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PROBLEM DOMAIN AND OVERVIEW OF RELATED WORK
The number of road traffic fatalities has been steadily
increasing since 2001 and is currently the eighth leading
cause of death globally, with the loss of life of 1.2 million
people each year according to the World Health Organization
(WHO) [11]. In addition, the National Highway Traffic Safety
Administration (NHTSA) reported that the number of deaths
from traffic accidents in the USA increased by 7% from
2014 to 2015, rising to 35,092 fatalities [4]. Amid growing
humanitarian concerns of so many injuries and fatalities
worldwide, the Department of Transport issued a call to action
encouraging the continuous research into different approaches
that can improve the situation. As such, there are various
research studies which are geared towards how in-vehicle
systems can encourage drivers to adapt their driving behaviour
and help to reduce the amount of both fatal and non-fatal
traffic accidents. Typically, these systems aim to prevent a
collision with an upcoming vehicle or pedestrian by providing
warnings to drivers, and latest studies demonstrate promising
evidence that these systems can indeed have significant
positive effects [2, 9, 10]. However, the vast majority of studies
have focused on simulation experiments [3, 8] and controlled
lab experiments [6, 13]. We have recently contributed to this
field by bringing an in-vehicle warning system into a field
studying setting, utilising real world location analytics on
traffic accident hotspots to generate in-vehicle warnings [7].
Going one step further, the benefit of ubiquitously detecting
dangerous locations from data gathered by connected vehicles,
and using these locations as a source for in-vehicle warnings,
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has widely not been addressed in this growing domain and is
the focus of our research.

The remainder of the paper is structured as follows, we first
describe a preliminary investigation into accident hotspots
and the impact specific locations had on the number of traffic
accidents occurring nearby. We then outline the key idea of
the project, along with two approaches which we are exploring
to enable the vision of autonomously detecting and classifying
accident hotspots with driving data. Finally, we conclude
with our expected contributions to the field of ubiquitous
computing.

RESEARCH AND EVALUATION CARRIED OUT SO FAR

Preliminary Analysis of Traffic Flow and Accidents
relationship
Methodology
The first step of the research at hand was an exercise
investigating the link between road traffic frequency and
the number of traffic accidents, and whether the affect of
individual locations, i.e. accident hotspots, also impacts the
number of accidents. To investigate this, traffic accident data
for five years was obtained from the Swiss Road Authority
(FEDRO), this dataset contained GPS locations, as well as
contextual information on the causes, on over 266,000 traffic
accidents which occurred in Switzerland between 2011 and
2015. Additionally, the rate of traffic flow, i.e. the number of
cars travelling on a particular stretch of road, has long been
associated with traffic accidents. In order to assess the impact
specific locations have on the number of traffic accidents, it
is therefore important to account for traffic frequency. As
such, traffic data was obtained from FEDRO, comprised of the
average number of vehicles per day passing approximately 400
counting stations across Switzerland. This data was filtered
to cover the same 5 year time period as the traffic accident
data. Moreover, the locations for analysis were further limited
to those where there was traffic frequency data collected
over the full five-year period. Therefore, the final set of
observations were constructed from 190 locations, each of
which had five traffic frequency measurements, one per year.
Accident data from each of these locations, for each year, was
then collected by applying a naive grid-count approach. Here
the number of accidents which occurred within a 1km2 grid
were counted for each year, where the centre of the grid was
the traffic frequency counting station, similar to a previous
traffic accident study [12]. Over the five year period, this came
to a total of 9,102 traffic accidents, with an arithmetic mean
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FE1 FE2 RE1 RE2
ln ( Traffic Frequency ) 0.530 (1.56) 0.995∗∗ (2.71) 0.500∗∗∗ (10.14) 0.509∗∗∗ (10.28)
Year=2011 0 (.) 0 (.)
Year=2012 -0.00209 (-0.05) -0.00239 (-0.05)
Year=2013 -0.0362 (-0.82) -0.0290 (-0.66)
Year=2014 -0.0643 (-1.43) -0.0507 (-1.16)
Year=2015 -0.136∗∗ (-2.93) -0.116∗∗ (-2.64)
Constant 1.763∗∗∗ (126.65) 1.810∗∗∗ (57.35) 1.763∗∗∗ (29.52) 1.802∗∗∗ (27.35)
Sigma_U 0.822 1.014 0.801 0.801
Sigma_E 0.429 0.427 0.429 0.427
ICC - Intraclass Correlation 0.786 0.849 0.777 0.779

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 1. Panel Data Analysis - The Impact of Traffic Frequency on Traffic Accidents (natural log)

of 9.58 and a geometric mean of 5.65 accidents per location
per year. As such, the dependent variable in our analysis
was the number of traffic accidents occurring, with traffic
frequency as an independent variable. Since the data collected
is longitudinal for each location, i.e. across time, Panel Data
Analysis with a grouping on each location is suitable for
analysis, and additionally allows us to add the time fixed
effects as an independent variable. Using this approach we set
to answer our two preliminary research questions:

RQ1 Does traffic frequency through a location impact the
number of traffic accidents occurring near (within
1km2) that location?

RQ2 Does the location itself impact the number of traffic
accidents occurring near (within 1km2) that location?

The first question can be answered by considering the
significance of the traffic flow independent variable in our
model. The second question can be answered by testing
whether using fixed effects or random effects of the location
lead to a significantly improved model fit to the data. Finally,
fundamental assumptions for regression analysis are violated
as we are utilising count data following a poisson distribution.
As such, both the accident count data and traffic frequency
count data were transformed via the commonly used natural
log function [5]. Additionally, the natural log transformed
traffic frequency was mean centred to generate the independent
variable.

Evaluation
A summary of the results from the analysis can be found in
Table 1. The evaluation starts with fixed effects to analyse
the impact of variables that vary over time. Fixed effects
remove the effect of time-invariant characteristics so we
can assess the net effect of the predictors on the outcome
variable. In this first model (FE1), this is simply the impact
of traffic flow on the number of traffic accidents. Here we
do not see a significant effect (p=0.119) of the number of
vehicles travelling through a location and the number of traffic
accidents near that location. We can extend model FE1 by
including the year as a categorical variable in the analysis, in
order to test whether these time fixed effects are needed in
the model. Model FE2 adds these variables, and we see that
the effect of traffic flow on the number of traffic accidents

becomes significant (p=0.007). With the exception of 2015,
none of the year categories are significant when compared
to 2011. However, when we test the null hypothesis that
these year categories are simultaneously equal to zero, we are
able to reject it (p=0.026). Hence, we can conclude that we
should include time fixed effects in our fixed effect model,
and thus that FE2 is the better model when compared to FE1.
Since we are utilising natural log transformed dependent and
independent variables, the interpretation of the coefficient
of 0.995 is the following: for a 10% increase in traffic
flow, we would expect an almost identical increase of 9.9%
(1.10.995 = 1.099) in the geometric mean of yearly accidents
occurring near that location.

We next test whether incorporating random effects of the
locations improve the quality of our model. Unlike the fixed
effects model, the rationale behind the random effects model
is that the variation across entities is assumed to be random
and thus uncorrelated with the independent variables included
in the model. In the first random effects model (RE1), we
take the same approach as FE1 and test first for the impact
of traffic flow on the number of nearby accidents to the
location. Here we see a strong significant effect of the traffic
flow (p=0.000), where the number of yearly traffic accidents
occurring within 1km2 of the location would be expected to
increase by 4.9% for a 10% increase in traffic flow at that
location (1.10.500 = 1.049). In the same way as FE1 and FE2,
we can continue to build this model by additionally testing
whether time fixed effects are needed. Model RE2 adds these
variables, and we see that the effect of traffic flow on the
number of traffic accidents remains highly significant, and
none of the year categories are significant when compared to
2011, with the exception of 2015. However, unlike the fixed
effects model FE2, when we test the null hypothesis that these
year categories are simultaneously equal to zero, we fall short
of satisfyingly rejecting the null hypothesis (p=0.053). Hence,
we can conclude that we should not include time fixed effects
in our random effect model, and thus that RE1 is the better
model when compared to RE2.

To determine whether the random effect models are a better fit
for the data than the fixed effects models, we apply Hausman
tests between FE1 and RE1, and FE2 and RE2. This tests
whether the unique errors in the fixed effects model are
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Figure 1. Pipeline of event detection, data collection and classification

correlated with the regressors, and as such, the null hypothesis
is they are not. Thus, the null hypothesis is that the preferred
model is random effects vs. the alternative fixed effects model.
In this case, we fail to reject both the null hypotheses that
1. RE1 is better than FE1 (p=0.878), and 2. RE2 is better
than FE2 (p=0.929). As such, both the models incorporating
the random effects of locations are preferred over the fixed
effects models. This affirms our second research question,
that the location itself impacts the number of traffic accidents
occurring near (within 1km2) that location. Additionally, since
the effect of the traffic flow on the number of traffic accidents
remained significant through both the random effects models,
we are able to answer our initial research question, that traffic
frequency through a location impacts the number of traffic
accidents occurring near (within 1km2) that location.

Finally, the intraclass correlation (ICC) of the models gives
an insight into the fraction of the variance which is associated
with locations. It is defined as the fraction of the total variance
that is due to variation between groups:

ICC = Sigma_U2/(Sigma_U2 +Sigma_E2)

In our best fitting random effect model, 77.7% of the variance
is due to differences across locations. While our analysis
finds high significance in the effect of traffic flow on the
number of accidents, the majority of variance in our data,
and associated models, comes from the locations themselves.
Finally, this is shown more clearly by applying a Breusch
and Pagan Lagrangian multiplier test for random effects on
the original data. The null hypothesis of this test is that the
variance of the random effect is zero for the grouping of
location. Since this test is highly significant in our dataset
(p=0.000), we reject the null hypothesis and can conclude that
the area surrounding the location itself plays a significant role
in the number of accidents which occur there.

Hence, with the knowledge that certain areas on the road
network are more dangerous than others, we continue our
research with the motivation of improving driving behaviour
through these particularly hazardous locations, otherwise
known as accident hotspots.

ORIGINAL KEY IDEA AND CORRESPONDING
HYPOTHESIS OF THE THESIS
In a previous paper, we demonstrated that providing drivers
with warnings of upcoming accident hotspots improved their
driving behaviour through these hazardous locations over
time [7]. Additionally, prior simulation studies have shown
that in less critical situations contextual warnings are more
suitable and preferred by users than a standard stop sign
warning [3]. The most reliable method of generating these
in-vehicle warnings is applying location analytics to national
traffic accident data. However, utilising this data comes with a
variety of challenges. First, such data is not typically available
at a national level, i.e. Germany and many other countries,
and might not be openly or commercially available. Second,
accident data is often only provided in an aggregated format,
and does not include the locations and causes of individual
accidents. Finally, any useful data is commonly only made
available on a yearly basis. As such, rapidly developing
accident hotspots, e.g. due to temporary road maintenance,
are detected too late to prevent accidents and might have been
resolved by the time the data is analysed. Thus, we see a
growing need to analyse real-time data collected from vehicles
to detect and classify hazardous areas. To tackle this problem,
we are considering the combination of two techniques. The
first is to use satellite imagery of the GPS locations of driving
events to identify the road challenges, i.e. the ‘Infrastructure’,
which might influence the accident likelihood. The second
aims to discover the causes for these dangerous events, i.e. the
‘Event Context’, and considers video captured from systems
inside the vehicle itself to identify the diverse reasons why an
event could have occurred. An overview of these approaches
is shown in Figure 1.

RESEARCH AND EVALUATION PLANNED AHEAD

Satellite Imagery Classification of Traffic Accident
Locations
As part of our previous field study, we were able to identify
the GPS locations of dangerous driving behaviour, i.e. heavy
braking or swerving, through a prototype system collecting
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(a) One second before event (b) Heavy braking event (c) One second after event

Figure 2. Example of video frames captured from a heavy braking event, triggered by a vehicle disregarding the right of way

(a) Scene obstruction due to incorrectly
placed smartphone

(b) Smartphone installed upside down and
pointing out of side window

(c) Rain water distorts view of the street

Figure 3. Examples of video quality issues experienced in a naturalistic field study setting

Controller Area Network (CAN) Bus data from the vehicles.
Thus, we are able to provide new warnings to drivers of
‘Heavy Braking’ or ‘Swerving’ hotspots on the basis of
the driving behaviour. Augmenting these warnings with
road infrastructure information, such as ‘Roundabout’ or
‘Intersection’, could help the driver to adapt their behaviour
more effectively. The first approach we are exploring is
using image recognition techniques on satellite imagery of
hazardous locations to identify the possible infrastructure
causes of previous traffic accidents. This model can then
be used to predict the infrastructure reasons for newly detected
dangerous event locations.

For the classification of traffic accident locations, we make
use of the previously mentioned data from over 266,000
traffic accidents covering five years and collected from the
Swiss Road Authority (FEDRO). This dataset contained
the GPS location and contextual information on the road
type, infrastructure involved and causes of traffic accidents
occurring in Switzerland between 2011 and 2015. We split
this accident data into 20 different combinations of two
categories: road type, e.g. ‘motorway’ and ‘main road’,
and infrastructure, e.g. ‘roundabout’ and ‘intersection’. The
accidents making up these categories were then randomly
sampled in a balanced way, and satellite imagery of the
location of each accident was captured from Google Maps.
This resulted in a dataset over 7,000 labelled satellite images
of the road type and infrastructure surrounding the area of an
accident. High level feature vectors for the labelled images
where then generated using TensorFlow Inception-v3. These

feature vectors can be used for machine learning in order to
detect characteristics of road infrastructure from the images,
and then identify infrastructure in new images which have
not been previously seen by the model. Initial classification
results of the retrained Inception neural network indicate an
accuracy rate of approximately 30%, significantly higher than
randomly guessing between the classes, and thus indicate
that the approach has potential. However, we see many
improvements which can be made on our initial tests and
are continuing the analysis in order in raise the prediction
accuracy of the model to a usable level.

Smart-phone Video Classification of Driving Event
Context
Whilst knowing the infrastructure challenges which may be
faced at specific hazardous locations can enable more detailed
warnings to drivers, it does not capture the full picture of an
accident hotspot. In order to develop deeper insights into why
near-miss accidents and other dangerous events occur, the next
stage of our research will make use of video data captured from
vehicles while they are driving. Videos are recorded from a
smart-phone mounted in the vehicle which acts as a ‘dashcam’,
continuously capturing video data and streaming this to a
server when a dangerous event is detected by the vehicle.
Figure 2 shows an example of the video data collected during
a heavy braking event. As such, in our upcoming field study,
we will collect both vehicle CAN and smart-phone video data
from a fleet of approximately 40 professional drivers over the
course of two months. These videos will then be labelled with
contextual information describing the situation leading to the
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detected event, e.g. ‘another driver disregarding the right of
way at an intersection’. Insights from this rich dataset could
help us provide even greater situational context in warnings
of upcoming hazardous locations to drivers. To achieve this,
the second step of the project is to train machine learning
classifiers on the video data, making use of computer vision
techniques, such as object detection and recognition, in order
to autonomously generate more detailed warnings for drivers.

It is important to also highlight the challenges which can
be encountered through such a naturalistic field study setup,
where the drivers even install the system in the vehicle
themselves. The first of these is each of the driver’s
interpretation on the correct smartphone setup and position
in the vehicle, since it can lead to scene obstruction or poor
field of view if the phone is incorrectly positioned. Where
these issues exist it becomes almost impossible to use the
videos for classification. Other issues come from adverse
weather conditions, i.e. heavy rain, and videos captured
during the night. Figure 3 shows examples of these image
quality challenges already experienced in our naturalistic field
study setting. However, these issues raises an interesting
challenge for the project in the future, where we will try
to automatically identify videos which are unsuitable for
classification. The second core issue includes the additional
work which will be required to accurately and reliably label
the videos. Options for tackling this include making use of
distributed human intelligence task platforms, such as Amazon
Mechanical Turk [1]. Another approach would be to consider
semi-supervised learning techniques [14], which are able to
make use of a small amount of labelled data and a large
amount of unlabelled data for training and classification tasks.
However, while there are many difficulties, we believe that
studying true behaviour of users in a naturalistic setting gives a
much more accurate portrayal of how such systems could work
in the real world. This will include obtaining user feedback
from the drivers on issues such as privacy concerns from
automatically capturing videos from the smartphone while
driving.

CONTRIBUTION EXPECTED IN THE FIELD OF
UBIQUITOUS COMPUTING
We expect to make further contributions to the field of
ubiquitous computing through exploring several other topics
as part of our field studies, although these are not the focus
of this paper. These additional elements consider how users
react to different types of eco-driving feedback provided by
the smartphone, including realtime vs. delayed information,
and contextual vs. numeric feedback. Moreover, we also
consider the detection of individual contextual attributes, for
example, the identification of the driver in the vehicle from
their driving style, and how this driving style is linked to the
driver’s personality.

Finally, the paper at hand envisions real-time in-vehicle
warnings on upcoming road hazards, ubiquitously detected
and identified through data collected from the vehicle and
transmitted to cloud-based classification services. While
capturing simple insights from vehicles, e.g. the locations
of heavy braking events, can provide generalised warnings

of potentially dangerous locations, this does not enable
contextual insights as to why a location is hazardous. Thus,
our research focuses on investigating the effectiveness of two
techniques to autonomously identify the possible causes for
evasive behaviour and heavy braking events detected while
driving. In tackling these challenging problems, we endeavour
to apply ubiquitous computing principles to contribute to the
‘Target Zero’ aim of preventing traffic fatalities and serious
injuries. We hope to contribute to the field of computer vision
by applying and assessing event detection and classification
techniques in a new setting. In addition, through field study
experiments surrounding the impact of generated warnings
on driver behaviour, we expect to further contribute to the
topics of in-vehicle human computer interaction in the field of
ubiquitous computing.
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