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Abstract. Recently, a lot of attention has been given to crime predic-
tion, both by the general public and by the research community. Most
of the latest work has concentrated on showing the potential of novel
data sources like social media, mobile phone data, points of interest, or
transportation data for the crime prediction task and researchers have
focused mostly on techniques from supervised machine learning to show
their predictive potential. Yet, the question remains if indeed this data
can be used to better describe urban crime. In this paper, we investi-
gate the potential of data harvested from location-based social networks
(specifically Foursquare) to describe urban crime. Towards this end, we
apply techniques from spatial econometrics. We show that this data, seen
as a measurement for the ambient population of a neighborhood, is able
to further describe crime levels in comparison to models built solely on
census data, seen as measurement for the resident population of a neigh-
borhood. In an analysis of crime on census tract level in New York City,
the total number of incidents can be described by our models with up
to R2 = 56%, while the best model for the different crime subtypes is
achieved for larcenies with roughly 67% of the variance explained.

Keywords: urban computing, social computing, computational social
science, crime analysis, spatial econometrics, location-based social net-
works

1 Introduction and Related Work

Many past criminological studies have already highlighted the relationship be-
tween urban crime and various characteristics of the resident population in the
area, like e.g. ethnicity [12], income level [12], and residential stability [26]. The
theoretical underpinning of these studies lies in the social disorganization theory
[24] which links the ecological attributes of a neighborhood to its crime levels.
In these empirical studies, scholars have exploited traditional census data to
measure the population at risk.
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Yet, with the advent of internet-enabled mobile devices, citizens have be-
come sensors [16] that produce rich data revealing the intensity and nature of
human activity in cities. Specifically, location-based social networks (LBSNs)
like Foursquare bridge the physical and digital worlds by allowing their users to
share their location when visiting different spots in a city. Such services expose
information on the location, time, and nature of the activities their users engage
in (like shopping, eating out, commuting, being at home, etc.). Moreover, the
users can be seen as exponents of the ambient population in an area, a more
loyal measure of the population at risk expected in that area at any given time.
We argue that characteristics of such data can be integrated in models of urban
crime.

The relationship between human dynamics and crime in urban environments
has been loosely captured by criminologists under the umbrella of the routine
activity theory [11] or hypothesized by urban planners in quantitative studies
(e.g. eyes on the street in [18]). Under the routine activity theory paradigm,
crime is seen as occurring when a motivated offender meets an unguarded tar-
get at a suitable point in time and space [11]. Even further, Brantingham and
Brantingham [7] argue that one common way offenders encounter their targets
is through overlapping or shared activity spaces, like the offenders home, work,
school, and places of recreation as nodes. Furthermore, the same authors go on in
[8] and classify some urban hot spots as crime attractors (particular places where
strongly motivated offenders are attracted due to the known criminal opportuni-
ties, like bar and prostitution areas), and others as crime generators (particular
areas to which large numbers of people are attracted for reasons unrelated to any
particular level of criminal motivation, like shopping and entertainments areas).
On the other hand, the visionary author and activist Jane Jacobs postulated in
her 1961 book The Death and Life of Great American Cities, that higher densi-
ties and diversities of people and human activities would act as crime deterrents
[18].

Very recently, computational social scientists have started to test such the-
ories at scale in descriptive studies by leveraging human dynamics data such
as mobile phone data [30]. The authors find significant negative correlations be-
tween crime and the diversity of age and ratio of visitors and positive correlations
between crime and the ration of residents in an area, as computed using footfall
counts extracted from telecommunication data. Finally, latest literature from
the data mining community has concentrated on showing the potential of novel
data sources of human dynamics like social media [15], mobile phone data [6], or
transportation data [31] in a crime prediction setup. They prove that machine
learning techniques can achieve competitive predictive scores on features mined
from such alternative data sources.

In this work, we focus on showing the novelty of the LBSN data in a crime
description setup. Shmueli outlays in [29] the three different scenarios in which
statistical modeling can be used to develop and test theories: causal explanation,
prediction, and description. In a descriptive setup, a model is used for captur-
ing the association between the dependent and the the independent variables,
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rather than for causal inference or for predictive modeling [29] . In this work, we
are applying linear models from spatial econometrics that are able to produce
an interpretable model. The contribution of the new factors to the dependent
variable is precisely quantified in a multivariate setup (as compared to the cor-
relation analyses in [30]) and tested for statistical significance (as compared to
the non-parametric machine learning models in [6], e.g.).

In the remainder of the paper we: present the leveraged datasets and derived
factors in Section 2, elaborate on the methods and results of the analysis in
Section 3, and summarize the conclusions, implications and limitations in Section
4.

2 Datasets and Factors

In our empirical study, we use data from New York City (NYC), a city that is
sufficiently large, diverse, and high-tech savvy to assure a high degree of pene-
tration for location-sharing services.

The dependent variable are incident counts from years 2011 through 2015
at census tract level: N = 2, 167 census tracts. A census tract is a stable ge-
ographical unit for the presentation of statistical data with a population size
between 1,200 and 8,000 people, with an optimum size of 4,0001. To account for
the heterogeneity of the unit of analysis, we include the census tract’s area as a
control variable. In terms of independent variables, we will be crafting two sets
of variables: one set describing the resident population and one set describing
the ambient population. In trying to keep the variables count low, we will be
relying heavily on aggregate metrics like fractions and diversity indexes. Even
more, we will attempt to craft suitable counterparts of the established resident
population metrics when using proxy data of the ambient population.

2.1 Crime

The full crime dataset was downloaded from the NYC Open Data platform2

and all incidents from 2011-2015 were mapped to the census tracts of the city.
Each incident belongs to one of the following sub-types: grand larceny, robbery,
burglary, felony assault, and grand larceny of motor vehicle, rape, or murder. In
the following, we will be analyzing the total number of incidents, as well as the
specific sub-types of crimes that can be described by population characteristics:
grand larcenies, robberies, burglaries and assaults. First, to address the skewed
distribution of the count data – see Figure 1 (upper left) for the raw counts –,
we apply a log-transformation. This operation will yield the dependent variable
in the models.

1 https://www.census.gov/geo/reference/gtc/gtc_ct.html
2 https://nycopendata.socrata.com/
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Fig. 1. Histograms of raw variables: crime counts (upper left), equitability indexes
(upper right), fractions (lower left), and local quotients (lower right).

2.2 Residential population

The census data for NYC have been derived from the 2010 Decennial Census
and the 2010-2014 American Community Survey3 and it has been employed to
derive the crime correlates as per the social disorganization theory.

The first variable is the total population and it is a measure of the res-
ident population at risk. The population diversity has been shown to play a
role in the crime phenomenon [17] so we compute two diversity indexes based
on the socio-demographic and economical information: a racial-ethnic equi-
tability index and an income equitability index. The racial-ethnic index
measures the presence of multiple ethnic and racial groups within a certain area
and is computed based on five exhaustive and mutually exclusive aggregates
(non-Hispanic whites, non-Hispanic blacks, Hispanics of any race, Asians, and
others – Native Americans, members of other races, and multi-racial persons),
and the income index measures the variance in household income across three
main income levels (low, medium, and high-income households). To compute
these indexes, we utilize the Shannon diversity index [27], initially developed
in information theory, and later used in ecology to summarize the diversity of
species [23]. Finally, the Shannon equitability index [28] is simply the Shannon
diversity index divided by the maximum diversity, yielding a normalized value

3 http://www.census.gov/
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within [0, 1]:

−
k∑

i=1

pi ln pi/ ln k

where pi is denoting the proportion of the population in group i and k is the
total number of groups. Note that lower values indicate the relative abundance
of a given group, while higher values indicate equiprobability of all groups. We
plot the histograms of all equitability indexes in Figure 1 (upper right). Finally,
we calculate the fraction of vacant households, the fraction of rented
households from the occupied ones, and the fraction of stable population
(individuals who moved in prior to 2010) as measures for the neighborhood
instability which has been shown to be associated with violence [26] – see Figure
1 (lower left).

2.3 Ambient population

The factors describing the ambient population were derived based on a dataset
collected over the Foursquare API4 in May-June 2016, consisting of 250,926
venues covering the whole area of NYC, and spanning following 10 broad cate-
gories: Arts and Entertainment (11,794 venues), College and University (7,082),
Event (84), Food (47,590), Nightlife Spot (11,140), Outdoors and Recreation
(18,011), Professional and Other Places (64,055), Residence (14,632), Shop and
Service (62,627), Travel and Transport (13,911). These venues have experienced
in total almost 122 million checkins since their creation in the app.

The number of total venues, number of total checkins and in typical
week and weekend afternoons within a census tract reflect the popularity of
that area [5] are all potential metrics of the ambient population at risk, similarly
to how the census’s total population is a measure of the resident population at
risk.

The venues equitability index, computed by an analog equitability for-
mula to the one introduced for the residential population, is then a metric cap-
turing the functional decomposition of a neighborhood. Previous work in urban
computing has used similar metrics of neighborhood diversity based on LBSN
data [19] or on mobile phone data [13, 22], as pioneered in [14]. The higher the
equitability index, the more heterogeneous the area is in terms of types of places,
and following that, in terms of functions and activities of the neighborhood. On
the other hand, a least entropic area would indicate an area with a dominant
function. For example, an area dominated by College and University venues
would indicate an area where people primarily study, like an university campus.

Finally, inspired by recent work on digital neighborhoods [4], we compute
local quotients of (digital) social activity within an area as concentrations
of checkins relative to the number of businesses and to the reference census
population:

1 + C(ti)

total checkins
× total venues

1 + V (ti)

4 https://developer.foursquare.com/
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1 + C(ti)

total checkins
× total population

1 + P (ti)

where P (ti) is the total population count within a census tract, C(ti) is the total
number of checkins, and V (ti) is the total number of venues. Neighborhoods with
local quotients >> 1 can be considered (digital) hot spots, while neighborhoods
with local quotients << 1 can be considered (digital) deserts. A zoom-in on the
[0, 10] interval of the local quotients distributions is plotted in Figure 1 (lower
right).

3 Analysis

3.1 Transformations

As seen in Section 2, many of the raw explanatory variables exhibit skewed dis-
tributions. Therefore we first transform them towards a normal distribution by
using the Box-Cox method [9], making them more suitable for linear regression
and correlation analysis. As in this work we aim at interpreting and comparing
the different regression coefficients, the values of the explanatory variables need
to be on the same numerical scale. Towards this end, we apply a second trans-
formation by computing their z-values (subtracting the mean µ and normalizing
by standard deviation σ).

ID Factor Pearson Corr.

0 area −0.1184∗∗∗

1 population +0.5046∗∗∗

2 racial ethnic div index +0.1410∗∗∗

3 income div index −0.1024∗∗∗

4 vacant fraction +0.1256∗∗∗

5 rented fraction +0.5516∗∗∗

6 stable fraction −0.1217∗∗∗

7 venues +0.5875∗∗∗

8 checkins +0.4679∗∗∗

9 ven pop we afternoon +0.4012∗∗∗

10 ven pop week afternoon +0.4406∗∗∗

11 venues div index +0.2516∗∗∗

12 checkins venues lq +0.2162∗∗∗

13 checkins population lq +0.1764∗∗∗

Table 1. Pearson correlation between all considered factors and the dependent variable:
total number of incidents in a census tract (significance levels: ∗∗∗p ≤ 0.001, ∗∗p ≤ 0.01,
∗p ≤ 0.05).

3.2 Correlation Analysis

Before we delve into building the explanatory models, we run a series of tests first.
First, Table 1 shows the Pearson correlation coefficients between the different
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factors and the log-transformed number of total crime incidents within a census
tract. We observe that all correlations are significant at 0.1%. Furthermore, most
of the factors are positively correlated with the crime levels, with the exception of
the census tract’s area, income diversity index, and fraction of stable population.

Fig. 2. Correlation matrix of all factors.

ID Factor VIF (all factors) VIF (remaining factors)

0 area 1.4248∗ 1.3987∗

1 population 3.4659∗ 2.4226∗

2 racial ethnic div index 1.1999∗ 1.1599∗

3 income div index 1.4420∗ 1.3985∗

4 vacant fraction 1.2127∗ 1.1986∗

5 rented fraction 2.0193∗ 1.9871∗

6 stable fraction 1.4591∗ 1.4241∗

7 venues 40.0859 4.5949∗

8 checkins 64.3999 -
9 ven pop we afternoon 9.1538∗ -
10 ven pop week afternoon 8.3502∗ -
11 venues div index 1.3938∗ 1.3065∗

12 checkins venues lq 30.0767 -
13 checkins population lq 12.8960 4.0846∗

Table 2. Variance Inflation Factor for all factors and for the remaining factors (∗ marks
an accepted value under 10).

We proceed by looking at the correlation matrix of variables defined above
to identify potentially correlated factors – depicted in Figure 2. While multi-
collinearity does not reduce the reliability of the whole model within the sample
set, it is a problem if we are interested in the effects of individual factors on
the outcome, since we cannot separate out their individual contributions. As ex-
pected from the way they were constructed, the number of venues, checkins, and
popular venues are correlated between each other. Also, the two local quotients
values are highly correlated. Furthermore, we compute the variance inflation
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factor (VIF) which quantifies the severity of multicollinearity in an ordinary
least squares regression analysis. The lower the VIF value, the better, while an
upper limit value of 10 is accepted in the literature [20]. The first column in
Table 2 lists the VIF scores considering a specification with all factors. Based
on the results from the correlation matrix and the VIF analysis, we keep one
variable per group of correlated variables: the number of venues, and the local
quotient relative to the population, respectively. We recompute the VIF values
in a specification with the remaining 9 factors – see second column in Table 2 –,
and conclude that all kept factors have VIF values smaller than 5, which is well
below the accepted threshold.

Fig. 3. Total incident counts regressed on the final resident and ambient population
metrics. The dependent variable is log-transformed. All independent variables are Box-
Cox-transformed and normalized.

Finally, Figure 3 presents the linear relations between the crime counts and
the the remaining variables. These initial results support our assumption that
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specific old and novel attributes of the resident and ambient population of a
neighborhood are related to the crime levels. We keep all 9 factors for further
analysis.

In addition, we perform a Moran’s test [10] to test wether spatial dependen-
cies are present in the crime data. As we obtain a significant global Moran’s
Index of 0.5552 (∗∗∗p ≤ 0.001), we conclude that the spatial distribution of high
values and/or low values in the dataset is more spatially clustered than would
be expected if underlying spatial processes were random. This result confirms
the choice of the spatial lag model. Even more, in addition to the global auto-
correlation statistics, we calculate a local indicator of spatial association (LISA)
[2], which can help identify and visualize local hot-spots and cold-spots of crime
– see Figure 4.

Fig. 4. Crime hot-spots and cold-spots.

3.3 Multivariate Explanatory Models

To explain the relationship between the descriptors of the resident and ambient
populations and crime levels, we opt for regression models. In a first attempt,
which serves as a benchmark, we build a linear model:

C = α+ β0A + β1RP + β2AP + ε

where C is the level of crime in a neighborhood, α is the intercept term, A is
the area of the neighborhood, RP is the set of variables relating to the resident
population in a neighborhood, AP is a set of variables describing the different
characteristics of the ambient population, and ε is the error term. The parameters
β0, β1, and β2 are capturing the effect of these metrics on the crime levels at an
intra-urban level.

This technique requires the independence of the observations, yet the dis-
tribution of crime across NYC is likely to have a marked spatial dimension. If
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so, failing to account for the spatial correlation of the dependent variable in
an econometric model leads to a biased model [1]. For this reason, we expand
the baseline linear model by including the so-called spatial lag – an explanatory
variable that captures the values of the dependent variable in the surrounding
neighborhood and obtain following spatial lag model [1]:

C = α+ ρW × C + β0A + β1RP + β2AP + ε

where the new term W is a spatial weights matrix encoding the spatial rela-
tionships between the census tracts in the dataset (we use a queens contiguity
matrix which considers as neighbors any pair of cells that share a vertex) and ρ
is the spatial autoregressive parameter.

Total incidents Table 3 presents the regression results, reporting the R2 mea-
sure for model fit, as well as the value and sign of the coefficients and whether
they are significant or not. Specifically, we use the PySAL library in Python [25]
and for the linear models estimated using ordinary least squares we report the
adjusted R2, while for the spatial lag models estimated using a generalized spa-
tial two-stage least squares we report the spatial pseudo R2. Firstly, in Model
(1) the regression was run with only the area and the independent variables
describing the resident population. Secondly, in Model (2), the crime levels are
described only in terms of the ambient population variables. Finally, Model (3)
makes use of the whole set of descriptors.

Although results are comparable across the standard and spatial models some
details do change when introducing the spatial effects. Firstly, the size of the
significant coefficients is smaller in the spatial model – a known effect of ignoring
positive spatial autocorrelation. When properly accounting for the spatial effect,
variation is absorbed by the spatial lag term and the other coefficients display
more conservative values. The presence of relevant spatial auto-correlation is
further confirmed by the significance and large size of the spatial parameter
w incidents (ρ) in all three models.

We now turn at comparing the three model specifications. Overall, in terms
of significance, we observe that the racial-ethnic index and the census tract area
lose significance when moving from the resident population only model to the
full model, while the stable fraction gains significance. The ambient population
factors remain significant throughout the models, with the exception of the local
quotient of digital activity, which loses significance in some of the specifications.
The sign of the significant variables remain stable for the control variable, resi-
dent and ambient population variables.

Most importantly, overall, the two models in (3) achieve best explanatory
performance, with roughly 56% explained variance! This confirms the hypothesis
that, the novel factors contribute towards more performant descriptive models
of crime. By looking at the spatial-lag formulation of the full model, we interpret
that, in the multivariate setup defined previously:

– the population of an area, the fraction of vacant and rented households, the
fraction of stable population, the number of venues in the area, and the crime
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(1) (2) (3)
Linear Spatial Lag Linear Spatial Lag Linear Spatial Lag

Adj./ spatial pseudo R2 43.90% 43.93% 46.88% 46.91% 56.15% 56.33%

constant +5.5887∗∗∗ +2.5020∗∗∗ +5.5887∗∗∗ +3.7853∗∗∗ +5.5887∗∗∗ +3.8228∗∗∗

area +0.0336∗ +0.1005∗∗∗ −0.1236∗∗∗ −0.0454∗∗ −0.0271 +0.0249
population +0.3109∗∗∗ +0.2359∗∗∗ +0.1152∗∗∗ +0.0919∗∗∗

racial ethnic div index +0.0404∗∗ +0.0321∗∗ +0.0062 +0.0082
income div index −0.0813∗∗∗ −0.0240 −0.1084∗∗∗ −0.0704∗∗∗

vacant fraction +0.1240∗∗∗ +0.0944∗∗∗ +0.0447∗∗∗ +0.0384∗∗∗

rented fraction +0.3245∗∗∗ +0.2036∗∗∗ +0.2355∗∗∗ +0.1809∗∗∗

stable fraction −0.0269 −0.0205 +0.0462∗∗∗ +0.0545∗∗∗

venues +0.7296∗∗∗ +0.6342∗∗∗ +0.5104∗∗∗ +0.4602∗∗∗

venues div index +0.0284∗ +0.0007 −0.0174 −0.0355∗∗

checkins population lq −0.3498∗∗∗ −0.3294∗∗∗ −0.1832∗∗∗ −0.1864∗∗∗

w incidents +0.5478∗∗∗ +0.3201∗∗∗ +0.3134∗∗∗

Table 3. Results of the three regression models. Dependent variable: total number of
incidents in a census tract. (significance levels: ∗∗∗p ≤ 0.001, ∗∗p ≤ 0.01, ∗p ≤ 0.05).

in the surrounding areas are positively and significantly related to the area’s
crime levels.

– the income diversity of the population in an area, as well as the venues
diversity and the level of (digital) social activity in that area are negatively
and significantly related to the area’s crime levels;

– the racial-ethnic diversity of a neighborhood, as well as the neighborhood
area are not significantly related to the overall crime levels in that neighbor-
hood.

In terms of implications, the resident population factors derived from the so-
cial disorganization theory have therefore found strong support in our empirical
results. The one exception is the racial-ethnic diversity of a neighborhood, which
is actually a pleasant finding: the expectation is that the model will perform
similarly well when leaving out this race-based factor. Most importantly, the ac-
tivity of the ambient population in terms of its diversity and intensity have been
found to be statistically significant and negatively related to the crime counts
of a neighborhood – result which is in line with Jacob’s Eyes on the Street the-
ory. Finally, the other factor derived from LBSN data, the number of venues in
a neighborhood is found to be statistically significant and positively related to
crime – result which supports the criminogenic places theory of Brantingham
and Brantingham.

Finally, comparing the actual number of incidents versus the estimated num-
ber of incidents we obtain a Pearson’s r = 0.6779 (∗∗∗p ≤ 0.001) and MSE =
0.2434 on the whole dataset.

Crime types So far, the analysis investigated the total number of incidents.
Yet, some types of crime can be better described by the attributes of the resi-
dent and ambient population than others. We proceed by employing model (3)
for all crime sub-types. Larcenies, as they include all types of thefts, including



12

e.g. pick-pocketing, seem to be best described by the complete set of popula-
tion factors with a spatial pseudo R2 of 66.98%. The models for burglaries and
assaults are also competitive with metrics of 45.09% and 45.29%, respectively.
Finally, the model for robberies managed to explain 34.56% of the variance, while
the remaining types of incidents could not be well described by the population
factors.

total incidents grand larcenies robberies burglaries assaults

Adj./ spatial pseudo R2 56.33% 66.98% 34.56% 45.09% 45.29%

area 0.0249 0.0178 0.0604 0.0265 0.1168

population 0.0919 0.1150 0.0165 0.1054 0.0722

racial ethnic div index 0.0082 0.0210 0.0312 0.0028 0.0205

income div index 0.0704 0.0649 0.0202 0.0113 0.0578

vacant fraction 0.0384 0.0496 0.0375 0.0796 0.0266

rented fraction 0.1809 0.1123 0.1553 0.1519 0.2774

stable fraction 0.0545 0.0620 0.0413 0.0007 0.0414

venues 0.4602 0.5656 0.3876 0.3804 0.3520

venues div index 0.0355 0.0328 0.0706 0.0406 0.0703

checkins venues lq 0.1864 0.0331 0.2264 0.2468 0.2654

w incidents 0.3134 0.1994 0.7580 0.0966 0.6020

Table 4. Contribution of the different explanatory variables across different crime
types (red – positive coefficient, blue – negative coefficient).

Table 4 visualizes the contribution of each factor in the explanatory models
of the different crime types. We can observe that, in general, the sign and rel-
ative size of the coefficients stays similar across the models, with some notable
exceptions. The geographical influence of crime in the neighboring areas plays a
much greater role in the case of robberies and assaults. On the other hand, for
grand larcenies and burglaries the influence of the surrounding areas is smaller
in comparison to the general model of total incidents. For the category of grand
larcenies, which include cases of street thefts, the number of venues in the areas
has a higher contribution in comparison to the general model, while the other
two ambient population factors have lower negative coefficients. For the cate-
gory of assaults, which include more violent types of crimes, the neighborhood’s
fraction of rented house units and the neighborhood’s area have higher positive
coefficients in comparison to the general model.

4 Conclusions and Discussion

In this paper, inspired by literature in criminology and urban computing, we
have leveraged a location-based online service to craft a series of factors describ-
ing the ambient population and used these as describing factors for urban crime.
First, we proved that these novel factors are significantly related to the crime
levels in an area. We then built linear and spatial econometric models of crime
and concluded that these factors and the geographical influence improve the
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explanation models based only on factors describing the resident population.
Specifically, we found support for both Jacobs Eyes on the Street and Brant-
ingham and Brantinghams criminogenic places theories, as the diversity and
intensity of the ambient population’s activities was found to be negatively re-
lated to the crime counts, while the number of venues within the neighborhood
was positively related to the crime counts. We have repeated the analysis and
built models for the various criminal incident types and found that the results
hold across the specific models. In the case of street thefts, the positive influ-
ence of the number of venues was more substantial, while in the case of more
violent types of incidents like assaults and robberies, the geographical influence
was found more pronounced.

Limitations of this work reside in the geographical and demographic biases
of the users active in such services, as well as in limiting the analysis to one
city. Future work will address these points, by including further ubiquitous data
sources in the models and by analyzing other urban areas. We ought also to stress
the fact, that this is an observational study and not a controlled experiment,
therefore the results should be seen as correlation and not causality between the
observed variables and the target variable.

Note: We have tested alternative specifications that included further explana-
tory variables mentioned in the literature, like household diversity index, age di-
versity index, and venues offering advantages. We do not include these because
of space limitations and also because they do not contribute fundamentally new
insights or improve R2 significantly anymore. Furthermore, we believe the true
interesting result of this work is the systematic comparison of the two sets of
resident and ambient population variables. Details are, however, available from
the authors.

Data accessibility : All raw data used in this study is available from the public
sources listed in the text (NYC OpenData platform for the crime data, FTP
pages of the US Census Bureau for the census data, and Foursquare API for the
LBSN data). In case of interest, readers are welcome to contact the authors for
the processed data and used source code.
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