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A B S T R A C T

Despite continuous investment in road and vehicle safety, as well as improvements in technology standards,
the total amount of road traffic accidents has been increasing over the last decades. Consequently, identi-
fying ways of effectively reducing the frequency and severity of traffic accidents is of utmost importance.
In light of the depicted challenge, latest studies provide promising evidence that in-vehicle decision sup-
port systems (DSSs) can have significant positive effects on driving behaviour and collision avoidance. Going
beyond existing research, we developed a comprehensive in-vehicle DSS, which provides accident hotspot
warnings to drivers based on location analytics applied to a national historical accident dataset, composed of
over 266,000 accidents. As such, we depict the design and field evaluation of an in-vehicle DSS, bridging the
gap between real world location analytics and in-vehicle warnings. The system was tested in a country-wide
field test of 57 professional drivers, with over 170,000km driven during a four-week period, where vehi-
cle data were gathered via a connected car prototype system. Ultimately, we demonstrate that in-vehicle
warnings of accident hotspots have a significant improvement on driver behaviour over time. In addition,
we provide first evidence that an individual’s personality plays a key role in the effectiveness of in-vehicle
DSSs. However, in contrast to existing lab experiments with very promising results, we were unable to find
an immediate effect on driver behaviour. Hence, we see a strong need for further field experiments with
high resolution car data to confirm that in-vehicle DSSs can deliver in diverse field situations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

According to the World Health Organization (WHO) road traffic
accidents are the eighth leading cause of death globally. Moreover,
since 2001 the number of road traffic fatalities steadily increased to
over 1.2 million people each year [65]. An example of the growing
risk can be seen in the USA, where, according to the National High-
way Traffic Safety Administration (NHTSA), the number of deaths
from traffic accidents in 2015 rose by 7% from the year before, up to
35,092 [36]. Aside from the humanitarian concerns of so many injuries
and fatalities, the worldwide economic costs caused by the impact of
traffic accidents are estimated to account for a loss of approximately
3% of the global GDP [28]. As such, the Department of Transport issued
a call to action, encouraging the continuous research into different
approaches that can help to reduce the number of traffic accidents,
both fatal and non-fatal.

* Corresponding author.
E-mail addresses: bryder@ethz.ch (B. Ryder), bernhard.gahr@unisg.ch (B. Gahr),

egolfp@student.ethz.ch (P. Egolf), andre.dahlinger@unisg.ch (A. Dahlinger),
felix.wortmann@unisg.ch (F. Wortmann).

In light of the depicted challenges, a huge variety of decision
support systems (DSSs) have emerged to help tackle these prob-
lems. Due to the data requirements and the complexity of urban
planning and transportation problems, there has been a growing
interest in the use of DSSs to analyse the strategic planning [8,60],
the multi-vehicle tactical [48] and the individual vehicle operational
levels [25,44]. In particular, spatial DSSs have been shown to play
a vital role in this domain, enabling a variety of analytics on road
infrastructure challenges. As an example, road accident hotspots
were evaluated in India, where inadequate development of transport
networks led to traffic congestions and accidents. Geo-information
technology was used to help examine the location and distribution of
hotspots, highlighting the influence of spatial and temporal factors in
their formation [41]. In addition, various research studies are geared
towards how in-vehicle DSSs can encourage drivers to adapt their
driving behaviour when necessary. Latest studies provide promising
evidence that these systems can indeed have significant positive
effects on driving behaviour and collision avoidance [23,57,63].
These systems can be delivered to vehicles through existing mobile
or standalone satellite navigation systems [68].
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While the potential of in-vehicle systems is undisputed, the vast
majority of studies have focused on simulation experiments [33,49]
and controlled field studies [45,68], typically providing warnings to
drivers to prevent a collision with an upcoming vehicle or pedestrian.
In this field, the benefit of real world location analytics on traffic
accident hotspots as a source for in-vehicle warnings has widely not
been addressed. As such, the paper at hand depicts the design and
field evaluation of an in-vehicle DSS. In contrast to other in-vehicle
studies, location analytics were applied to a national historical acci-
dent dataset, composed of over 266,000 accidents, and a complete
in-vehicle DSS was developed providing warning interventions to
drivers. This system was tested outside of the simulation environ-
ment in a country-wide field test of 57 professional drivers, over a
period of four weeks, with a total of 170,000 km driven. In order
to assess the impact of the system on driver behaviour and safety,
real-time sensor data from the vehicles were collected at a rate of
up to 30 Hz through a connected car prototype system. Ultimately,
we demonstrate that in-vehicle warnings of historically dangerous
locations have a significant improvement on driver behaviour over
time while crossing these hotspots. We additionally see evidence
that an individual’s personality plays a key role in the effectiveness
of in-vehicle DSSs, highlighting the importance of personality when
researching DSS-based interventions. However, we were not able to
confirm an immediate effect of warnings. In essence, we see a strong
need for further field experiments with high resolution car data.
While there are many lab experiments with impressive results, field
evidence is still weak and it remains unsure if in-vehicle DSSs can
deliver in diverse field situations on their “lab promises”.

The contribution of the paper can be summarised as follows:

1. The in-vehicle DSS that we developed is, to the best of our
knowledge, the first of its kind, i.e. incorporating automati-
cally generated accident hotspot warnings as an alternative to
human selected locations or up-coming collision warnings.

2. The system is one of the first in-vehicle warning systems
to be tested in real world conditions across a longitudinal
field study, providing evidence of an improvement on driver
behaviour over time.

3. Due to the integration of commonly collected accident location
details, the proposed DSS can be easily extended to other parts
of the world where such data are compiled, either at a regional
or national level.

In the remainder of this paper we outline the related work with
regard to in-vehicle DSSs providing warnings to drivers, followed by
accident hotspot identification and classification techniques. We then
describe the system, with a focus on the location analytics used to
identify accident hotspots from historical data, and the generation of
the contextual warnings for drivers. Finally, we conclude with an eval-
uation of the system with regard to its effect on safe driving behaviour,
and a discussion of the results and implications of the research.

2. Related work

2.1. In-vehicle warning systems

The promise of in-vehicle warning systems to improve driving
safety has generated a substantial body of research [2,18], and a
positive impact is seen when compared with traditional warning
approaches in relation to driver behaviour and accident frequency,
e.g. in the context of railway crossings [56]. Common conventional
warning devices, such as the passive stop sign were compared to
active variations, i.e. flashing lights and a half bloom-barrier with
flashing lights. The results showed that, on average, driver responses
to passive warnings were poor in comparison to active warnings [56].
In a later follow-up study, rumble strips and in-vehicle audio

warnings were compared to the previous active and passive warn-
ings at railway level crossings [57]. Results indicated that both the
warning devices produced much higher levels of driver compliance
than the existing conventional warnings, demonstrating the posi-
tive impact in-vehicle warning systems can have when compared to
conventional approaches.

Various simulator based studies have shown that in-vehicle
warning systems can have a positive impact on driving behaviour.
In one example, early warning signals displayed while approaching
an intersection showed a positive effect towards driving safer [63].
Participants adapted their driving behaviour by turning with a lower
velocity after waiting longer at the intersection, and so avoided col-
lisions. Visual warnings have also had a positive effect on drivers
braking reaction time, for both older and younger participants [23].
The largest improvement was seen in critical situations, where col-
lisions were successfully avoided due to the warning. Additionally,
there was still a reduction in braking reaction time in less critical sit-
uations, where the number of collisions was not a suitable measure
of improvement. In other studies, effects on driving behaviour from
advisory warnings were found to be strongly dependent on warning
time, with earlier warnings more effective than late warnings [33].
Warnings were much more greatly appreciated by drivers when
given earlier, even though in critical situations shorter warning times
were still effective [34]. In situations where there is low visibility
of potential hazardous situations, the frequency of critical situations
was reduced when early advisory warnings were provided, espe-
cially in surprising or unexpected situations [32]. With regard to
the types of warning that can be provided, contextual warnings had
limited importance to the behaviour of the driver, but users rated
the system much higher due to them [33]. Additionally, it has been
shown that in less critical situations a contextual caution warning
sign is more suitable than a stop sign warning [23].

Outside of simulation studies, a few controlled field studies have
investigated the impact of in-vehicle warnings on driver safety. The
influence of warning expectancy and automation complacency on
real-life emergency braking has been investigated [45]. In particular,
reliable warnings quickened the decision making process and mis-
leading warnings generated automation complacency, slowing visual
search for hazard detection. Additionally, specific spatially located
hazards have been investigated with regard to the effect of in-vehicle
DSSs [68]. The hazardous area tested was an intersection near an
arch-shaped bridge, where traffic accidents had often occurred due
to poor visibility. The effects of different combinations of audio and
visual warnings provided to a driver was investigated. It was demon-
strated that information about the cause of accidents was more
effective than information on road infrastructure in helping drivers
to avoid dangerous driving situations.

2.2. Accident hotspot analysis

Over the past sixty years, the topic of road accident hotspot
analysis has been extensively researched and various hotspot identi-
fication (HSID) methods have been developed. Historically, the most
common approaches have been non-spatial techniques, capturing
details on the underlying road structure and considering traffic acci-
dents which occurred on these defined sections of road. Probably
the simplest identification technique of this type is the so-called
Crash Frequency (CF) method [9]. In this approach, a road seg-
ment’s perilousness is determined by the number of accidents which
occurred on it during a specified period. An example of this approach
examined the frequency of highway accidents, on the basis of a
multivariate analysis of roadway geometries (e.g. horizontal and
vertical alignments), weather, and other seasonal effects [50].

Similar to the concept of Crash Frequency, the Crash Rate (CR)
method [17] takes the number of accidents which happened on a
road segment into account, but additionally considers the traffic
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volume in its analysis. However, there are some evident drawbacks
of both methods, such as not considering random fluctuations of the
number of accidents [67]. From a statistical perspective, both CR and
CF suffer worse performance when compared to other HSID meth-
ods [31,67]. Despite this, both CF and CR are still commonly in use
today, with their popularity stemming from the ease of implementa-
tion and interpretation. Over time, researchers have developed and
utilised statistical models in the analysis of accident hotspots [30,38].
Probably the most prominent and applied accident hotspot identifi-
cation technique using a statistical model is the Empirical Bayesian
(EB) method [15,16]. Based on statistical evidence it is argued that
the EB method outperforms other hotspot identification techniques,
including CR and CF [31].

However, classic hotspot identification techniques mostly neglect
spatial aspects and patterns of accidents, i.e. the actual locations
of individual accidents, regardless of the underlying road struc-
ture [13,64].

With the increasing appearance of Geographic Information Sys-
tems (GIS) and the larger availability of precise, geo-coded data, as
well as digital maps, researchers have started to use spatial data
analysis methods for identifying accident hotspots [3,13,37]. This
follows the theory that the concentration of individual accidents at
certain locations is called forth by a set of common causes - implying
a spatial dependence of the accidents [3,13]. Underlying causes for
such a concentration include weather effects, infrastructure or traf-
fic conditions [14,31,66]. The most common spatial accident hotspot
identification approaches used are either the K-means clustering
technique, spatial autocorrelation or the Kernel Density Estimation
(KDE) method. Especially the KDE method has been extensively
researched [11,42,66], and in general it is argued that it outperforms
other HSID methods, such as the spatial autocorrelation, CF or CR,
and might perform equally well as the EB [13,67]. In an example
using this approach, hotspots on highways were explored and deter-
mined with two different methods of KDE analysis and repeatability
analysis [11], additionally a GIS was used as a management system
for accident analysis and determination of hotspots in Turkey with
statistical analysis methods. Furthermore, a KDE and a K-means clus-
tering approach were used to profile road accident hotspots [3]. More
recently, researchers have started to use the data mining clustering
technique Density-Based Spatial Clustering of Application with Noise
(DBSCAN), to identify road accident hotspots [53,54]. DBSCAN is a
density-based algorithm which classifies elements into clusters in
such way that inside a cluster, the density of elements is higher com-
pared to the outside of the cluster [12]. Therefore, it can efficiently
identify members of arbitrarily shaped clusters as well as outliers [26].

3. System description

We developed an in-vehicle DSS for drivers, that provides con-
textual warnings on up-coming historically hazardous locations. The
architecture of providing these in-vehicle warnings was achieved
through the following steps: Firstly, accident hotspots were spa-
tially identified from raw historic accident data. Secondly, these
accidents hotspots were then classified into various categories based
on the accidents which they were composed of. Finally, the loca-
tions and categorisations of the hotspots were provided visually
with an in-vehicle DSS in the form of warnings. Fig. 1 depicts this
overall process. Additionally, a separate application was developed
to review the results of the identification and classification of the
accident hotspots. This accident hotspot ‘Explorer Tool’ was used
to validate the parameters of the algorithms chosen, and provides
statistical overviews of the accident hotspots, potentially useful for
road infrastructure specialists and other street authority decision
makers. The remainder of this section outlines the accident hotspot
spatial identification and classification techniques employed, and the
generation of the in-vehicle warnings.

Fig. 1. System overview of the DSS.

3.1. Accident hotspot identification

The historical accident dataset was provided by the Swiss Fed-
eral Road Office (FEDRO), Statistics For Road Accidents. Since 2011,
FEDRO has collected detailed information about every Swiss road
accident for which the police were called, building up an extensive
accident register. This dataset is composed of over 266,000 geo-
located accident records, which occurred in Switzerland between
the years 2011–2015. It includes a multitude of features related to
each accident, such as the reason for the accident occurring and
the surrounding road infrastructure. Many of these features were
used to generate appropriate warning feedback for the detected acci-
dent hotspots, as will be described in Section 3.2. However, the
hotspot identification algorithm required only information regarding
the coordinates of the accidents.

The literature review revealed multiple approaches to identify
accident hot-spots, however, not all of them were compatible with
the available dataset.

The EB approach, which is a commonly applied by governmental
institutions, is well known to produce good results. But, it is very sen-
sitive to the quality of the estimation function and requires detailed
information about risk variables, such as, traffic volumes or road
parameters, e.g. curve radii [10]. Since the provided dataset of the
FEDRO consisted only of rough traffic flow estimates and lacked other
road parameters, EB was discarded as a suitable approach. Promising
spatial analysis tools such as spatial autocorrelation or Kernel Den-
sity Estimation are appropriate for identifying locations where many
accidents happened. However, current research suggests that spatial
clustering techniques can achieve similar results, while being sim-
pler and perform much more efficiently on large datasets [54]. As it
is not trivial to identify the hotspot boundaries that KDE generates,
and therefore identify the accidents which contribute to a hotspot,
DBSCAN was selected as a natural density based clustering technique
which clearly identifies observations contributing to a cluster.

DBSCAN classifies elements into clusters in such a way that inside
a cluster the density of elements is higher compared to the out-
side of the cluster [12]. Elements, which are not part of any group,
are considered as noise. As such, identified clusters can be con-
sidered hotspots with a significantly higher density of accidents
compared to other areas. Noise elements represent “random” acci-
dents, which have no, or very little, spatial dependencies to other
crashes. DBSCAN’s performance in identifying clusters is very sen-
sitive to the distance between points considered part of the same
cluster (e), and the minimum number of points which must be within
e to form together a cluster (MinPts). There exists no optimal choice
of these parameters, and domain expertise is suggested to identify
optimum values based on the intentions of the analysis. If e is too
small, only accidents occurring in very close proximity to each other
will be considered as hotspots, and if too large, hotspots can grow
in size and cover parallel roads. Likewise, if MinPts is too high, only
the most severe clusters are identified, and if too low, many small
and “random” hotspots are found. Therefore, the following practical
approaches were considered when applying DBSCAN on the FEDRO
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dataset. The value of MinPts was discussed with experts from one of
the largest automotive clubs in Europe and hence defined with the
following heuristic: To call a specific location a hotspot, on average,
more than two accidents per year had to occur at that location. As a
result, it was decided that MinPts cannot be smaller than ten as the
hotspots were formed out of a dataset covering accidents over five
years. Finally, e was fine-tuned by a visual inspection of a selection of
accident hotspots through the previously mentioned ‘Explorer Tool’.
Some of these accident hotspots were closely connected to certain
road infrastructure, and others were more spatially distributed. It
was found that with e = 15 m DBSCAN produced results where indi-
vidual clusters did not span multiple roads. These parameters can
be loosely defined by the following natural definition: For an obser-
vation to be included in an accident hotspot, at least ten accidents
must have occurred within 15 m of that location over five years. With
these parameter settings for e and MinPts, a total of 1608 unique
accidents hotspots were found in Switzerland from over 266,000
geo-located accident records.

3.2. Accident hotspot classification

The in-vehicle DSS should provide drivers with warning feedback
whenever they are approaching an accident hotspot. Following the
guidelines from the NHTSA, drivers should be provided with warning
messages in the form of signs and non-critical supporting text [7].
The feedback information varies depending on the available con-
textual information derived from the spatially identified accident
hotspots. The assumption is that drivers can directly and quickly
relate the warning sign to the upcoming dangerous location. Addi-
tionally, the warning text should provide further non-time critical
information, e.g. the predominant cause of the accident hotspot.

The contextual information of each accident hotspot was derived
based on the corresponding accident protocols of the FEDRO. In
these reports, police officers recorded all related accident informa-
tion and determined, besides other details, the leading cause and
type of the accident. In order to not overwhelm the drivers with too
detailed or complicated warnings, a simple categorisation algorithm
was developed. The detailed contextual information of each accident
was summarised into three main categories: “What”, “Why”, and
“Where”. “What” refers to the type of objects which were involved
in the accident, e.g. cars, cyclists or pedestrians. “Why” refers to the
predominant cause and type of the accident, e.g. disregarding right
of way, speeding or swerving. Lastly, “Where” refers to the location
information about the predominant type of road infrastructure at
which the accident happened, e.g. at a crossroad intersection, round-
about or traffic light. In other words, where possible, information
was captured about what objects were involved in the accident, why
it happened and where it occurred. Out of this information a warn-
ing was generated, with the purpose to provide more information
about a specific typical appearance of a hotspot instead of a general
warning [23]. It has been shown that warnings making use of con-
textual objects and directions are preferred by users [33]. Therefore,
when generating the warning, the preference of information primar-
ily shown was ranked in the following order: “What”, “Why ” and
“Where”.

As such, the warning intervention was generated through a
ranked majority-voting of the categorisation statistics of each acci-
dent hotspot [27]. In order to capture true contextual information of
a hotspot, more than 50% of the accidents involved had to share the
same predominant contextual detail information. Otherwise, a gen-
eral warning sign and message was shown. Algorithm 1 outlines the
classical DBSCAN pseudocode [12], which was modified so that once
a hotspot was identified, it was assigned a contextual warning type
through the pseudocode provided in Algorithm 2. In the majority of
cases the official road warning signs of Switzerland were matched to
the generated warnings and were used in the intervention. This was

to prevent a potential confusion about the meaning of the shown
warning messages. However, in some cases the creation of new
symbols was inevitable. In total, six new signs were generated, fol-
lowing NHTSA standards [7]. This classification approach of the 1608
detected hotspots led to a total number of 20 different warnings
signs, and 36 unique combinations of sign and text. Fig. 2 shows a
selection of four different types of accident hotspot detected using
DBSCAN and this classification approach. For brevity the full list of
sign and text combinations is omitted, however, the top ten most
commonly encountered combinations can be seen in Table 2, and the
full list can be found online [47].

Algorithm 1.

Algorithm 2.
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(a) Roundabout Hotspot (b) Pedestrian Crossing Hotspot

(c) Train Hotspot (d) Rear-end Hotspot

Fig. 2. Selection of accident hotspots identified through DBSCAN, accidents contributing to the hotspot are shown in red.

3.3. In-vehicle warning intervention

The in-vehicle warning DSS was developed as a native Android
application, compatible with Android version 5.0 and later, and
builds upon the work of an earlier system [46]. It has been shown
that in-vehicle audio-based warnings may be as effective as both
audio and visual warning information combined [68]. Additionally,
tactile warnings, e.g. vibrations delivered through the vehicle seat,
pedal or seat belt, have previously been provided to drivers [29].
However, it was not possible to deliver tactile feedback in our study
setting, and it would have been difficult to control for whether the
driver had disabled the audio of the smartphone. Thus, only visual

Table 1
Distribution of Big Five personality traits among participants.

Personality trait Mean Standard
deviation

Median Minimum Maximum

Agreeableness 2.85 0.65 3.00 1.00 4.50
Conscientiousness 3.51 0.70 3.50 2.00 5.00
Extraversion 2.91 0.76 3.00 1.50 4.50
Neuroticism 3.50 0.65 3.50 2.00 5.00
Openness 2.94 0.56 3.00 1.50 4.50

warnings were implemented as part the DSS in the research at
hand.

Regarding visual warnings, the NHTSA released a guideline for
the design of crash warning devices [7]. The project reflects a review
of the human factors associated with the implementation of such
warning system interfaces. The lessons learned were then devel-
oped into guidelines for interface design. The highest efficiency
was achieved by the choice of a discrete display, providing binary
on-off information, and symbol or icon based information. Addi-
tionally, the alphanumeric display type lead to poor results and is
commented with “Only appropriate for non-time-critical complex
information”. Based on these design suggestions, the warning sign
is primarily displayed with the additional non-time-critical warn-
ing text below. Visual warnings are displayed on the smartphone
DSS as the driver approaches an accident hotspot, and remain until
the area surrounding the hotspot is passed. As earlier warnings are
more effective and greater appreciated by drivers than late warnings,
the warnings were shown up to 15 s before a driver encountered
an accident hotspot [33,34]. During times that the warnings were
not shown, the system displayed eco-driving feedback to encour-
age use of the DSS. Fig. 3 shows examples of the in-vehicle warning
intervention provided to the drivers when approaching an accident
hotspot.
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Table 2
Hotspots encountered, and occurrences of one or more heavy braking events, between control and intervention group, for top ten most commonly encountered warnings.

Hotspot warning Total Control Intervention

Sign Text Count Events Count Events Count Events

Disregarding Right of Way 4541 777 2135 384 2406 393

Dangerous Crossroad 4378 783 2022 354 2356 429

Rear-end Collisions 3532 375 1407 138 2125 237

Disregarding Traffic Light 2037 284 951 120 1086 164

Control Speed 1927 87 586 36 1341 51

Caution Dangerous Area 1471 112 803 60 668 52

Swerving Accidents 964 108 317 35 647 73

Disregarding Right of Way 931 200 438 101 493 99

Dangerous Roundabout 880 201 407 95 473 106

Caution Cyclists 689 112 342 59 347 53
Other 3069 349 1275 150 1794 199
Total 24,419 3388 10,683 1532 13,736 1856

4. System evaluation

4.1. Participants

The impact of the in-vehicle warning system on users decision
making while driving was assessed through a four week field study
of professional drivers, travelling for approximately 4 h per day in
Switzerland. Each of the drivers worked for the same company across
a variety of locations, and all drove Chevrolet Captivas of similar
make and model. During the four week period over 170,000 km were
driven using the system, with an average of 144 km travelled per
driver per day. Of the 72 recruited participants, 57 actively drove
during the field study and provided demographic details, such as age
and gender. Drivers were randomly allocated to either the control
group (N = 27) or intervention group (N = 30). Of these 57 par-
ticipants, all were male and ranged from 21 to 64 years of age. Using
the same categories as previous accident analysis studies [39,40], the
majority of drivers (45.61%) fall between the ages of 35–59 years,
with a mean of 40.3 and a median of 39 years of age.

Since prior research indicates that a driver’s personality may
impact driving behaviour [55], the personality of the participants

was measured in order to control for these factors when assessing
the effect of the DSS. Therefore, the Big-Five-Inventory-10 (BFI-10)
questionnaire [43], a short version of the well-established Big-
Five-Inventory (BFI) [20], was provided to the drivers. The BFI-10
consists of 10 items to cover the five personality factors, Agree-
ableness, Consciousness, Extraversion, Neuroticism and Openness,
each with two items accordingly and measured on a Likert scale
from 1 (very low) to 5 (very high). Psychometric properties do not
reach the quality of the original BFI, but deliver sufficient values.
The short version of the questionnaire was chosen due to restric-
tions on participant’s time and to avoid attrition. Table 1 provides
an overview of the distribution of each of the Big Five person-
ality traits among the drivers. Existing research into the impact
of driver personality on driving behaviour shows that various Big
Five traits can be linked to four identified driving styles [55]. The
results found correlations between ‘reckless’ and ‘angry’ driving
styles and high levels of Extraversion, and low Agreeableness and
Conscientiousness. Additionally, high levels for Agreeableness and
Conscientiousness and Openness were correlated to the ‘careful’
driving style. Finally, the ‘anxious’ driving style was linked to high
Neuroticism.

(a) Pedestrian Crosswalk Warning (b) Dangerous Tunnel Warning

Fig. 3. Two examples of the in-vehicle warning intervention shown to drivers approaching an accident hotspot.
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4.2. Field study description

Existing studies which measure the impact of in-vehicle warn-
ings through simulation environments and controlled field studies
made use of a variety of features to assess the effect of warnings on
driver behaviour. These include variables such as ‘minimum-time-
to-collision’, the time left for a participant to avoid a collision with
another object [35]. However, as the system at hand is tested in the
field and does not warn of a specific upcoming object, but instead a
historically hazardous location, many of these variables are unavail-
able to us. For example, measuring number of collisions or braking
reaction time [24] is unsuitable, as the distance to other objects is
unknown and there may be no need for a change in the driver’s
behaviour. As such, our dependent variable is the effect of the warn-
ings on potentially dangerous braking events incurred by the driver,
which is a key result of decision making driving behaviour. As the
DSS encourages awareness of historically dangerous areas, drivers
that receive the intervention should be more alert and able to plan
ahead more effectively [68]. Therefore, we hypothesise a drop in
dangerous braking events.

There are several methods of detecting heavy braking which
have been explored in recent literature. A selection of studies
have explored the insights that can be gained through smartphone
accelerometer data [21]. Unfortunately, this option comes with dif-
ficulties, such as drivers interacting with the phone during the
journey, triggering high acceleration values and thus leading to false
positive events. Therefore, various studies have made use of data
which can be extracted from the vehicle itself to measure driv-
ing activities. On-board diagnostics (OBD-II) standardised data have
been widely used in research as it is mandatory for all vehicles man-
ufactured or sold in the USA from 1996. This data gives insights
into features such as vehicle speed, and has been used to detect
hazardous driving behaviour [19]. However, specific unstandardised
data are available on the Controller Area Network (CAN) Bus of a
variety of vehicles, and gives deeper insights into a vehicle’s opera-
tion. For example, characteristics of aggressive and calm driving have
been identified with access to CAN Bus data [22].

As such, we access the CAN Bus of the Chevrolet Captivas involved
in the study via an OBD-II dongle. This dongle is paired via Bluetooth
with the smartphone in the vehicle. The smartphone then transmits
the CAN Bus signals in real-time to a server. For the purpose of this
analysis we capture the braking behaviour from the vehicle’s lon-
gitudinal acceleration. The vehicle speed is additionally collected,
calculated from averaging each of the individual wheel speeds. Dan-
gerous braking events have previously been categorised as Low
Danger, Dangerous and High Danger levels, based on thresholds of
deceleration values [4]. Low Danger events are those where vehicle
deceleration was between 1.0 –2.0 m/s2, Dangerous events between
2.0 –4.0 m/s2 and High Danger events as greater than 4.0 m/s2. As

the system provides warnings in historically hazardous locations, we
expect a large portion of events to fall into the Low Danger cate-
gory. Therefore, we consider the deceleration events over 2.0 m/s2,
capturing Dangerous and High Danger level braking events. Only in
0.28% of the cases where a driver crossed an accident hotspot, more
than one dangerous braking event occurred. Thus, a binary measure
was applied to generate the dependant variable, i.e. whether or not
one or more dangerous events were experienced while the hotspot
was encountered.

The evaluation was conducted through collecting vehicle sensor
data during times that the warning intervention was shown to the
driver. In the case of the control group, data were collected while the
warning would have been shown, i.e. when drivers crossed an identi-
fied hotspot but no warning was shown. Along with the sensor data,
various other variables were collected which have been shown to
have an effect on the likelihood of a traffic accident occurring [39,40].
These values include the time of day, the day of the week and the
speed that the vehicle was travelling when the hotspot was encoun-
tered. For comparison, these variables are categorised into bands on
the basis of previous studies [39,40]. As shown in Fig. 4, we see that
the majority of hotspots were encountered travelling between 30–
60 km /h, with similar distributions between the control and inter-
vention group. Additionally, an incremental count was collected
for each driver every time they encountered each specific accident
hotspot.

Finally, erroneous observations of encountered hotspots were
cleansed from the dataset in certain situations, i.e. where there
were issues with the sensors in the vehicle and data were not col-
lected. This led to a total of 24,419 observations of encountered
hotspots; 10,683 in the control group where no intervention was
provided, and 13,736 in the intervention group where the location
based accident hotspot warnings were shown. Table 2 shows the top
ten most commonly encountered warning interventions across the
study. Additionally, the number of hotspots encountered are shown,
as well as occurrences of one or more heavy braking events, for both
the control and intervention groups.

4.3. Analysis and results

We apply multilevel mixed-effects logistic regression [51] to
account for the impact of the individual drivers among the control
and intervention groups. Our dependent variable was a binary mea-
sure of whether one or more dangerous braking events occurred
while each accident hotspot was encountered. In the following
section, we discuss the regression results shown in Table 3.

Firstly, in Model (1) the regression was run with only the inde-
pendent variable ‘warning’ capturing whether or not the warning
intervention was provided to the driver, and thus the difference
between the control and intervention groups. Here we do not see
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Table 3
Binary logistic regression odds ratio and significance. dependent variable: occurrence of a dangerous or high danger braking event. N=24,419.

(1) (2) (3) (4) (5) (6) (7)

Warning 0.950 1.115 1.081 1.124 0.997 0.976 1.021
Number of warnings 0.892∗∗∗ 0.922∗∗ 0.892∗∗∗ 0.891∗∗∗ 0.921∗∗ 1.276

Speed (vs. 0–30km/h)
30–60 km/h 2.008∗∗∗ 2.035∗∗∗ 2.031∗∗∗

60–90 km/h 1.611∗∗∗ 1.632∗∗∗ 1.632∗∗∗

90+ km/h 0.472∗∗∗ 0.477∗∗∗ 0.479∗∗∗

Time of day (vs. 00–05h)
05–18 h 1.038 1.054 1.049
18–21 h 0.874 0.876 0.876
21–24 h 0.768 0.759 0.765

Day of week (vs. Monday)
Tuesday 1.183* 1.212* 1.219*
Wednesday 1.078 1.102 1.108
Thursday 1.067 1.094 1.101
Friday 1.107 1.126 1.128
Saturday 0.959 0.970 0.976
Sunday 1.127 1.143 1.148

Driver age (vs. 18–25)
25–35 0.781 0.718 0.734
35–59 0.803 0.717 0.714
59+ 0.895 0.813 0.830

Driver personality
Agreeableness 0.913* 0.913* 0.954
Conscientiousness 1.038 1.034 1.023
Extraversion 1.001 0.996 1.006
Neuroticism 1.046 1.049 1.037
Openness 0.974 0.986 0.985

Driver age interactions (vs. 18–25)
Number of warnings × 25–35 0.930
Number of warnings × 35–59 1.000
Number of warnings × 59+ 0.978

Driver personality interactions
Number of warnings × Agreeableness 0.944*
Number of warnings × Conscientiousness 1.013
Number of warnings × Extraversion 0.988
Number of warnings × Neurotiscism 1.005
Number of warnings × Openness 0.994
Constant 0.164∗∗∗ 0.164∗∗∗ 0.103∗∗∗ 0.151∗∗∗ 0.266∗∗ 0.158∗∗∗ 0.128∗∗∗

L1 error 0.354∗∗∗ 0.350∗∗∗ 0.338∗∗∗ 0.353∗∗∗ 0.324∗∗∗ 0.314∗∗∗ 0.317∗∗∗

∗ p < 0.05.
∗∗ p < 0.01.

∗∗∗ p < 0.001.

any significant impact of the warnings provided. This indicates that
when only comparing the braking behaviour between the control
group and the intervention group, the occurrence of a warning had
no significant impact on driver safety. Thus, we are unable to con-
firm the immediate positive effect of warnings as seen across many
lab studies.

Exploring this further in Model (2), we add to the previous anal-
ysis an additional independent variable ‘number of warnings’. This
variable describes the number of times a driver in the intervention
group has been shown the warning for a specific accident hotspot.
This way we can explore the learning effect that repeated warn-
ings of the same area have on a driver. Instead of linear effects of
the number of warnings experienced, we expect the effectiveness of
repeated warnings to decrease with each additional warning expe-
rienced. Thus, in line with existing studies [39,40], we examine the
time effects of the variable using a logarithmic transformation. Here
we see that the number of times a warning has been shown has a
significant effect on dangerous braking behaviour. This indicates that
the more times a driver is exposed to the same warning in a haz-
ardous area, the more cautious he drives and the less likely he is

to have a dangerous braking event. Overall this is a positive result,
and shows that the accident hotspot warning intervention has a sig-
nificant learning effect on driving behaviour over time, but not an
immediate short-term one.

Various models were analysed to test whether the significance
of the learning effect of the in-vehicle warnings remained stable.
As additional independent variables we also considered the speed
that the vehicle was travelling when the warning was shown, the
time of day, day of week, driver age and each of the Big Five per-
sonality traits of the driver. Incorporating the speed as a predictor
into Model (3), we see that the immediate warning effect contin-
ues to be insignificant, and the learning effect remains. Additionally
we observe significant variations in the likelihood of a heavy braking
event based on the speed that an accident hotspot was approached
at. The stability of the learning effect was also tested with temporal
variables in Model (4), which have historically been found to influ-
ence the rate of crashes [39]. Both time of day and day of week
categorical independent variables were incorporated into the regres-
sion model. The short-term warning continues to be insignificant,
and the learning effect remains at the same level as seen in Model
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(2). Overall, in contrast to previous studies, no time of day category
was more or less dangerous at a significant level when compared to
the ‘00–05 h’ category. The only significant temporal effect was com-
paring the days of the week, Monday compared to Tuesday, where
on Tuesday it was found to be more likely to encounter a dangerous
braking event.

Various studies have shown the effect of a driver’s age and
personality factors on driving related behaviour [55]. In order to
incorporate this into our model, we added age categories and per-
sonality information of the drivers in Model (5). As with the other
models, the short-term effect of the warnings remained insignificant
and the learning effect remained significant at a similar level to Mod-
els (2) and (4). Although investigating the effect of driver personality
on driving behaviour is not the primary aim of this paper, based on
our sample of drivers we are able to see a significant effect of Agree-
ableness reducing the likelihood of a dangerous braking event. This
seems to confirm findings from a previous study [55], where low lev-
els of Agreeableness are correlated to ‘reckless’ and ‘angry’ driving
styles, and high levels correlate to ‘careful’ driving behaviour.

Each of the additional independent variables discussed in Models
(3), (4) and (5) were merged into the combined Model (6). We
continue to see the insignificant immediate effect of the interven-
tion and the learning effect remains stable across all the models,
showing a reduction in the likelihood of a dangerous braking event.
The other significant effects discussed in the previous models also
remain in the fully merged model, and no new features become
significant.

Existing evidence suggest that an individual’s characteristics,
such as age and personality, are important variables which might
affect the generalizability of our findings, for example, in the form
of moderators [52,55,58]. Thus, we enhance Model (6) with inter-
actions between the observed learning effect and age, as well as
personality. Specifically, the interactions between the ‘number of
warnings’ and driver age and personality variables were added to
generate Model (7). Here we see that neither the learning effect
nor the effect of Agreeableness remain significant. However, the
interaction between the two is. This interaction indicates that the
learning effect we have identified is dependent on an individual’s
level of Agreeableness, where only those with reasonable levels
improve their driving behaviour due to the warnings provided by the
system.

5. Discussion, limitations and future work

Summing up, we demonstrated in a large field study that
in-vehicle warnings of accident hotspots can have a significant
improvement on driver behaviour over time. However, we did not
see an immediate positive or negative effect of the warnings on
dangerous braking behaviour of the drivers. When investigating gen-
eralizability on the basis of interactions, results indicate that the
learning effect requires an adequate level of driver Agreeableness.
The Agreeableness personality trait is linked to characteristics such
as cooperation and social harmony [20]. Hence, drivers who do not
accept advice from an in-vehicle DSS (lack of willingness to coop-
erate) or do not care or reflect that they might harm others (lack
of social harmony) might not benefit from such a system. Thus, in
order to improve driver safety, future work should investigate the
key determinants of, and how to best facilitate, the learning effects
of such in-vehicle warning DSSs [5,6]. Finally, although the impact
of vehicle speed on the likelihood of heavy braking events is not a
focus of this paper, we find a significant effect in our data, which is
similar to previous work that considers the influence of velocity on
the exposure-accident relationship [39]. In line with our findings, the
literature generally associates higher velocities with a greater risk
of accident involvement [1]. This is primarily due to larger stopping
distances and reduced manoeuvrability at higher speeds.

The presented work has implications both for researchers and
practitioners. From a research perspective, the learning effect we
observe is well known with regard to digital interventions. Simi-
lar long-term effects are seen in other domains, such as health [6]
and education [5], where significant effects are reported the more
often an intervention was triggered. Our results further confirm the
importance of measuring personality traits when researching inter-
ventions with DSSs. Personality traits have long been recognized as a
strong predictor of human decision-making outcomes [52]. However,
research on real-time feedback interventions have only recently
considered the impact of personality as a key factor in human
behaviour [58]. Additionally, the results emphasize the importance
of field research. The large effects that are often reported from very
controlled settings have to be verified under real-world conditions
to ensure generalizability. For practitioners, the main implication of
our results is that accident hotspot warnings can improve driver and
traffic safety over time. Policy makers should seriously consider pro-
moting in-vehicle DSSs, since such systems are lightweight, low cost
and highly scalable [6]. Hence, they could efficiently complement
traditionally more complex and expensive approaches to improve
traffic safety, such as changing hazardous road infrastructure. For
vehicle manufacturers and mobility solution providers the presented
accident hotspot warning could extend their portfolio of safety fea-
tures and connected car services, both of which are increasingly
important for car buyers’ purchase decisions [62]. On a more general
note, the interaction of Agreeableness and the learning effect that
we see in the results imply a call for action towards the personal-
ization of DSSs, as the effectiveness of DSS-based interventions vary
according to an individual’s characteristics [58]. However, measuring
personality traits is inconvenient and often perceived as intrusive by
the user [59]. As such, one can either seek to identify the user’s per-
sonality unobtrusively, or rely on the stable effect of the warnings
over time and on the consumers’ self-selection.

The results of this study should be seen in the light of its lim-
itations. The system makes use of historical accident data from a
national dataset, limiting the adaptation of this approach to regions
with similar sources of information. However, there is increas-
ing work in identifying accident hotspots from near-miss events
detected through connected vehicles, thus removing the need for
historical data. Another key weakness is the homogeneity of the
researched sample. The participants who evaluated the system were
all male and professional drivers. Their profession means that they
are overall expected to be more experienced and safer drivers, thus
this sample may not be easily generalizable to regular drivers. The
proficiency of our sample of drivers, however, implies that we are
likely to have underestimated the effect of our solution, as there is
more potential to improve driving behaviour for more regular, less
proficient drivers. Furthermore, this research is geared towards the
development and validation of an innovative artefact. In accordance
with this goal and in conformance with latest discussions in the sci-
entific community [61], the paper does not focus on theory. Future
research should cover theoretical models of human behaviour to fur-
ther increase generalizability of the findings. Finally, the sample size
of the study was fairly small, further studies should make use of
a larger and more diverse sample of drivers for more reliable and
generalizable results.

6. Conclusions

In-vehicle DSSs can encourage drivers to adapt their driving
behaviour when necessary, and have therefore been the focus of
various research endeavours. Latest studies provide promising evi-
dence that these systems can indeed have significant positive effects
on driving behaviour and collision avoidance. Going beyond exist-
ing research, a complete in-vehicle DSS was designed and imple-
mented, which provides accident hotspot warnings to drivers based
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on location analytics applied to a national historical accident dataset.
The system was tested with 57 drivers in a field test covering over
170,000 km. As such, the paper at hand is among the first to bring
research on in-vehicle DSSs and warnings for drivers into the field in
a realistic experimental setting.

Ultimately, we find that in-vehicle warnings of accident hotspots
have a significant improvement on driver behaviour over time.
Thereby, we demonstrate that DSSs and design research can play
a fruitful role in the field of connected vehicles, a domain which
has traditionally not been a core focus of DSSs and information
systems research. In addition, we find that positive intervention
effects are bound to drivers’ Agreeableness, i.e. drivers have to be
willing to “listen” to the in-vehicle DSS. Hence, future research
should carefully reflect the role and impact of subjects’ Agree-
ableness. Moreover, we see a potential for design science research
to develop and validate effective strategies that help to overcome
technology adoption challenges, which are based on a lack of
Agreeableness.

This research is highly relevant to both policy makers and indus-
try players, such as vehicle manufactures and insurances. Numerous
hardware-based vehicle safety systems have become mandatory
in various countries throughout the last decades, for example,
air-bags and electronic stability programs. Similarly, policy mak-
ers should now consider promoting data-driven in-vehicle DSSs.
Eventually, in-vehicle DSSs that have proven to prevent accidents
could also be enforced by corresponding regulation. The automo-
tive industry should recognize that data-driven prevention ser-
vices might be an effective means to address the distinct safety
needs of consumers and form a basis for sustainable competitive
differentiation.

Finally, in contrast to existing lab experiments with very promis-
ing results, we were not able to confirm an immediate effect of
warnings on driver behaviour. This demonstrates the importance of
building innovative artefacts and conducting experimental research
in a realistic field setting. Thus, we see a strong need for further field
experiments with high resolution car data to confirm that in-vehicle
DSSs can deliver in diverse field situations.
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