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Inferring True Inter-Purchase Times From Incomplete Information:  

A Model Comparison 
 

Abstract 

The “incomplete information problem” describes the fact that most companies only 

possess their own customers’ transaction data. Information about customers’ purchases 

at competitors is usually unavailable. Yet, knowledge about the complete purchase 

history would enable companies to improve their targeting. The authors apply Chen and 

Steckel’s (2012) parametric approach to model true inter-purchase times and share of 

wallet on the category-level to transaction data of a European grocery retailer. We 

propose a model simplification strategy and compare the estimates of the true inter-

purchase times across models and product categories. In our validation tasks, both 

models perform equally well. Yet, our simplified model runs considerably faster. For 

our analysis, we use almost two years of transaction data from about 1,000 customers 

and nine product categories. Finally, we outline work-in-progress to apply the proposed 

model to improve the timing of personalized price promotions. 
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1 Introduction 

 

The retail environment is characterized by fierce competition as retailers try to maintain 

and promote their customers’ loyalty, often measured as share of wallet (SOW). Customers, 

in turn, rarely commit themselves to a single retailer. Instead, when shopping for groceries, 

75% of customers frequently visit multiple retailers (Ho & Chen, 2005). Retailers, however, 

only observe purchases made at their own stores. If two customers, A and B, both exhibit 

equal purchase cycles and spend similar amounts of money on their shopping trips, then they 

seem to be equally valuable and loyal customers of retailer X. Yet, customer A might also 

visit the stores of a competitive retailer Y, while customer B only purchases at the focal 

retailer X. Yet, from their observed purchase characteristics, both customers seem 

undistinguishable to retailer X. This situation is known as the “incomplete information 

problem” as retailers lack information about purchases at other stores (Chen & Steckel, 2012). 

Shedding light on this unknown information enables a more effective targeting based on 

customers’ true and unobserved purchase behavior (Chen & Steckel, 2012). Thus, retailers 

could use knowledge about true inter-purchase times (IPT)—based on observed and 

unobserved purchases—to provide customers with more relevant offers compared to one-size-

fits-all price promotions.  

In this paper, we investigate the “incomplete information problem” at the category level 

in grocery retailing. We apply the modelling approach proposed by Chen and Steckel (2012) 

to identify customers’ true IPT and SOW from observations at a single company, in our case a 

retail chain. We analyze almost two years of data from about 1,000 customers and nine 

categories and benchmark the model by Chen and Steckel (2012) against a simplified version  

we propose. We find that both models seem to predict observed IPTs equally well. Yet, our 

model speeds up the estimation process. Strikingly, there are great differences with respect to 

SOW predictions and predictions of true category-level IPT. To (1) further evaluate the 

original model by Chen and Steckel (2012) against our simplified model and (2) improve the 

timing of personalized price promotions based on customers’ true category IPT, we outline 

our plans to apply our results to a recommendation system at a European grocery retailer.  

 

2 Model 

 

Chen and Steckel (2012) use data on customers’ credit card usage when buying groceries 

to model customers’ true grocery IPT and the SOW of the focal credit card in the grocery 

category. To derive true category IPTs and SOWs in the grocery category, Chen and Steckel 

(2012) introduce two submodels.  

 

2.1 Submodel 1: Distribution of category-level IPTs 

Individual category-level IPTs are Erlang (2, βij) distributed (Chen & Steckel, 2012). For 

customer i and category j, the Erlang distribution with shape parameter 2 and rate parameter 

βij is given by: 

fij (t; 2, β
ij
) = β

ij

2
te

-βijt,    t, β
ij
  ≥ 0. (1) 

The Erlang-k distribution is a special case of the gamma distribution that requires an 

integer shape parameter k and also contains the exponential distribution (k = 1). Due to the 

additive property of the gamma distribution, the sum of m independent Erlang (k, βij) 

distributions is Erlang (km, βij) distributed. While the exponential distribution is memoryless 

and illustrates random IPTs, the Erlang-k distribution with k > 1 models regularity in timing 

patterns (i.e., increasing with k) (e.g., Chen & Steckel, 2012). The next purchase depends on 
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the time since the last purchase, which has been empirically validated for grocery purchases 

on basket- (e.g., Chen & Steckel, 2012) and category-level (e.g., Herniter, 1971).  

In addition, Chen and Steckel (2012) assume that customers remain active over the 

complete observation period. In our case, retail customers could move, decide to no longer 

visit a particular retailer, or die. Yet, these cases will not be accounted for. Instead, we treat 

our observations as right censored. 

 

2.2 Submodel 2: Observed purchases at a retailer 

Similarly to Chen and Steckel (2012), we only possess data of a single company, in our 

case, a grocery retailer. Hence, the question arises which purchases the focal retailer observes. 

The original model proposes a two-state Markov process with the following transition matrix: 

(
ϕ

ij
1-ϕ

ij

λij 1-λij

) (2) 

to describe credit card usage in the grocery category. Thus, the probability of customer i 

using the focal credit card depends on whether she has used it for the previous grocery 

purchase in category j (ϕij) or not (λij). Chen and Steckel (2012) ascribe the necessity of this 

two-state Markov process to customers trying to balance their usage of several credit cards. In 

the case of grocery purchases, the two-state Markov process can be motivated by regularity in 

customers’ purchases across retailers (Gijsbrechts, Campo, and Nisol, 2008). Thus, customers 

systematically visit a set of retailers on a regular basis. The SOWij can then be described by 

the steady state probability of the two-state Markov process and provides probability that we 

observe a purchase of customer i in category j in the long-run: 

SOWij= 
λij

1+ λij-ϕij

 . (3) 

A two-state Markov process is not the only possibility to model customers’ behavior to 

visit multiple stores (Chen & Steckel, 2012). We argue that a simple Bernoulli process might 

be an alternative to model grocery purchases when customers engage in cherry-picking. 

Cherry-picking customers visit multiple stores in reaction to price promotions (Fox & Hoch, 

2005). This behavior is in line with the results of a market research by The Nielsen Company 

(2015) that identifies price as a primary driver for store switching. Accordingly, customers 

have a set of retailers whose price promotions they consider. Yet, the decision where to buy is 

made anew every time. The following relation holds ϕij = λij = pij. We observe a purchase of 

customer i in category j with probability pij, which also reflects her SOWij. The Bernoulli 

process consequently simplifies the original model by Chen and Steckel (2012). 

Which process better describes customers’ shopping behavior across multiple stores 

depends on the composition of the heterogeneous customer base. As we expect a mixture of 

cherry-pickers and systematic store switchers at the focal retailer, we rely on the empirical 

analysis to determine which process most appropriately describes the observed purchases.  

 

2.3 Derivation of a probability density function for observed IPTs 

Following Chen and Steckel (2012), the combination of both submodels allows for a 

derivation of a probability density function for observed IPTs. For customer i, the distribution 

of observed IPTs t in category j can be described by: 

g
ij
(t|ϕ

ij
) =  ∑ Q

ij
(m) Erlang[∞

m=0 t| 2(m+1), β
ij
]. (4) 

The term Erlang[t|2(m+1), βij] applies the additivity property of the Erlang-k distribution 

and describes the distribution of the observed IPTs given that m unobserved purchases lie 
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between the observed purchases. The term Qij(m) gives the probability that m unobserved 

purchases lie between two observed purchases of customer i in category j. In case of a two-

state Markov process (Chen & Steckel, 2012), we write: 

Q
ij
(m)= {

ϕ
ij
                           ,  m = 0

(1-ϕ
ij
)(1-λij)

m-1
λij,  m > 0.

 (5) 

When applying our proposed model simplification and replacing the two-state Markov 

process by a Bernoulli process, we set ϕij = λij = pij. 

The expected value of an Erlang (2, βij) distribution is given by 2/βij. It describes a 

customer’s expected category-level IPT across all purchases—observed and unobserved—and 

provides us with a solution to the “incomplete information problem”. To receive the expected 

observed IPT of customer i in category j, we multiply her SOWij with the expected value of 

the Erlang (2, βij) distribution (Chen & Steckel, 2012): 

E(observed IPT)= 
2

βij

 
1+ λij - ϕij

λij
. (6) 

When applying our model simplification strategy, we set ϕij = λij = pij. 

 

2.4 Specification of the Hierarchical Bayesian Model 

In the original paper by Chen and Steckel (2012), the model requires the estimation of 

three parameters on an individual level βij, ϕij, and λij. In contrast, our proposed simplification 

requires only two parameters, βij and pij. As sufficient data per customer is needed for the 

individual-level estimation, Chen and Steckel (2012) introduce a hierarchical Bayesian 

approach. Thus, the parameters to be estimated are modelled as functions of customer-level 

information. To ensure that βij is positive and the parameters of the two-state Markov (ϕij and 

λij) and Bernoulli process (pij) are bounded by 0 and 1, we rewrite them as: 

β
ij
= exp(θ

βij
) (7) 

p
ij
=

exp(θpij)

1+ exp(θpij)
    (equivalent for ϕi, and λi). (8) 

ϴij = (θβij, θϕij, θλij)̍ and ϴij = (θβij, θpij)̍ contain the transformed parameters of the original 

model (Chen & Steckel, 2012) and our proposed model simplification. We model ϴij as a 

function of customer- and category-level information: 

θβij = γ
0
+ γ

1
(category penetration) + γ

2
(category coefficient of price variation) + 

γ
3
(avg. quantity per category per purchase) + γ

4
(share of brands per category) + 

γ
5
(avg. basket value per user) +  γ

6
(avg. category purchase frequency per user) + 

γ
7
(avg. number of categories per basket per user) + εβij  

(equivalent for θpij, θϕij, and θλij). (9) 

When estimating the model (Chen & Steckel, 2012), we set up the following likelihood 

function for observed IPTs tijr, where i (to n) denotes the index for the customer, j (to J) 

denotes the index for the product category, and r (to Rij) denotes the rth observed IPT: 

L= ∏ ∏ {[ ∏ g
ij
(tijr|Θij

Rij

r=1
)] [1- ∫ g

ij
(t|Θij

th

0
)dt]}J

j=1
n
i=1 . (10) 

The second part of the likelihood function accounts for right censoring and describes the 

probability of observing no purchase between the last observed purchase and the end of the 

observation period (th) (Chen & Steckel, 2012). 
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3 Model Application 

 

Our current project is not limited to the simplification of the model introduced by Chen 

and Steckel (2012). Instead, we want to use the insights gained from modelling the true IPTs 

to improve the timing of personalized price promotions. At our focal retailer, loyalty program 

members receive personalized price promotions. These promotions result from a dynamic 

scoring model that considers customers’ previous purchases but no timing patterns.  

However, the timing of a promotion is crucial for its redemption. Previous research has 

shown that including the timing of customers’ observed category-level purchases, can help to 

improve the personalization of price promotions (e.g., Vuckovac, Wamsler, Ilic, and Natter, 

2016). We plan to go one step further and use knowledge about (unobserved) true category 

IPTs in order to improve the timing and thus, the redemption of personalized prize 

promotions. This might prove to be a competitive advantage for retailers and enable them to 

trigger purchases that a customer would have made at a competitor.  

As the application discussed in this section outlines work-in-progress, we only present 

the model comparison of the original model by Chen and Steckel (2012) to our proposed 

model simplification1. 

 

4 Empirical Analysis 

 

4.1 Results 

We received the transaction data for the empirical analysis from more than 100 stores of a 

brick-and-mortar grocery retailer that are located in and around a major European city. We 

analyze 22.5 months of data from almost 1,000 customers and nine different product 

categories. All customers in our dataset take part in the retailer’s loyalty program and identify 

themselves at the check-out via their loyalty card. However, the retailer does not collect any 

personal information (e.g., age, gender, address) of the loyalty card holders. Only transaction 

data is provided. 

The data is split into an estimation (15 months) and a holdout period (7.5 months). The 

estimation data is then used to estimate the expected true and observed individual-level IPTs 

on category-level as well as the respective SOWs. The aggregated results for the original 

three-parameter model by Chen and Steckel (2012) and our simplified two-parameter model 

are presented in Table 1. 

 

Table 1: Predictions of the hierarchical three- and hierarchical two-parameter model 

 Average 

observed IPT 

Two-parameter model Three-parameter model 

Category SOW E(true IPT) SOW E(true IPT) 

Capsule coffee 28.2 28.9% 6.1 37.5%   8.9 

Cola 23.3 28.2% 4.6 37.6%   6.7 

Detergent 38.4 27.6% 8.1 36.9% 13.3 

Dish liquid 39.7 27.6% 8.6 37.1% 14.5 

Fresh milk 22.6 31.6% 5.2 38.7%   7.2 

Lemonade 22.8 25.6% 4.2 38.6%   6.3 

Potato chips 31.1 24.4% 6.0 37.4%   9.3 

Salty snacks 27.1 23.9% 5.4 37.0%   8.0 

UHT milk 23.4 33.9% 5.7 38.8%   7.9 

Average 28.5 28.0% 6.0 37.7%   9.1 

Note: E(true IPT) = expected true inter-purchase time  

                                                 
1 We plan to present the results of our outlined work-in-progress at the EMAC conference. 
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The average observed IPT (across all nine categories 28.5 days) is much higher than the 

mean expected true IPT resulting from the two- and three-parameter model (6 days and 9.1 

days respectively). This relation also holds on the category-level and results from the 

assumption that customers visit multiple retailers. Thus, observed IPTs from a single retailer 

are inflated estimates of true (unobserved) IPTs.  

In the three-parameter model, the SOWs show hardly any differences across categories. 

The average SOW ranges from 37.5% for coffee capsules to 38.8% for UHT milk, with an 

average of 37.7% across all nine categories. In the two-parameter model, there is greater 

variation. The average SOW ranges from 23.9% for salty snacks to 33.9% for UHT milk, with 

an average across all nine categories of 28.0%. For the mean expected true IPTs, the three-

parameter model shows greater variation (mean expected true IPTs range from 6.3 days for 

lemonade to 14.5 days for dish liquid). The two-parameter model delivers estimates ranging 

from 4.2 days for lemonade to 8.6 days for dish liquid. The differences in the variation of 

SOW and expected true IPT across categories illustrate that both models explore the 

parameter space very differently. Consequently, the question arises which approach better 

describes customers’ true purchase behavior. 

 

4.2 Model validation 

As we do not know the true IPTs on category-level and customers’ SOWs, it is not 

possible to directly validate our results. However, we do know the observed IPTs in the 

estimation and the holdout period and use them for model validation. Following Chen and 

Steckel (2012), we use the estimations for the observed IPTs to predict the (observed) IPTs in 

the holdout period. We do this using two approaches: (1) the hierarchical Bayesian approach 

by Chen and Steckel (2012) (see section 2.4), and (2) a direct approach that estimates all 

parameters on an individual level (without the hierarchical layer)2. In addition, to the original 

three-parameter model by Chen and Steckel (2012) and our simplified two-parameter model, 

we use the observed IPTs of the estimation period as a benchmark. We compare the models 

using the root mean squared error (RMSE) and present the results in Table 2.  

 

Table 2: Model validation using the root mean squared error (RMSE) 

  Two-parameter model Three-parameter model 

Category Benchmark Direct Hierarchical Direct Hierarchical 

Capsule coffee 19.33 18.71 17.60 18.77 17.58 

Cola 17.37 16.89 14.80 16.85 14.79 

Detergent 27.68 27.51 27.59 27.59 27.54 

Dish liquid 30.09 30.37 29.97 30.57 30.02 

Fresh milk 18.02 17.77 15.98 17.75 15.93 

Lemonade 19.38 18.12 15.81 18.07 15.76 

Potato chips 25.50 23.91 21.27 23.79 21.29 

Salty snacks 22.75 22.17 19.23 22.09 19.31 

UHT milk 20.01 18.98 18.55 18.94 18.42 

Average 22.24 21.60 20.09 21.60 20.07 

 

We find that the direct and hierarchical two- and three-parameter model provide lower 

RMSE and consequently better predictions than the benchmark (average RMSE across all 

nine categories is 22.24 days). The average RMSE across all nine categories is 21.60 days for 

the direct two- and three-parameter model. The introduction of the hierarchical layer further 

improves the average RMSE to 20.09 days in the two- and 20.07 days in the three-parameter 

                                                 
2 Due to limited space, we decided to only present the hierarchical Bayesian approach in section 4.1. 
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model. A category-level analysis provides similar results. Thus, there is almost no difference 

between the two- and the three-parameter model with respect to RMSE.  

However, there is a difference in runtime across all models. The direct two- and three-

parameter models took 38 and 42 minutes respectively, parallelized on a server with 4 CPUs. 

The hierarchical models, however, took 17.9 hours in the two-parameter case and 28.9 hours 

in the three-parameter case. Thus, from a runtime perspective, our hierarchical two-parameter 

model has an advantage over the original three-parameter model by Chen and Steckel (2012). 

 

5 Summary and Discussion 

 

In this paper, we apply the modelling approach by Chen and Steckel (2012) to infer 

customers’ true category-level IPT based on data from a single company. We use the model 

that was initially designed to forecast purchases in the grocery category based on credit card 

transactions to predict category-level grocery purchases based on transaction data from a 

single retailer. Both, the original model by Chen and Steckel (2012) and our proposed 

simplified model, predict observed purchases at the focal retailer equally well. However, the 

model results differ substantially with respect to category SOW predictions and predictions of 

true category-level IPTs. We will further explore these differences in the future and apply 

both models to our focal retailer’s recommendation system. A successful application will 

enable us to (1) improve the timing of personalized price promotions based on customers’ true 

category IPTs and to (2) further assess both models’ performance and ability to describe 

customers’ purchase behavior. The latter will also enable us to characterize the retailer’s 

customer base with respect to cherry-pickers and systematic store switchers.  

Finally, we can conclude that our model simplification provides a way to predict 

observed IPTs as accurate as the original model by Chen and Steckel (2012), while 

considerably speeding up the estimation process. 
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