the households benefit from the
integration of battery storage into their optimal system configuration, with a mean installed PV power of
4.4 kWp and a mean battery size of 9.6 kWh. In all cost scenarios, system profitability varies considerably be-
tween households, even for households with comparable total annual demand, primarily due to the hetero-
geneity in the load profiles. Thus, being able to identify households for whom the installation is profitable is
important. The proposed machine learning algorithm predicts optimal configuration, profitability, self-suffi-
ciency, and self-sufficiency ratios with good accuracy, even when only relatively short timeframes of smart-
meter data are available. The results of this study are relevant for households making individual investment
decisions as well as for utility companies to more effectively identify and approach relevant customers for the
installation of PVB systems. Furthermore, the findings enable policymakers to determine the critical levers for
increasing private investments into PVB systems in their region and to predict how future developments like
component costs will affect the future diffusion of these systems.
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1. Introduction

Many countries have put forward ambitious targets to increase the
share of energy they generate from renewable sources. For instance, the
Energy Roadmap 2050 of the European Commission foresees an almost
emission-free electricity production in Europe by 2050 [1]. Photo-
voltaic (PV) systems, which are seen as a cornerstone of these plans,
have recently experienced a considerable increase in market diffusion
in many countries. Spurred by a rapid price decline with prices for
residential PV system falling by over 80% from 2008 to 2016 in most
competitive markets [2], solar PV represented almost half of newly
installed renewable power capacity in 2016 [3]. As a result, global PV
deployment increased from 3.7 GW in 2004 to more than 300 GW at the
end of 2016 [4].

Small-scale PV systems on residential or commercial buildings ac-
count for about a third of the globally installed PV capacity and gen-
eration [5,6]. Owners of small-scale PV systems can either inject the

electricity produced into the distribution grid at a feed-in tariff, or self-
consume it to cover the building’s electricity demand. Adding on-site
battery (B) storage to PV systems makes it possible to store PV-pro-
duced electricity for later use. Similar to the declining costs of PV
modules, the price of lithium-ion batteries has also started to decrease
substantially and is expected to follow a similar price decline as that
seen for PV panels [7–9]. In particular, for consumers whose production
and demand times do not correspond, the addition of battery storage
increases the self-consumption ratio (SCR) – the ratio of electricity
generated by the PV system that is directly used at the installation site
to the total amount of electricity generated [10]. When the generation
cost of PV and battery-supplied electricity is below the retail price, self-
consumption is favorable from an owner’s perspective. In most regions,
the remuneration for feeding electricity into the grid was gradually
reduced and many policymakers push to remove feed-in tariffs [11].
Consequently, self-consumption has become increasingly attractive in
many countries over the past few years due to increasing electricity

Nomenclature

Abbreviations

B battery
DoD depth of discharge (–)
DoF degrees of freedom
EoL end of life
FiT feed-in tariff
MAE mean absolute error
ML Machine Learning
MPP maximum power point
NPV net present value (€)
PDR production to demand ratio (–)
PV photovoltaic
PVB photovoltaic-battery
SCR self-consumption ratio (–)
SDR storage to demand ratio (–)
SSR self-sufficiency ratio (–)
STC standard testing conditions ( =T 25STC °C, =G 1.0STC kW/m2)
TMY typical meteorological year

Greek symbols

αI temperature coefficient of current at STC (%/K)
αV temperature coefficient of voltage at STC (%/K)

tΔ time step (s)
δ PV technology coefficient (–)
ηc battery charging efficiency (–)
ηd battery discharging efficiency (–)
ηinv inverter efficiency (–)
σCL effective fraction of battery capacity usable due to cycle

life degradation (–)
Ωx sampling distribution for xDoF

Symbols

Am module surface area (m2)
C0 investment costs (€)
Ci costs in year i (€)
cbat specific battery system costs (€/kWh)

☆cbat replacement cost of battery (€/kWh)
cpv specific PV system costs (€/kWp)
crem feed-in remuneration (€/kWh)
cht high tariff electricity cost (€/kWh)
clt low tariff electricity cost (€/kWh)

Ebat battery charging state (kWh)
Ebat

max upper bound charging state (kWh)
Ebat

min lower bound charging state (kWh)
Ebat

R rated battery capacity (kWh)
G total in plane radiation (kW/m2)
GSTC in plane radiation under testing conditions (1 kW/m2)
IMPP module current at MPP (A)
IMPP,STC module current at MPP and STC (A)
ISC short circuit current of PV module (A)
ISC,STC short circuit current of PV module at STC (A)
L snippet length (days)
N number of load profiles/households
Nc number of cycles before EoL is reached
NT time horizon (years)
PDC DC power of all PV modules (kW)
PDC N, m DC power of a PV module (kW)
PL load (kW)
r discount rate (–)
Ri revenues in year i (€)
resc escalation rate on electricity prices (–)
rrem annual reduction rate for feed-in remuneration rate (–)
rom share of C0 that accounts for operation and maintenance

cost (–)
Tamb ambient temperature (°C)
tht daily high tariff hours
tlt daily low tariff hours
Tm module temperature (°C)
VMPP module voltage at MPP (V)
VMPP,STC module voltage at MPP and STC
VOC open circuit voltage of PV module (V)
VOC,STC open circuit voltage of PV module at STC (V)

→WB L energy supplied to load from the battery bank (kWh)
→WG L energy supplied to load from the grid (kWh)

WPV energy (DC) produced by the solar panels (kWh)
→WPV B energy supplied to battery from the PV modules (kWh)
→WPV G energy supplied to grid from the PV modules (kWh)
→WPV L energy supplied to load from the PV modules (kWh)

WL annual energy demand (kWh)
wL daily average electricity demand (kWh)

̂wL normalized daily average electricity demand (–)
w t( )L i daily average electricity demand during hour i (kWh)

̂w t( )L i normalized daily average electricity demand during hour i
(–)

xDoF degree of freedom vector P E( , )bat
R

0
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prices in the residential sector, decreasing feed-in tariffs, and falling
levelized costs of PV-produced electricity [12,10].

However, the installation of a photovoltaic-battery (PVB) system is
not equally profitable for all consumers. A household that consumes
large amounts of electricity during sunny hours may amortize the in-
vestment into a PV system much more quickly than a household with
the same annual demand that uses electricity primarily in the evening
hours. Previous research suggests that there is large variability in the
profitability of these systems even among households that face the same
component costs and the same local conditions regarding climate,
weather, and electricity rates (grid-supplied electricity and feed-in
tariffs) [12–14]. The configuration of the PVB system to achieve the
highest profitability depends on consumer-specific parameters, in par-
ticular annual electricity demand, orientation and tilting angle of the
PV array, and congruence of production and demand [15]. In fact, two
households with the same annual demand may require completely
different optimal system configurations and achieve very different net
present values [16]. Yet, previous research has only partially addressed
the heterogeneity of real-world load profiles and its influence on the
optimal configuration and economics of PVB systems [17,10]. Many
existing studies use synthetic load profile data [18,19,17,20] or average
reference profiles [21–23] and thus neglect the variability of house-
holds’ demand [24].

This article takes the heterogeneity of real-world load profiles into
account. To that end, we develop a techno-economic simulation model
that uses local weather data and current electricity rates as input to
optimize the battery size and installed PV power for each given load
profile. In a first step, we analyze for what fraction of households in
Zurich, Switzerland, a PVB system is profitable already today. To ac-
count for the variability in real-world consumption data, the analysis
processes a large set of smart-meter data from 4190 households. In a
second step, we conduct a sensitivity analysis with different cost sce-
narios to investigate how future price reductions of PV and PVB systems
affect optimal system configuration and profitability. In a third step, we
use the results of the techno-economic optimization method as ground
truth to develop and evaluate a machine learning algorithm that pre-
dicts system profitability based only on a limited set of input data
(annual demand and daily average load profile). In particular, we in-
vestigate how shorter timeframes of smart-meter data affect our pre-
diction results for optimal system configuration, self-consumption ratio,
and profitability.

2. Related work and local market situation

2.1. Related work

PVB systems can be understood as key components for decentralized
energy systems and have been studied for many years. In many regions,
solar PV is approaching or has reached grid parity [25,16]. Costs for
battery storage systems have also declined substantially in the past few
years [7,9]. These developments have sparked an increased interest in
PVB systems. As a result, in addition to the vast body of research that
assesses particular technical aspects of specific PVB system components
in detail (including ageing of different battery technologies, advances in
the efficiency of PV modules or of inverter power electronics), a con-
siderable body of literature provides holistic evaluations of the tech-
nical and economic performance of those systems.

The majority of those articles are based on simplified techno-eco-
nomic models of PVB systems to analyze how various input parameters
influence different variables of interest. Different configurations of PV
power and battery sizes may serve as input parameters or may be cal-
culated implicitly in the optimization of other variables of interest –
most typically, self-consumption ratio, self-sufficiency ratio, or eco-
nomic performance. Most articles assess system profitability as key
variable of interest [15,16,10] and perform discounted cash flows
analyses, reporting either the net present value (NPV) or internal rate of
return as outcome variable [21,26,27].

While economic factors are pivotal for the adoption and diffusion of
residential PVB systems, in many cases, nonmonetary factors may also
play an important role in those investment decisions. Aside from en-
vironmental or geopolitical aspects that individuals may want to con-
tribute to, many people value the reduced dependence on utility com-
panies and pursue the reassurance of being self-sufficient as a goal of its
own [28,25]. Consequently, a considerable number of articles focus on
self-sufficiency [29,30] or self-consumption [13,24] as primary variable
of interest. Many articles also investigate how these outcome variables
are intertwined. In particular, the impact of self-consumption on the
economics of PVB systems has a pronounced position in the scientific
literature [12]. Luthander et al. [31] recently summarized the previous
research in the field of self-consumption of electricity from residential
PV systems. The input parameters studied cover a wide range from
political boundary conditions on the macro-level (e.g., subsidies, feed-
in tariffs), to local weather conditions, technology-related aspects (e.g.,

Table 1
Overview of recent related work on PVB-systems.

Author Integrated
optimization of PV

Load
profile type

Number of
load profiles

Influence of annual
demand on SSR

Influence of annual
demand on
economics

Influence of profile
heterogeneity on SSR

Influence of profile
heterogeneity on

economics

Mulder et al. [38] Yes R5 7 No No No No
Hoppmann et al. [39] Yes R15 1 No No No No
Bortolini et al. [40] Yes R60 1 No No No No
Weniger et al. [15] No R1 1 No No No No
Tjaden et al. [35] No R15 74 No No No
Meunier et al. [41] No S15 6 Yes No No No
Khalilpour & Vassallo [42] Yes R60 3 No No No No
Khalilpour & Vassallo [16] Yes R60 6 No No No Yes
Parra et al. [32] No R1 1 No No No No
Nyholm et al. [13] Yes R60 2104 No No No No
Beck et a. [12] Yes R0.17 25 No No No No
Quoilin et al. [24] Yes S15 894 No No No No
Merei et al. [33] Yes R1 1 No No No No
Johann & Madlener [34] No S? 10 No No No
Zhang et al. [29] No R60 1 No No No No
Schopfer et al. [43] Yes R30 4232 No Yes No No
Linssen et al. [44] No S5 3 Yes No No No
Bertsch et al. [27] Yes R/S30 200/200 Yes Yes No No

Present work Yes R30 4190 Yes Yes Yes Yes
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system costs, hardware efficiency, type of battery technology), and in-
dividual household-level characteristics (e.g., system orientation, an-
nual demand, load shape).

Regarding political boundary conditions, a number of articles assess
how electricity retail tariffs [16,32,24,17], interest rates [33,34], and
subsidy schemes [27] affect the economic viability of grid-connected
residential PVB systems, and others evaluate the role of feed-in tariffs in
near- and post-grid parity markets [34,11]. Several studies compare the
profitability of PVB systems in different climatic regions and weather
conditions within or between countries [35,24,17,27].

Aside from regulatory and climatic conditions, many techno-eco-
nomic models assess the influence of technology-related aspects. This
includes studies that compare the effect of different battery technolo-
gies on the economics of PVB systems [36] and a large number of
studies that evaluate how different technology cost scenarios affect the
economic feasibility of grid-connected PV-battery systems [16,15,33].
While PV systems are increasingly profitable in many regions [31],
adding battery storage is not profitable yet for most households under
today’s cost and tariff conditions. Existing studies differ in their esti-
mates of how far battery prices need to decline to make the addition of
battery systems generally profitable. For the context of Germany, for
instance, Merei et al. [33] conclude that “even unrealistic battery prices
of less than 200 €/kWh cannot lead to an economic solution” (p.177),
whereas others find that storage costs of 500–600 €/kWh may already
make PVB systems generally profitable in Germany – even in the ab-
sence of subsidies [15,37,27].

Aside from the primary variable of interest (optimal system size,
self-consumption, self-sufficiency ratio, or economic performance) and
the input parameters studied, existing techno-economic models also
differ in the methods and input data they use. For an overview, we
categorized recently published related work based on the following
attributes (Table 1):

• Integrated optimization: classifies whether a techno-economic op-
timization has been applied to identify the optimal system size (such
as PV and battery size), as opposed to an exploratory analysis using
different system sizes, tariffs, installation costs, etc.

• Load profile type: indicates whether the analysis is based on real-
world profiles (R) or on synthetic load profiles (S) and specifies their
temporal resolution. For instance, R15 stands for real load profiles
with a temporal resolution of 15min.

• Number of load profiles that have been analyzed.

• Influence of annual demand on SSR (resp. economics): indicates
whether the article evaluates the impact of annual demand on SSR
(and economics, respectively).

• Influence of profile heterogeneity on SSR (resp. economics): in-
dicates whether the article assesses how heterogeneity in real-world
load profiles influences SSR (and economics, respectively).

As Table 1 shows, there is large variety in the methods and load
profile data on which previous studies base their assessments. The load
profiles studied vary considerably in their time resolution, an aspect
whose importance has been studied by Linssen et al. and Beck et al.
[10,12]. While some articles use measurement data from real house-
holds, others perform their analyses on synthetic data [18,19,17,20] or
average reference profiles [22,23]. Among the studies that use real-
world measurement data, many are based only on a single or just a few
households. Several researchers have recently pointed out the im-
portance of using realistic consumption data and accounting for the
heterogeneity in real-world load profiles: Linssen et al. advise against
using aggregated load profiles, as the optimization results may be too
optimistic in terms of total costs and required battery size [10]. Like-
wise, Tjaden et al. [35] and Quoilin et al. [24] emphasize the im-
portance of using realistic load profiles, as aggregated data does not
sufficiently reflect the dynamics in the load of individual households,
which makes them ill-suited for the assessment of self-sufficiency and

self-consumption.
While the list of articles in Table 1 is by no means exhaustive and

many other relevant related contributions exist, the table (and this
section in general) provides an overview of the ongoing debate and
state of research in the field.

2.2. Local market situation

The majority of Switzerland’s annual electricity demand is covered
by hydro power (57%) and nuclear energy (26%). Solar energy covered
about 1580 GW h or 2.27% of the total Swiss electricity demand in 2016
[45]. The mean electricity demand per household is 5100 kWh [46].
Like in many other service territories in Switzerland, residential cus-
tomers in Zurich are subject to a dual time-of-use-tariff structure, with a
distinct daytime and nighttime tariff. The average current daytime tariff
(6–22 h) is 0.24 € and the nighttime tariff (22–6 h) is 0.14 €. Dual tariffs
(or, more generally, time-of-use-tariffs) are not a Swiss particularity,
but common in countries like Australia, Canada, Italy, Portugal, the
United Kingdom, and USA. In 2018, Switzerland adopted the new en-
ergy act by referendum according to which PV producers with installed
power smaller than 100 kWp will not receive a guaranteed subsidized
feed-in tariff any more. They will continue to receive a remuneration
for the electricity they inject into the grid [47], but the local utility
company can set and adjust that remuneration rate every calendar year
according to current market conditions. An interactive overview of
current remuneration rates can be found in [48].

3. Data and methodology

3.1. Overview

The evaluation of the economic viability of PVB systems depends on
various input parameters, both at the level of the individual household
(in particular, time-series data on the electricity demand) and regarding
local conditions (including weather data and electricity tariffs). Section
3.2 describes the two main sets of input data, namely the load profiles
and the preprocessed weather data. In a first step (Section 3.3), we
develop a techno-economic simulation model that is able to compute
the optimal PV and battery size configuration for a given household and
its load profile. For each optimal configuration, the model calculates
the net present value along with a set of other output variables (e.g.,
self-sufficiency and self-consumption ratio). In order to assess how
differences in annual demand or how the heterogeneity in real-world
load profiles affects the economic viability of PVB systems, a large
dataset of load profiles with different consumption patterns is needed.
With the ongoing massive rollout of smart meters in many countries,
such large datasets with real-world load profiles are increasingly
available. In a second step (Section 3.4), we analyze the sensitivity of
the outputs of the techno-economic model to different scenarios of fu-
ture PV and battery costs. The processed dataset produces a large
amount of simulation outputs, especially when repeated over different
PV and battery system costs. In a third step (Section 3.5), we make use
of this large output dataset to develop and evaluate a machine learning
algorithm that predicts the NPV and other key output variables based
only on a limited set of input data. More precisely, for each of the five
output variables of interest, we train an algorithm that predicts the
output if only the daily average load profile (24 values) as well as PV
and battery costs are known and evaluate the performance of the al-
gorithm for different timeframes on which the daily average load pro-
file is based.

3.2. Data

3.2.1. Smart-meter consumption data
While many analyses use synthetic or aggregated load profiles, we

take a large dataset of smart-meter data from actual households, which
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allows us to take the heterogeneity of real-world load profiles into ac-
count. The original dataset contains the electricity demand (in kWh) of
4232 households with a temporal resolution of 30min. The dataset was
collected over 75 weeks between July 10th 2009 and December 26th
2010 in Ireland [49]. The dataset is of high quality: only 42 of the
observed households (<1%) have missing datapoints or unrealistic en-
tries, resulting in a dataset with 4190 useful load profiles. The mean
annual electricity demand of the sample is 4304 kWh, with a standard
deviation of 2164 kWh. The data is anonymous and not tagged with
geolocation. The sample of 4190 households contains the following
building types: Apartments (1.7%), semi-detached houses (31.7%),
detached houses (26.5%), terraced houses (14.5%), bungalow (25.5%),
unknown (0.2%).

As Ireland’s solar PV installed capacity per inhabitant is the lowest
of all EU countries with just over 2MWp installed in 2015 [50], we
decided to transfer the load profiles to Zurich, Switzerland, as a central
European country with a more significant share of PV. The choice of
Zurich was motivated by the fact that from a regular dialogue with local
utility companies and policy makers, the authors are familiar with the
regulatory environment and better able to anticipate future develop-
ments (for instance, development of feed-in or remuneration tariffs over
the next few years). Switzerland had 1394MWp installed in 2015 [45]
and a mean electricity demand per household of 5100 kWh [46], which
is comparable to the mean annual demand of the sample (18% higher)
and a similar number of sunshine hours throughout the year (see Ap-
pendix B.6). The transfer of load profiles from one country to the
weather conditions of other countries is common practice in analyses of
PV-battery systems [24,51,32].

3.2.2. Preprocessing of weather data
We combine the smart-meter dataset [49] described above with

weather data of a typical meteorological year (TMY) for Zurich [52].
The quantities of the TMY data used include direct irradiation, diffuse
irradiation, and ambient temperature. For each time step, direct ra-
diation is projected onto the normal vector of the PV panel using
modeled azimuth and solar elevation angles [53]. The diffuse radiation
is modified by considering that an arbitrary tilted PV module faces only
a portion of the hemisphere. The projection of irradiation data onto the
tilted surfaces is a common preprocessing step in the analysis of solar
systems [53].

3.3. Step 1: Techno-economic optimization model

3.3.1. Configuration and operation of the PVB system
PVB systems can be realized in different configurations. The analysis

in this study is based on the configuration shown in Fig. (1). The system
comprises PV modules, an inverter that converts direct current (DC)
into alternating current (AC), and a battery system.

Battery systems can be integrated into the DC or AC circuit. In this

study, we assume that the households install the battery in the DC
circuit by using hybrid inverters, which can manage direct PV con-
version as well as battery charging/discharging. Hybrid inverters are
both a cost-effective and efficient choice for PV battery systems, as they
ensure high efficiency and do not require the installation of an addi-
tional battery inverter or charger.

The battery operation follows a common, straight-forward strategy:
it charges whenever surplus solar energy is available and discharges if
demand exceeds PV output and the battery is not (almost) empty (see
Eq. (A.5)). More precisely, the battery operates between 10% and 90%
state of charge levels, which corresponds to a depth of discharge (DoD)
of 80%. We assume that the battery can achieve =N 4000c cycles with
80% guaranteed capacity at its end of life.

3.3.2. Model specification
The techno-economic model maximizes the NPV for each household

in the dataset based on a set of input parameters (weather, load profiles,
tariffs, physical properties, and component costs). We apply a dis-
counted cash flow analysis, which takes into account incoming and
outgoing cash flows, discounted by the discount rate r. In line with
Hoppmann et al. [39], we set r to 4%. The degrees of freedom (DoFs)
for the optimization include battery size and installed PV power for
each household, and are summarized in the DoF vector =x E P( , )bat

R
DoF 0 .

The optimization problem for the maximization of the NPV is given by

∑= ⎧
⎨⎩

− +
+

⎫
⎬⎭

∈
=

=

xC S
r

max NPV max
(1 )

with Ω
x x i

N
i

i x0
1

20

DoF

T

DoF DoF (1)

where C0 includes the investment costs for both the PV and battery
system and Si denotes the cash flows (or net savings) generated in year
i. Si comprises savings resulting from avoided electricity costs by sub-
stituting grid-supplied energy with PV-generated energy +→ →W WPV L B L
and profits accruing from electricity injected into the grid at the local
remuneration rates. The cash flows Si take into account expenditures for
operation and maintenance, as well as battery replacement costs due to
cyclic aging (see Appendix A.4 for a detailed explanation). Appendix
A.5 provides a more detailed description of the cash flow model ap-
plied.

The NPV is obtained numerically using grid search over the domain
Ωx , which contains discrete power ratings P0 of the PV panel and pos-
sible capacities Ebat

R of the battery:

= … … ×P P[8,9, ,12,14,16,18,20,30, ,120] (in kWp)mod0 (2)

= …E [0,1,2,3,4,5,6,8,10,12, ,38,40] (in kWh)bat
R (3)

Pmod is the rated peak power of a single PV module, which is
=P 0.260mod kWp. We assume a minimal PV system size of

× =P8 2.08mod kWp [54]. The set Ωx contains × =24 24 576 PV and
battery combinations in discrete steps. All samples of Ωx are forwarded
to the techno-economic model, which evaluates the NPV for all 576

Fig. 1. Major components of a PVB system and simplified connection scheme are shown on the left. The right side denotes the annual amount of energy transferred
between the components.

S. Schopfer et al. Applied Energy 223 (2018) 229–248

233



combinations. Following Eq. (1), the value for xDoF that maximizes the
NPV is retained. Thus, the model chooses the configuration of battery
size and PV array size that optimizes the NPV for any given combina-
tion of the input parameters (load profile, weather data, retail tariffs,
system costs, etc.).

The system configuration obtained by Eq. (1) is then used to derive
the self-sufficiency ratio (SSR), meaning that, annually, an amount of
SSR W· L (in units of kWh) is produced and self-consumed using the PVB
system. The remaining portion of − W(1 SSR)· L must be bought from the
local grid provider. The self-sufficiency ratio is defined by

= +→ →W W
W

SSR PV L B L

L (4)

The share of generated solar energy that covers the load directly or
via the battery is referred to as self-consumption ratio and defined by

= +→ →W W
W

SCR PV L B L

PV (5)

Therefore, the amount − W(1 SCR)· PV (in units of kWh) corresponds to
the solar energy injected into the grid.

The optimal PV power and battery size can be normalized with
respect to the annual and mean daily demand, respectively. The pro-
duction to demand ratio (PDR) is the ratio of the net produced solar
energy WPV and the annual demand or, more formally

= =W
W

PDR SSR
SCR

PV

L (6)

A PDR of 1 is often referred to as net zero energy building [14], which
means that over the year the household produces as much energy as it
consumes, irrespective of production and demand concurrence.

Battery systems available on the market today typically have a ca-
pacity between 1 and 10 kWh for residential applications. The ratio
between battery size and daily average demand is an intuitive score.
Thus, we define the storage to demand ratio (SDR) as

=
E
w

SDR bat
R

L (7)

where =w W /365L L is the mean daily demand. If the optimization for a
household yields a SDR of 1.2, we should size the battery such that it
can store 20% more than the daily average demand. The dimensionless
ratios are helpful for the comparison of different households and PVB
configurations.

3.3.3. Techno-economic simulation parameters
The performance of a PVB system depends on a large parameter

space, which must be specified prior to running the simulation. Many
parameters depend on the local building properties such as available
roof surface area, roof orientation, and roof tilting. In addition to the
technical system properties, the local weather and the price of the grid-
supplied electricity affect the economic performance of PVB systems.
All input parameters are specified in Table 2. For a detailed description
of the assumptions made, please refer to Appendix A.

The analyzed smart-meter dataset has no reference to the location,
roof shape, or orientation of the building. Therefore, the orientation
and tilting angle of the PV array are input parameters generated using
probability distribution functions for roof orientation and tilting angle.
The distributions follow Li et al. [55], assuming a Gaussian distribution
(with location= 180°, scale= 50°) for the orientation angle and a
Gompertz distribution (location=0, scale= 12, shape= 0.03) for the
tilting angle. The distributions are shown in Fig. 2.

In central European countries, PV systems generate the maximum
annual energy output when oriented south with a tilting angle between
20° and 30° [15]. Such configurations are optimal if the produced en-
ergy is reimbursed with a constant FiT. Many countries have adopted an
FiT policy over the past years. In European countries, FiTs are con-
tinuously dropping due to the adjustment to falling PV module prices.

In Switzerland, subsidized FiTs for small-scale PV systems (smaller than
100 kWp) were replaced with a cash-bonus-type subsidy in 2018 [62].
This policy shift motivates owners of a PV system to maximize self-
consumption and minimize their dependence on remuneration rates.
Under this self-consumption policy, the influence of orientation and
tilting angle on the self-consumption factor is weaker [15], as the co-
incidence of load and production is more important than the annual
energy output of a PV system. In our simulation, we assume a re-
muneration rate of 0.068 €/kWh (current Zurich tariff [61]), which is
annually depreciating by 10% (utilities are allowed to adjust the re-
muneration rate annually). This reflects that the remuneration rates are
adjusted annually to account for falling PV module prices [63]. To get
an unbiased financial perspective on PVB systems, we have entirely
neglected such subsidies based on cash bonuses and included a com-
prehensive sensitivity analysis to account for future PV and battery cost
developments. However, the effects of the cash bonus subsidy can be
estimated based on the variation of PV costs as explained in the next
subsection.

3.3.4. Base case cost scenario
Both PV and battey system prices can vary significantly as they

depend on local conditions (i.e., difficulty of installation), differences in
manufacturer prices, and different margins for suppliers and installers
etc. A survey in Switzerland estimated the system prices in 2015 for PV
installations and reported a median cost of approximately 2100 €/kWp.
The smallest observed system size was 2 kWp [54], which corresponds
to the minimal values of the search domain Ωx defined in Eq. (2). Based
on the survey, we assume 2000 €/kWp as a reasonable price tag for
installations as of 2018.

Table 2
List of simulation input parameters.

Input parameter Adopted value References

Building properties
Weather station Zurich [52]
Orientation stochastic [55]
Tilt stochastic [55]

PV module properties [56]
Open circuit voltage and short cut current

at STC
V I,OC,STC SC,STC 37.9 V, 8.73 A
Max. power point characteristics
V I,MPP MPP 31.6 V, 8.73 A
Temperature coefficients: α α,I V −0.31%/K, 0.06%/K
Module area Am 1.63 m2

Battery properties [57]
Cycle life Nc 4000
End of life 80% of Ebat

R at Nc
Depth of discharge DoD 80%

Efficiencies [58]
Inverter/Charger efficiency ηinv 0.95
Charge/discharge efficiency η η,c d 0.95

Economic parameters
PV cost scenario cpv 1000–2500 €/kWp [54]
Battery cost scenario cbat 250–1000 €/kWh [27]

Battery replacement costs ☆cbat c /2bat

Operating and maintenance costs rom 0.01 [59]
Discount rate r 0.04 [39]
Electricity escalation rate resc 0.025 [60]
Remuneration rate reduction per year rrem 0.1
Project lifetime NT 20 years [59]

Tariffs [61]
High tariff periods tht 6am to 10 pm (Mo-Sa)
Low tariff periods tlt otherwise
High tariff costs cht 0.240 €/kWh
Low tariff costs clt 0.120 €/kWh

Remuneration rate crem
i 0.068 €/kWh
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The cost variation of battery installations may be just as high as for
the PV system itself. Dehler [64] found a variation between 870 and
3200 €/kWh in battery system costs and points out that cell costs alone
amount to 300 €/kWh and could fall to 200 €/kWh in 2020 and 150 €/
kWh in 2030 [65]. Truong et al. reported battery system costs of 780 €/
kWh for a 6 kWh Tesla Powerwall [66]. Single battery systems with a
size of 2–3 kWh can already be purchased today for 500 €/kWh (before
installation) [67]. Linssen et al. [10] assumed 1000 €/kWh including
installation, which we adopt in this study as a base case. Note that the
sensitivity analysis introduced in Section 3.4 considers future battery
costs as low as 250 €/kWh, which are well below current market prices
of 1000 €/kWh.

3.4. Step 2: Sensitivity analysis

Future system prices are assumed to further decrease [68,69]. In the
last 35 years, the module price decreased by 23% with each doubling of
the cumulated module production (cost reductions result from econo-
mies of scale and technological improvements) [70]. To account for
these future developments, we evaluate the techno-economic model
under 16 different PV and battery system cost scenarios. For the PV
costs, we chose 1000, 1500, 2000 and 2500 €/kWh. For the battery
costs, we applied the same cost variation as Bertsch et al. [71], which
ranges from 250, 500, 750 to 1000 €/kWh. Note that the base case cost
scenario described in Section 3.3.4 is one of the 16 cost scenarios. The
sensitivity analysis resolves the relationship between annual demand
and achieved NPV for each cost scenario. In addition to reporting the
share of households that achieve profitability in each scenario, we show
how the optimized PV power, battery sizes, SSR and SCR are affected by
the technology costs.

3.5. Step 3: Predictor training and testing

3.5.1. Point of departure
As point of departure, we assume the following situation: a house-

hold is considering the installation of a PV or a PVB system. The goal
now is to predict – based on the limited set of data that utility

companies have available – the optimal PVB configuration of for the
given household and its NPV.

In step 1, we used 30-min load curves and TMY weather data to
derive the optimal system configuration and the exact resulting system
profitability, SCR, and SSR. In the prediction, we now strictly limit the
input data to information that is available at the end of the year 2009 as
this would be the input the decision maker has available at the time of
decision making. The data for 2010 is only used ex post in order to
evaluate the quality of the system choice and the accuracy of the pre-
diction of the system’s performance.

As input for the predictor for a given household k, we use the mean
daily consumption of household k and its characteristic daily load
curve, both from 2009, as well as the expected PV and battery costs.
The daily load curve of household k – we also refer to it as load snippet
hereafter – consists of 24 hourly values of the average daily demand.
These hourly averages are calculated based on L days of smart-meter
data from 2009. We deliberately restrict the timeframe L of the smart-
meter dataset to cover between one and 160 days, as most utility
companies do not store fine-grained data by default. For the sake of the
predictive model’s practical applicability, the consumption data needs
to be stored only if a customer commissions the configuration and NPV
assessment. The predictive model – essentially a regression – needs to
be trained before it is being put to use. In order to avoid overfitting, we
carefully separated the data into training and test (or evaluation) data
and made sure that the model is not built on information that is used to
assess its quality in a later step. We apply a ten-fold cross validation for
that purpose; additional information of the cross validation procedure
can be found in Appendix C.4.1. Fig. 3 illustrates the separation of the
input data.

3.5.2. Input and output of the predictive model
In this subsection, we describe how the simulation outputs from step

1 and 2 are used to train and evaluate the predictor; Fig. 4 illustrates the
procedure. The outputs from step 1 serve as dependent variables, and
the following data serve as input variables (features) of the predictor:

• The normalized daily average load profile (with hourly resolution),

Fig. 2. Probability distribution of orientation angle and tilting angle.
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referred to as load shape

• The average daily demand of the 2009 dataset ≈w W /365L L
(2009) (2009)

• The specific PV costs cpv (in €/kWp)

• The specific battery costs cbat (in €/kWh)

The load profile and the average daily demand are quantities that
can be used if only incomplete smart-meter data (i.e., sampled for less
than a calendar year) is available. In this situation, the load shape is
computed from the smart-meter data snippet available and passed on to
the predictive model, which can then compute the optimal PV and
battery size.

The accuracy of the predictor is affected by the quality of the input
data (especially by the length of the smart meter data snipped to con-
struct the characteristic load curve). The longer the time frame, the
better the estimation of characteristic load shape and the daily average
demand. We vary the snippet length between (1,7,14,30,60,90,160) days
(always ending end of 2009) and report the error scores for each
snippet duration. The total annual demand is a quantity that all utility
companies track and store for billing purposes. As we only have about
half a year of data for 2009 available, our model input describing the
average daily demand for 2009 is less accurate than the input a utility
company could use. Thus, the estimates represent a conservative esti-
mate of the predictor’s performance. The predictor is more flexible than
the techno-economic model from step 1, as it can still provide accurate
results even for situations where only incomplete smart-meter data

readings (collected for a period much shorter than a year) are available.
In addition, the computational burden is greatly reduced, as no ex-
tensive grid search for the optimal configuration is performed.

3.5.3. Predictive model specification
The four features can be further formalized in the feature matrix X.

The kth sample can be written as

̂ ̂ ̂ ̂= … …X w t w t w t w t w c c( ( ), ( ), , ( ), , ( ), , , )k k k k m k L k pv bat1 2 24 , (8)

The values ̂w t( )k m for = …m 1,2, ,24 represent the normalized average
daily consumption in hour m of the day. The sum of the normalized
loads over all hours tm is ̂∑ == w t( ) 1m L m1

24 . The feature vector Xk con-
tains the load shape feature (normalized daily average demand), the
daily average demand =w W /365L k L k, , , the specific PV power costs (in
€/kWp), and the specific battery costs (in €/kWh). The function f maps
the features X to an output of interest without a mathematical speci-
fication of f, as opposed to the previous efforts where the function f for a
set of input factors has been parametrically defined. We aim to predict
the following output variables:

=y P E{NPV, , ,SSR,SCR}bat
R

0 (9)

The goal is then to construct a regressor fi that is able to predict the
target variable yi given the feature matrix X . Mathematically, this is

= = …Xy f i( ) 1, ,5i i (10)

A machine learning algorithm can then be trained on the feature
matrix X for each of the five output variables. We use the random forest
algorithm to approximate …f f, ,1 5, as it can construct nonlinear relations
between input features and the outputs and does not require large
parametrization efforts [72]. The original model described in Appendix
A with its large input parameter space can be represented by a random
forest algorithm …f f, ,1 5 that implicitly contains all input parameters
except for the load shape and average daily demand itself.

Once trained, the feature matrix for testing and validation purposes
must be constructed as illustrated in Fig. 5. The first step in this process
is the prediction of the NPV. If the NPV is negative, no prediction of the
system sizes occurs. If the predicted NPV is positive, we subsequently
estimate the optimal system size, the expected SSR and SCR, respec-
tively.

Fig. 3. Schematic on test train split and the variable snippet length used as
input feature for prediction.

Fig. 4. Training of the predictor with the existing simulation outputs.
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4. Results

4.1. Simulation results for the base case scenario

This subsection presents the simulation results for the base case cost
scenario of (PV:2000 €/kWp, B: 1000 €/kWh). Fig. 6 displays the NPV
as a function of the annual demand, where each of the 4190 dots re-
presents a household. In line with previous studies, the figure indicates
a strong correlation between annual demand and NPV, which flattens
out around 6000 kWh towards a NPV of about 1500 €. About 40% of
the households reach a positive (or zero) NPV. Whereas the mean NPV
across all households is negative (-389 €), the mean NPV of the 90th
percentile is 1659 €, compared to −2570 € for the 10th percentile.
Households in the 90th percentile have a mean annual demand of
7868 kWh, compared to 1440 kWh for the 10th percentile.

The bottom panel of Fig. 6 shows a histogram with the relative
frequency of annual demand, where non-profitable (NPV < 0, in blue)
and profitable cases (NPV⩾ 0, in orange) are displayed separately. The
first households reach profitability at an annual demand of approxi-
mately 3000 kWh. By contrast, almost all households with an annual
demand of 7000 kWh reach profitability. In the range between
3000 kWh and 7000 kWh annual demand alone is not sufficient to
predict whether a household reaches profitability.

The spread of the datapoints along the y-axis in the upper panel of
Fig. 6 already gives a first qualitative impression that there is great
heterogeneity in the profitability even among households with a similar
annual demand. Fig. 7 provides more detailed quantitative results. In
that chart, households are grouped into equidistant bins of similar an-
nual demand (± 250 kWh). The blue lines in the boxplots indicate the
median NPV for each bin. The NPV spread between the upper and lower
quartile (the ± 25% of the households around the median, depicted by
the black boxes) ranges between 2200 and 3000 € within each bin.
Thus, the spread of the NPV between the upper and lower quartile
within each bin is larger than the variation of the NPV between two
neighboring bins. So, while annual demand has a large impact on the
system’s profitability, it alone leaves a broad range of uncertainty.
Hence, for individual investment decisions, other factors – load shape in
particular – should be taken into account; we will return to this point in
Section 4.3.

4.2. Sensitivity studies for different PV and battery costs

The simulation results in the previous section were based on PV
installation costs of 2000 €/kWp and battery installation costs of 750 €/
kWh. In this subsection, we analyze how different cost scenarios affect
profitability, optimal system configuration, self-sufficiency (SSR), and
self-consumption ratios (SCR). For this reason, we repeated the techno-
economic optimization for 4×4=16 cost scenarios. We used PV in-
stallation costs of 2500, 2000 (base case), 1500 and 1000 €/kWp. As for
the battery storage, we adopted the values of 1000 (base case), 750,
500 and 250 €/kWh as already applied by Bertsch et al. [71].

4.2.1. Sensitivity analysis of the NPV
Fig. 8 displays the histograms of the resulting NPVs for the 4190

households for the each of the 4×4 cost scenarios, along with the
estimate for the concrete proportion of households with NPV⩾ 0. In
that matrix, PV costs decrease from the top to the bottom panels and
battery costs decrease from left to right. The base case is depicted in the
first picture from the left in the second row. In each of the 16 cost
scenarios, the NPV distribution spreads over a range of 6000–7000 € on
the x-axis. Lower PV costs cause a substantial shift in the distributions
towards the right, considerably increasing the share of households with
NPV⩾ 0. For PV costs of 2000 and 2500 €/kWp, the share of the
households that achieve profitability is always below 50%, except for
the configuration of (PV: 2000 €/kWp, B: 250 €/kWh), where 60.8% of
the households achieve profitability. In the most optimistic case of PV
costs (1000 €/kWp), the share of households with NPV⩾ 0 is always
above 94%, independent of battery costs.

Regarding battery costs, reductions from 1000 €/kWh to 750 €/kWh
and even to 500 €/kWh barely increase the share of households with
NPV⩾ 0. We can only observe a significant improvement in the share of
households that reach profitability for battery costs of 250 €/kWh. This
implies that battery costs will only significantly improve the profit-
ability of PV systems once they reach that price range.

Table 3 contains the mean NPV for the top and bottom 10% of
households. Depending on the cost scenario, the mean NPV of the top
and bottom 10% of the households differs by 2146–2848 €. The table
also displays the average annual demand of those households. For all
cost scenarios, the annual demand in the bottom 10% for the NPV is
about 1440 kWh, while the top 10% NPVs correspond to annual de-
mand of about 7900 kWh.

Fig. 5. Prediction flow diagram visualizes how the test matrix can be con-
structed for the prediction.

Fig. 6. NPV of each household as a function of the annual demand (upper
panel) and histograms for profitable (in blue) and non-profitable installations
(orange) based on the annual demand. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

S. Schopfer et al. Applied Energy 223 (2018) 229–248

237



Fig. 7. Box plots of the NPV with 500 kWh consumption bins (PV:2000 €/kWp, B: 1000 €/kWh).

Fig. 8. Sensitivity of the NPV distribution to PV and battery system costs.
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4.2.2. Sensitivity analysis of the PV and battery sizes
Each of the cost configurations results in different optimal system

sizes. Table 4 provides the resulting mean PV and B sizes (along with
their standard deviations) for profitable households. In addition, we
report the production to demand ratio (PDR) and the storage to demand
ratio (SDR). Fig. C.10 in Appendix C.3 displays the histograms with the
PDR and SDR distributions for an additional visual impression. In the
base case scenario (PV:2000 €/kWp, B: 1000 €/kWh), the average PV
power (among the 40% of the households with NPV⩾ 0) is 2.2 kWp.
The average PDR in the base case is 44% and 54% of the electricity
produced is self-consumed. The optimization model computed a battery
size greater than 0 kWh only for 0.1% of the households as reported in
Table C.8. For battery costs of 750 €/kWh and above, batteries are
practically irrelevant for most households, resulting in a mean battery
size close to zero. Similar to the NPV, the PDR remains unchanged for a
given PV cost when moving from 1000, to 750 and 500 €/kWh. A small
but noticeable increase of the PDR can be achieved if the battery costs
decrease to 250 €/kWh, which indicates that larger PV systems can be
built if storage prices decrease to 250 €/kWh.

Changes in PV costs, on the other hand, have a much bigger impact

on most size-related metrics. For instance, a 500 €/kWp reduction
compared to the base case increases the average PV size by 0.4 kWp
(about 1.5 modules), PDR by almost 40% to 0.61, and reduces SCR from
54% to 44%.

Batteries increasingly become economically viable if PV costs are
equal or below 1500 €/kWp. With battery costs of 750 €/kWh, the
optimal configuration includes a battery for only 8.7% of the house-
holds (again, of the minimum size specified). By contrast, with battery
costs of 500 €/kWp the situation fundamentally changes: in that sce-
nario, 95.7% of the households would benefit from the integration of a
battery. While the majority of optimal configurations imply only a small
battery in that scenario (resulting in a mean size of 1.3 kWh), the mean
battery size at battery costs of 250 €/kWp is 7.4 kWh, and the in-
stallation would be profitable for every household analyzed.

For all PV costs equal to or higher than 1500 €/kWp, the maximum
PDR just crosses the PDR=1 mark. This implies that from a profit-
ability point of view, households should not produce more than they
consume. For PV costs of 1000 €/kWh, the average PDR is just above 1;
this means that in those cost scenarios, PV systems should produce as
much solar energy on average as the household consumes.

Table 3
Mean NPV for the bottom and top 10% (and mean of all households), along with the annual demand of the top and bottom 10% of the households for each cost
scenario.

PV cost Battery cost NPV⩾ 0 Mean NPV Mean NPV Mean NPV Demand of bottom Demand of top
(€/kWp) (€/kWh) (%) bottom 10% (€) (€) top 10% (€) 10% NPVs (kWh) 10% NPVs (kWh)

2500 1000 10.2 −3761 −1573 545 1443 7865
750 10.2 −3757 −1568 550 1440 7865
500 11.2 −3743 −1507 589 1430 7854
250 26.8 −3468 −947 1058 1431 7740

2000 1000 39.7 −2574 −394 1656 1443 7870
750 39.8 −2570 −389 1659 1440 7868
500 42.5 −2556 −331 1705 1430 7826
250 60.3 −2281 226 2291 1431 7780

1500 1000 73.1 −1387 762 2911 1443 7878
750 73.2 −1383 763 2885 1440 7895
500 74.6 −1369 824 2972 1430 7883
250 84.1 −1094 1462 4007 1431 7948

1000 1000 94.1 −200 2066 5081 1443 8025
750 94.2 −196 2030 4922 1440 8048
500 94.3 −183 2110 5041 1431 8030
250 96.6 83 2931 6470 1423 8147

Table 4
Mean PV and battery configurations for each cost scenario.

PV cost Battery cost Mean (std) Mean PDR Mean (std) Mean SDR Mean SSR Mean SCR
(€/kWp) (€/kWh) of P0 in kWp (–) of Ebat

R in kWh (–) (–) (–)

2500 1000 2.1 (0.3) 0.34 0.0 (0.0) 0.0 0.21 0.64
750 2.1 (0.3) 0.34 0.0 (0.0) 0.0 0.21 0.64
500 2.1 (0.3) 0.34 0.7 (0.5) 0.04 0.24 0.70
250 2.2 (0.3) 0.41 4.7 (1.1) 0.27 0.33 0.81

2000 1000 2.2 (0.4) 0.44 0.0 (0.0) 0.0 0.23 0.53
750 2.2 (0.4) 0.44 0.0 (0.0) 0.0 0.23 0.54
500 2.2 (0.4) 0.45 1.0 (0.4) 0.06 0.27 0.62
250 2.4 (0.6) 0.54 5.8 (1.9) 0.41 0.40 0.76

1500 1000 2.6 (0.7) 0.62 0.0 (0.0) 0.0 0.26 0.43
750 2.5 (0.7) 0.61 0.1 (0.3) 0.01 0.26 0.44
500 2.6 (0.7) 0.62 1.3 (0.6) 0.09 0.32 0.52
250 2.9 (1.0) 0.74 7.4 (3.3) 0.57 0.50 0.69

1000 1000 4.0 (1.7) 1.07 0.0 (0.0) 0.0 0.31 0.30
750 3.7 (1.6) 1.02 0.4 (0.5) 0.03 0.32 0.33
500 3.8 (1.6) 1.03 2.0 (1.1) 0.16 0.40 0.40
250 4.4 (2.1) 1.19 9.6 (5.2) 0.78 0.62 0.54
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With regards to self-sufficiency ratio (SSR) and the self-consumption
ratio (SCR), we generally observe that the SCR is high for high-cost
scenarios (due to the small system sizes) and increases for the cheapest
battery cost considered. By contrast, the SCR decreases for falling PV
costs. The SSR increases as both PV and battery costs decrease and
reaches a maximum mean SSR of 54% in the most optimistic cost sce-
nario. The highest SSR achieved for a household is 80%, as indicated by
Fig. C.11 in the Appendix.

4.3. Prediction of profitability and optimal system configuration

4.3.1. Predictor performance
In this section we provide the results of the evaluation of the ma-

chine learning algorithms described in Section 3.5, regarding their
ability to predict the key outcome variables based on only a limited set
of input data. Fig. 9 displays the mean absolute errors (MAE) on the left
for each outcome variable and the r2 values on the right for different
snippet lengths of smart meter data. The detailed error scores as a
function snippet length L are also available in Table C.9 in the ap-
pendix.

In general, for all outcome variables, the mean absolute error de-
creases and the r2 value increases with increasing snippet length. The
MAE of the NPV decreases from 829 € for a one-day snippet to below
600 € for 30-day snippets. Given to the 6000–7000 € range of observed
NPVs (cf. Fig. 8), the ratio of MAE and the NPV spread is on the order of
10%. The r2 already exceeds the 0.5-mark with seven days of mea-
surement data and increases up to 0.88 for a snippet length of =L 160.

The MAE for the PV size prediction also decreases rapidly with the
snippet length and reaches 0.30 kWp for 30 days of measurement. Thus,
the MAE achieved with a 30-day snippet is comparable to the power

=P 0.26mod kWp of one module. With a minimal PV size of 2 kWp, the
relative error for the smallest system size is about 15%. Increasing the
snippet length from 30 days to 160 days increases the r2 of the PV
power prediction from 0.6 to 0.75.

The error scores for the prediction of the battery size improve less
than for the PV power predictor. The MAE obtained with a 30-day
snippet is 0.81 kWh and barely improves even for 160 days of mea-
surement data. That is a rather high value in particular in comparison to
the small size of most batteries in the range of 1–3 kWh. Likewise, the r2

increases only little between 0.53 for a 7-day snippet, to 0.6 for a 160-
day snippet.

Both the SSR and SCR can be predicted with a MAE smaller than 6%
points for a snippet with a minimal duration of 30 days. The r2 values
obtained with a 30-day snippet are 0.42 for the SSR and 0.27 for the
SCR; with longer periods of measurement data, the r2 for the SSR in-
creases to 0.56 for the SCR to 0.39.

4.3.2. Feature importance
In addition to the error scores, we also provide relative importance,

referred to as feature importance for the prediction of the output
variables. Table 5 lists all features and their importance for the pre-
diction of all 5 output variables.

Obviously, the relative importance of the different features is sub-
ject to the particular cost scenarios studied; nevertheless, the feature
importance scores provide an estimate of the relative importance of the
different features for the cost scenarios studied. PV costs are the most
important feature in the prediction of the NPV (48.5%); mean daily
demand and load shape together amount to the same value. The mean
daily demand is about twice as important as the load shape in the es-
timate of the NPV. Battery cost is the least important factor for the NPV,
as in many cases household reach profitability without batteries. Not
surprisingly, PV costs play an important role (relative importance of
29.2%) in the prediction of the optimal PV power. Battery costs have a
strong relative influence on the optimal battery size (67.1%), SSR
(50.7%), and SCR (40.5%).

5. Discussion

5.1. Discussion of findings and implications

As the results of the techno-economic simulation (base case with PV:
2000 €/kWp, B: 1000 €/kWh) show, PV systems are already profitable
today for 40% of the households without any subsidies and at today’s
PV and battery costs, central European weather conditions, and current
electricity tariffs. Integrating battery storage, however, is not profitable
yet for 99.9% of the households analyzed. The mean PV power that
maximizes profitability is rather small (2.2 kWp) and results in a mean
self-consumption ratio of 53%. These results are in line with the pre-
dictions of Weniger et al. [15] who noted that the optimal PV system
size will shrink to small-scale systems with higher self-consumption
rates, as the incomes from the feed-in payments will play a minor role
in future (p. 87). Annual demand is a key predictor of profitability. As a
simple rule of thumb, the installation of a PV systems is profitable for
households with an annual demand above 7000 kWh, but not for those
below 3000 kWh; in between those two values and thus for a large
number of households, the installation may be profitable or not, de-
pending on the load shape and other factors.

Based on the 4190 real-world load profiles analyzed, we find large
variability in the NPV and in the optimal system configuration, even for
households with a similar total annual demand. These results corro-
borate the importance of taking into account the heterogeneity of real-
world profiles rather than analyzing aggregated or synthetic load pro-
files [35,24]. The findings also highlight the importance of considering
a household’s load shape in PVB-related investment decisions a con-
sideration that, to the best of our knowledge, is not part of most prof-
itability assessments of PV(B) systems.

Our simulation model allows policymakers to systematically assess
which factors are critical levers for increasing private investments into
PVB systems in their region and to predict how future developments
like component costs are likely to affect the future diffusion of PVB
systems. The results of the sensitivity analysis reveal the large influence

Fig. 9. Predictor error and R-squared as a function of snippet length L of smart-
meter data.
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of PV costs on the share of households that reach profitability. In the
most optimistic case of PV costs (1000 €/kWp), the share of households
with NPV⩾ 0 is always above 94%, regardless of battery costs. By
contrast, batteries can only considerably improve the profitability of PV
systems at very small costs close to 250 €/kWh. Once battery costs
decrease to that price range, a tipping point is reached: for almost all
households, the optimal configuration then comprises a small battery,
which increases the mean self-consumption ratio by another 8–22%.

Assuming that all households with NPV⩾ 0 install the optimal
system, depending on the cost scenario, the total share of grid-supplied
energy would be reduced by 9% in the base case, by 29% in the most
optimistic cost scenario for PV (1000 €/kWp), and up to 60% in the
most optimistic cost scenario for both technologies (PV: 1000 €/kWp, B:
250 €/kWh). Such a scenario has fundamental implications for infra-
structure-related decisions that require long amortization periods such
as transregional high-voltage transmission lines.

To the extent that households base their investment decisions on the
expected profitability, the results of the sensitivity analysis provide an
estimate for the diffusion of PVB systems and of the size of those sys-
tems depending on PV and battery costs.

In practice, a complete dataset with detailed smart-meter data
readings over a full year is often not available for PVB investment de-
cisions. Therefore, we trained a machine learning algorithm that is able
to predict system profitability and other key variables of interest based
on much less input data than the techno-economic optimization model,
whose output data serve as ground truth. The results show that it is
possible to predict a household’s optimal PVB configuration and prof-
itability with good accuracy from its averaged daily load profile; in
particular, good prediction results can already be achieved when the
average daily load profile is based on short timeframes of smart-meter
data collection. When historic data on the household’s annual demand
is available, already with a 30-day snippet of smart meter data the NPV
can be predicted with a mean average error below 600 € and a r2 of
0.65; with 160 days of smart meter data, the r2 increases to 0.88 and the
mean average error to 328 €. A single month of smart meter data is
sufficient to predict the optimal PV power with a mean average error
equivalent to the size of about a single module. Thus, the predictions
can provide a helpful indication for consumers on how large their PV
system or battery should be to optimize profitability.

Our prediction algorithm provides a simple assessment tool for
households to individually determine their optimal system configura-
tion and to forecast its profitability. Today, investment decisions for PV
(B) systems are often not data-driven, leaving many prospective pro-
sumers without reliable estimates on profitability and system sizing.
Our prediction algorithm could mitigate this lack of a data-based de-
cision support system. Based on a limited set of input data (average
daily profile based on a few weeks of data collection), it can provide a
decent estimate of the optimal configuration, profitability, and self-
sufficiency rate and thus, a much better basis to make the investment
decision. In addition, the predictor could be used re-estimate the per-
formance if new and heavy electricity load (like EVs or heat pumps) are
introduced in the household. Utility companies could use already ex-
isting smart-meter data to identify relevant households for whom the
installation of a PV(B) system would be profitable. This would allow
them to focus their PVB-related marketing campaigns on high-net-

worth customers and to better target their communication. This could
improve not only the cost-effectiveness of their marketing efforts, but
also customer loyalty and sales.

5.2. Limitations and outlook

The results are subject to the choice of input parameters and en-
vironment studied. First of all, the numbers are based on the assump-
tion that tariffs for grid-supplied electricity are fairly stable (with a
moderate 2.5% increase every year) and that the households’ annual
demand is stable. Future load profiles might be subject to significant
changes, due to the diffusion of EVs and the substitution of oil heating
systems with heat pumps.

Another limitation is the transfer of load profiles from Ireland to the
local conditions of Switzerland. As discussed in Section 3.2 and in
Appendix B.1, the two countries are similar with respect to annual
electricity demand and daily sunshine hours. Nevertheless, given the
slightly more continental climate in Switzerland, one might on average
expect more seasonal variation in Swiss load profiles, at least in the 7%
of the households with electric space heating.

Extending the model to include thermal (hot water) storage systems
would allow for calculating optimal ratios of battery and thermal sto-
rage systems. Furthermore, these applications may substantially in-
crease the yearly demand of many households in the future. Since the
current model assumes a stable annual demand, our results for system
profitability are rather conservative.

Moreover, the dual tariff structure in place in the local context
studied – with its pronounced difference between daytime and night
time tariffs – the electricity consumed during night hours does not
contribute positively to the profitability of the battery. In countries with
a flat (and high) electricity tariff, battery storage is likely to be more
profitable. The model proposed in this contribution, however, can be
easily adjusted to reflect such tariff regimes.

In reality, other aspects are likely to play a role in the investment
decision: on the one hand, people may decide to install a system that is
unprofitable from today’s perspective to reduce their dependence on
utility companies [28], or to hedge against the risk of anticipated
electricity price increases. The decision to install a PV system may also
be driven by nonmonetary reasons: Social interactions (peer effects and
spatial knowledge spillovers) have been shown to influence the decision
of installing a PV system [73]. People might also value the possibility to
publicly signal their pro-social engagement and contribution to pro-
environmental causes [74]. On the other hand, consumer inertia, search
costs, and uncertainty may prevent people from taking the action ne-
cessary to install a profitable system.

The techno-economic model developed in this study has been de-
liberately designed in a simple way and considers only fundamental
physical processes. While parts of the model might be expanded, the
current version allows for a techno-economic bottom-up estimation of
optimal system configurations and profitability and allows for system-
atically examining sensitivities of the system profitability to various
input factors. Moreover, the current model does not take into account
shadowing from trees or neighboring buildings. Depending on the en-
vironment of a PV system, the actual solar production may be lower.
Moreover, the model assumes that sufficient rooftop space for the in-
stallation of the optimal PV size is available, which may not be the case
in reality. Future analyses should validate the solar production calcu-
lated by the model with real-world PV production data.

Another interesting avenue to pursue is the assessment of increased
battery cycle life. Differences in cycle life between different battery
technologies and manufacturers depend on the depth of discharge
(DoD). The simple battery model presented here could be extended to
account for complex degradation effects to assess the influence of cycle
life on PVB economics and optimized charging algorithms that adapt to
user consumption patterns could be taken into account to minimize
battery degradation.

Table 5
Feature importance for all five machine-learning models.

Predictor outputs

Feature NPV PV power Battery size SSR SCR

Load shape 15.8% 19.8% 9.7% 22.0% 14.2%
Mean daily demand 33.2% 47.2% 14.0% 5.5% 9.2%
PV costs 48.5% 29.2% 9.2% 21.8% 36.1%
Battery costs 2.5% 3.8% 67.1% 50.7% 40.5%
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The model could also be expanded to reflect more complex con-
figurations. Secondary applications like providing arbitrage and reserve
[75–77] or an integrated energy dispatch of thermal energy and elec-
tricity have been shown to improve the profitability for battery systems
[78], which could be included in the future.

6. Conclusions

We developed a techno-economic model that identifies the optimal
configuration of PVB systems under consideration of the heterogeneity
of electricity consumption profiles. To account for the heterogeneity in
real-world load profiles, we used smart-meter data from 4190 house-
holds. The model computes the profitably as well as additional key
performance variables including self-sufficiency ratio (SSR) and self-
consumption ratio (SCR). Furthermore, we explored how different
scenarios of future PV and battery costs affect optimal systems choice
and performance indicators. To enable utility companies to identify
households among their customers that can reap financial benefits from
a PVB system, we have also proposed and evaluated a predictor that
identifies such customers and estimates several key outcome variables
based only on a limited set of input data, more precisely, on the total
annual demand and average daily load profiles.

The results of the techno-economic model reveal high variability in
the profitability and in the optimal system configuration, even for
households with a similar total annual demand, which highlights the
importance of taking into account a household’s individual situation in
investment decisions. In the central European context studied and
without subsidies, we find that PV(B) configurations that optimize
profitability will generally not include battery storage in the near

future. For PV-systems with batteries to become profitable at popula-
tion scale, substantial decreases in battery costs (towards a price range
of 250–500 €/kWh) would be necessary; even then, small battery sizes
will be most profitable to implement. Depending on future costs of PV
and battery storage, PVB systems may considerably reduce the demand
of grid-supplied energy in the future, which raises the question how
fairly allocate contributions to the grid infrastructure in the future.

Finally, the evaluation of our prediction algorithms shows that the
profitability of a PVB system and other key variables of interest can be
estimated with decent accuracy even for situations where only limited
smart-meter data are available. The approach provides a simple and
praxis-relevant tool for households to individually assess their optimal
system configuration and to forecast its profitability. It also enables
utility companies to use already available smart-meter data to identify
customers for whom the investment into a PV(B) system is particularly
profitable. Thus, the results exemplify how utility companies can use
smart-meter data analytics to provide more personalized and customer-
oriented services.
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Appendix A. Techno-economic model

A.1. Key assumptions for the analysis

This subsection provides further details on the underlying assumptions made for the techno-economic model. Our aim is to keep model com-
plexity low by simplifying the physical processes in the PV modules, batteries, and inverters. However, we also make several assumptions regarding
the combination of different data sources used, which are then processed using the model. The following list summarizes the assumptions made in
this paper:

A. Each load profile is assumed to represent an individual household.
B. All households are assumed to be located in Zurich, Switzerland.
C. The dataset has been cropped from 26.12.2009 to 26.12.2010 to represent one full calendar year.
D. Each building is characterized by one orientation and tilting angle tuple (randomly assigned based on the distributions shown in Fig. 2). We

further assume that the optimal panel size – calculated in step 1 – can always be accommodated on the roof of the consumer’s building.
E. The PV modules and PV field experience no partial shadowing.
F. No losses (voltage drops) occur due to wiring between the major components.
G. Battery discharging rates are not limited by the nominal power of the inverter.
H. Changes in state of charge occur continuously within the time step tΔ .
I. Inverter and battery charging/discharging efficiencies are assumed to be constant.
J. Battery degradation depends on the total energy throughput that can be derived by the cycle life numbers issued by the manufacturers.

A.2. PV module modeling

The power output of a PV module is obtained by a simple state translation model, which is driven by local irradiation and temperature con-
ditions. The description of the state translation model outlined in this subsection is based on Paulescu et al. [53].

A PV module is usually described by several voltage and current characteristics provided by the manufacturer. At any time step k, any voltage-
current pair on the characteristic curve V I( , )STC STC under standard testing conditions (STCs) can be translated from the STC to any outdoor condition
using
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where the expressions for the translated open-circuit voltage V k
OC and the translated short-circuit current I k

SC to outdoor conditions are given by
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PV modules operate sufficiently close at the maximum power point (MPP) using inverter-integrated MPP trackers. Thus, the assumption that each
panel is operating at the MPP is applied to Eqs. (A.1) and (A.2). Using this assumption, the pair V I( , )STC STC can be substituted with V I( , )MPP,STC MPP,STC .
The efficiency of PV modules increases at lower module temperatures Tm, which can be modeled using = +T T C G·m amb t with =Ct (45 °C-20 °C)/
800 =W/m 0.0312 °C·m2/W for any time step k (further details on the temperature coefficient Ct can be found in [53]). The power output of n equally
oriented modules at any time step k is then obtained by = =P n P n V I· ·DC

k
DC N
k k k

, m . The empirical technology factor δ can be used to account for
different PV technologies. The simulation assumes a mono-crystalline PV technology with =δ 0.085 [53].

A.3. Battery energy balance

Considerable literature is available on various battery models [79]. Many of these models describe charge, mass, and chemical species transport
on the cellular level [80]. However, this study aims to reveal insights on the degree of self-sufficiency and profitability of various customer groups.
For that purpose, a simple linear energy balance model is developed. Given a load profile PL

k at time step k, the energy balance reads,
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where the quantity = − −P P P ηΔ ·k
DC
k

L
k

inv
1 describes the difference between local production PDC

l and load PL
l (before the inverter). The situation >PΔ 0k

represents the case where the solar production exceeds the demand. Depending on the state of charge of the battery, surplus energy may be stored in
the battery (direct coverage with production is prioritized over battery discharging). If the demand matches the production =PΔ 0k , the state of
charge of the battery remains unchanged within a time step. The battery may be discharged if the local production is not large enough to cover the
load, which is described by the condition <PΔ 0k . The usable battery capacity given by the interval E E[ , ]bat

min
bat
max depends on DoD and the residual

battery capacity due to cyclic aging. Throughout this study, we assume that the battery capacity fades out linearly until it reaches the end of life
(EoL) at 80% of its original capacity. This implies that the fraction of the effectively usable battery capacity due to fading out can be approximated as
the average between 100% and 80% of the battery capacity and is given by = − − =σ 1 (1 0.8)/2 0.9CL . The interval of the effectively usable battery
capacity over its lifetime is given by = −E E E σ[ , ] · ·[1 DoD/2,DoD/2]bat

min
bat
max

bat
R

CL
At each time step, the energy flows between the major components – PV modules, batteries, grid, and load – can be described by Eqs. (6)–(10). By

summing up over all time steps, annual energy flows can be obtained as illustrated in Fig. 1.
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The quantities → → → →W W W W, , ,PV B PV G B L PV L, and →WG Ldescribe the annual energy transferred between the PV modules (PV), the battery (B), the
grid (G), and the load (L) respectively.

A.4. Battery aging

Batteries are subject to cyclic aging, which is a complex nonlinear function of the battery operation itself and depends on the battery chemistry,
and therefore, on DoD, charging rates, charging currents, charging voltage, etc. Since this paper makes no assumption on the underlying battery
chemistry used, a simplified approach to determine the EoL of the battery is chosen. Assuming that battery life depends on the total energy
throughput [81,82], the point in time of the theoretical EoL can be calculated using

=
→

t
E σ N

W
· · ·DoD

EoL
bat
R

CL c

B L (A.11)

where →WB L is the energy supplied to the load from the battery per year. Throughout this paper, a fixed cycle number of =N 4000c with a DoD of
80% is assumed; self-discharging of the battery has been neglected [81].
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A.5. Cash-flow modeling

The economic viability of a PV battery system can be assessed using the discounted cash flow method. The profitability of an investment in a PVB
system can be expressed using the NPV, which depends on the investment costs C0 and the costs Ci and revenues Ri in year i:
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The investment costs (Eq. (A.13)) include the total system cost (hardware plus installation) for both the PV and battery systems. The avoided costs Si
represent the difference between grid supplied energy cost and the self supplied energy saved. With increasing system size (and therefore C0) every
household reaches a limit where Si might not increase sufficiently despite increasing C0 in order to reach a NPV⩾ 0.

The quantity ∑ ∈ →Wk t G L
k

lt
returns the amount of the grid-supplied energy consumed during low-tariff hours. Accordingly, the function

∑ ∈ →Wk t G L
k

ht
returns the amount of the grid-supplied energy consumed during high-tariff hours. The same formalism is applied to compute the

consumption without the PVB system for low-tariff hours ∑ ∈( )Wk t L
k

lt
and high-tariff hours ∑ ∈( )Wk t L

k
ht

, respectively. The battery may be subject to

multiple replacements at a cost of ☆c E·B bat
R . The revenues are understood as the costs the consumer would incur without installing a PVB system, while

the costs are modeled as the grid-supplied energy with a PVB system plus operating and maintenance cost (C r· om0 ) and battery replacement costs
( ☆c E·bat bat

R ). Additional revenues are generated through grid-injected electricity reimbursed at a rate of cFiT .

Appendix B. Data sources

B.1. Comparison of climate and weather conditions in Ireland and Switzerland

The following two tables compare average local conditions for Dublin, Ireland, and Zurich, Switzerland, which may affect PV production and
household electricity consumption. Comparison of daily sunshine hours in Dublin (Ireland) and Zurich (Switzerland) [83].

See Table B.6.

Comparison of day length and average temperature in summer and winter in Dublin (Ireland) and Zurich (Switzerland) [83,84]. Note that sunset
and sunrise times are indicated for 15 Jan. and 15 July.

See Table B.7.

Table B.6
Average daily sunshine hours by month.

Month Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

Zurich 2 3 4 5 6 6 7 7 5 3 2 1
Dublin 2 3 4 5 6 6 6 5 4 3 2 1

Table B.7
Day length and average temperature in summer and winter.

Location Sunrise Sunset Day length
(h)

Average temperature
(°C)

January Zurich, CH 8:13 16:45 8:32 2
Dublin, IE 8:32 16:36 8:04 5

July Zurich, CH 5:44 21:18 15:34 19
Dublin, IE 5:15 21:45 16:30 16
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Appendix C. Complementary tables and graphs

C.1. Battery sizes

See Table C.8.

C.2. Sensitivity of production to demand ratio (PDR) and storage to demand ratio (SDR)

See Fig. C.10.

Table C.8
Relative frequency of battery sizes by cost scenario for profitable households (NPV⩾ 0).

PV cost Battery cost Battery size in kWh

(€/kWp) (€/kWh) 0 1 2 3–10 >10

2500 1000 100.0% 0.0% 0.0% 0.0% 0.0%
750 99.8% 0.2% 0.0% 0.0% 0.0%
500 27.7% 71.5% 0.6% 0.2% 0.0%
250 0.0% 0.6% 3.2% 96.2% 0.0%

2000 1000 99.9% 0.1% 0.0% 0.0% 0.0%
750 99.3% 0.7% 0.0% 0.0% 0.0%
500 8.7% 85.9% 5.3% 0.1% 0.0%
250 0.0% 0.4% 2.5% 95.8% 1.3%

1500 1000 99.9% 0.1% 0.0% 0.0% 0.0%
750 91.2% 8.7% 0.1% 0.0% 0.0%
500 4.3% 69.4% 23.4% 2.9% 0.0%
250 0.0% 0.3% 3.3% 83.4% 13.0%

1000 1000 99.7% 0.3% 0.0% 0.0% 0.0%
750 64.1% 33.8% 2.1% 0.0% 0.0%
500 4.1% 33.7% 32.8% 29.4% 0.0%
250 0.1% 1.3% 3.1% 59.9% 35.6%

Fig. C.10. Distribution of production to demand ratio (PDR) and storage to demand ratio (SDR) in different PV and B cost scenarios.
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C.3. Sensitivity of self-sufficiency (SSR) and self-consumption ratios (SCR)

High installation costs for PV and battery systems result in small PV array sizes (mostly with no battery). In the most expensive cost scenario
considered (PV: 2500 €/kWp, B: 1000 €/kWh), this results in high SCRs, but low SSRs, as the histograms in the first panel in Fig. C.11 indicate. The
resulting mean values for SCR (64%) and SSR (21%) are also reported in the first line of Table 4.

See Fig. C.11.

C.4. Cross validation and error scores of the predictor

C.4.1. Cross validation
It is common practice in supervised machine learning to hold out a part of the available data as a test set and to train the machine learning

algorithm on the remaining set, referred to as a training set that is not a subset of the test set. Once trained on the training set, the machine learning
model then predicts the output factors of the test set and compares it against the true output factors for the evaluation of error scores. In this article
we use 90% of the dataset as the training set and the remaining 10% as the test set. In order to avoid overfitting, the dataset is randomly split 10
times, where 10% of the dataset serves as the test set and the remaining 90% as the training set in each of the 10 folds. This procedure is referred to
as 10-fold cross validation and commonly applied in machine learning problems [85].

In addition to the 10-fold cross validation, the load shape and the daily mean demand are estimated if only a fraction (snippet) of the annual time
series in the test set is known as input for the machine learning model. Therefore we vary the snippet length in intervals of =L [1,7,14,30,60,90,160]
days always measured before December 26th 2009. The training data on the other hand spans from July 19th to December 26th.

All algorithms are trained using the random forest regressor. The accuracy of the random forest regressor depends on the number of estimators
(i.e., the number of decision trees that make up the forest). We found that 10 estimators are sufficient to predict the requested output factors.
Doubling from 10 to 20 estimators increased the r2 less than 1%.

C.4.2. Error scores
See Table C.9.

Fig. C.11. Histogram of the achieved self-sufficiency ratio (SSR) and self-consumption ratio (SCR) for all cost scenarios.
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