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Abstract 
Digital health interventions (DHIs) are designed to help individuals manage their disease, such as 
asthma, diabetes, or major depression. While there is a broad body of literature on how to design evi-
dence-based DHIs with respect to behavioral theories, behavior change techniques or various design 
features, targeting personality traits has been neglected so far in DHI designs, although there is evi-
dence of their impact on health. In particular, conscientiousness, which is related to therapy adherence, 
and neuroticism, which impacts long-term health of chronic patients, are two personality traits with an 
impact on health. Sensing these traits via digital markers from online and smartphone data sources and 
providing corresponding personality change interventions, i.e. to increase conscientiousness and to re-
duce neuroticism, may be an important active and generic ingredient for various DHIs. As a first step 
towards this novel class of personality change DHIs, we conducted a systematic literature review on 
relevant digital markers related to conscientiousness and neuroticism. Overall, 344 articles were re-
viewed and 21 were selected for further analysis. We found various digital markers for conscientious-
ness and neuroticism and discuss them with respect to future work, i.e. the design and evaluation of 
personality change DHIs. 
Keywords: Digital health interventions, Personality traits, Personality recognition, Conscientiousness, 
Neuroticism, Digital markers, Behavioral features, Literature review. 
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1 Introduction 
Non communicable diseases (NCDs), such as heart diseases, asthma, hypertension, diabetes or major 
depression, impose the greatest burden on global health (Krug, 2016; WHO, 2011; WHO, 2015). That 
is, a loss of US$ 47 trillion is expected between 2012 and 2032, which equals approximately 75% of the 
global gross domestic product in 2010 (Bloom et al., 2011). Any technology that helps make treatment 
more effective or efficient can potentially benefit humanity at a grand scale. Health information systems 
(HIS) have been identified as offering such potential (Agarwal et al., 2010; Fichman et al., 2011; Gupta 
and Sharda, 2013; Kohli and Tan, 2016; Lin et al., 2017; Lin et al., 2014; Martin et al., 2010). In partic-
ular, various digital health interventions (DHIs), i.e. HIS with the objective to support patients in their 
everyday life in contrast to hospital information systems, have been designed for NCDs such as diabetes 
(Block et al., 2015; Liang et al., 2011; Meyer et al., 2014; Ramadas et al., 2011; Young et al., 2017), 
asthma (Al-Durra et al., 2015; Huckvale et al., 2012; Merchant et al., 2016; Tinschert et al., 2017) and 
mental illness (Donker et al., 2015; Fitzpatrick et al., 2017; Kim et al., 2015; Wahle et al., 2017).  
While there is a broad body of literature on how to design evidence-based DHIs with respect to health 
behavior theories (e.g. Health Action Process Approach or Health Promotion Model) (Marsch et al., 
2014; Pender et al., 2010; Schwarzer, 2008; Schwarzer and Luszczynska, 2015), behavior change tech-
niques (e.g. feedback on behavior or goal setting) (Abraham and Michie, 2008; Michie et al., 2013) or 
various design features (e.g. usability, aesthetics or tailoring) (Morrison et al., 2012; Wahle et al., 2017), 
targeting personality traits with health impact has been neglected so far in DHI designs. Indeed, there is 
evidence on the effect of two particular personality traits on health outcomes: conscientiousness and 
neuroticism.   
First, individuals with low conscientiousness are less likely to follow medical prescriptions, which has 
been shown for chronically ill individuals in particular (Christensen and Smith, 1995; O'Cleirigh et al., 
2007). Not following prescriptions can put patients suffering from chronic conditions at greater risks for 
complications that require hospitalization (Sokol et al., 2005). Thereby, they not only further increase 
the threat to their health and well-being but also multiply the financial burden placed on themselves and 
society. 
Second, neuroticism is another significant predictor of health outcomes (Lahey, 2009). Alongside con-
scientiousness, it is predictive with respect to the long-term health condition of chronic patients (Brick-
man et al., 1996), and by itself it predicts somatic complaints (Rosmalen et al., 2007). Overall, high 
levels of neuroticism may contribute more to health costs than common mental disorders (Cuijpers et 
al., 2010). 
Although a traditional view states that personality traits are stable in adulthood and thus per se not ad-
justable (McCrae and Costa, 1996), recent research in psychology has highlighted the possibility that 
personality is changeable by appropriate interventions (Allemand and Flückiger, 2017; Mroczek, 2014). 
First steps have been explored both for conscientiousness (Magidson et al., 2014) and neuroticism (Arm-
strong and Rimes, 2016; Barlow et al., 2013). Neuroticism has emerged as a target for intervention in 
the treatment of anxiety and other emotional disorders (Barlow et al., 2013). A recent study has found 
promising experimental support for the malleability of neuroticism (Armstrong and Rimes, 2016). 
Sensing these personality traits with the help of digital markers, i.e. behavioral indicators derived from 
online sources or smartphone sensors and interactions such as communication patterns in social net-
works or usage patterns of mobile applications, and providing corresponding personality change inter-
ventions, i.e. to increase conscientiousness and to reduce neuroticism, may be an important active and 
generic ingredient for various DHIs. 
With recent advances in information and communication technology, it becomes more and more rea-
sonable to automatically and unobtrusively draw conclusions about an individual’s personality, since a 
variety of digital markers can efficiently be collected and analyzed (Allemand and Mehl, 2017; Chit-
taranjan et al., 2011; Xu et al., 2016). For example, smartphones can record information such as move-
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ment patterns, geographic location, sounds, phone calls, or data from Bluetooth connected medical de-
vices, for example, to measure adherence to pre-defined blood glucose meter events (Miller, 2012; Xu 
et al., 2016). Moreover, individuals use Facebook, Twitter, WhatsApp, Instagram among other social 
media platforms. In accessing these services, users provide personal profile data, connect with others, 
and create message streams, which are all potential digital markers reflecting various personality traits 
(e.g. Golbeck et al., 2011b). 
Against this background and as a first step towards the design of personality change DHIs, we state the 
following research question: Which digital markers can be measured unobtrusively and are related to 
conscientiousness and neuroticism? 
We answer the research question by conducting a systematic literature review. To the best of our 
knowledge, the current research is the first literature review on unobtrusive recognition of personality 
traits with health impact that employs a systematic search process (Okoli and Schabram, 2010; vom 
Brocke et al., 2009; Webster and Watson, 2002). We therefore see the contribution of this paper as a 
foundation for the design of personality change DHIs.  
The remainder of the paper is structured as follows. Next, we discuss related work with respect to per-
sonality traits, the relation of conscientiousness, neuroticism and their impact on health outcomes, and 
automatic personality recognition. This allows us then to derive relevant selection criteria for the litera-
ture review. Subsequently, we describe our search strategy and present the results. To conclude, we 
discuss the findings and outline future work, i.e. the design and evaluation of personality change DHIs. 

2 Related Work 

2.1 Personality Traits 
Personality traits are defined as relatively enduring patterns of behavior, thought, and feeling that are 
consistent across a wide variety of situations and contexts (Roberts, 2009). Traits describe the most basic 
and general dimensions upon which individuals are typically perceived to differ. These individual dif-
ferences are often organized within the conceptual framework of the Big Five (John et al., 2008) or Five-
Factor Model (McCrae, 2008) and include five broad traits: extraversion, openness to experience, agree-
ableness, conscientiousness, and neuroticism. Extraversion refers to individual differences in the pro-
pensity to be sociable, active, assertive, and to experience positive affect. Openness to experience refers 
to individual differences in the proneness to be original, complex, creative, and open to new ideas. 
Agreeableness refers to traits that reflect individual differences in the propensity to be altruistic, trusting, 
modest, and warm. Conscientiousness reflects the propensity to be self-controlled, task- and goal-di-
rected, planful, and rule following. Finally, neuroticism, or conversely, emotional stability, contrasts 
even-temperedness with the experience of anxiety, worry, anger, and depression. 

2.2 Conscientiousness, Neuroticism and their Relation to Health Outcomes 
We now provide further details on conscientiousness and neuroticism and present their relation to health-
related outcomes. Conscientiousness and neuroticism can be divided into three facets for each trait (Soto 
and John, 2016). Conscientiousness as a personality trait includes the three key facets of organization, 
productiveness, and responsibility. Organization or orderliness represents a preference for order, struc-
ture and tidiness. Productiveness or industriousness represents a more proactive facet of conscientious-
ness and addresses the degree of persistence a person shows while pursuing goals and the work ethic of 
someone. Responsibility as a facet of conscientiousness stands for commitment to meeting duties and 
obligations and represents the prosocial component of conscientiousness, which is capturing the degree 
to which a person can be depended upon by others. The personality trait of conscientiousness has been 
linked to a myriad of positive outcomes including positive health outcomes (Bogg and Roberts, 2004). 
Previous research could show that conscientiousness even appears to be a predictor of longevity (Fried-
man et al., 1995). Various unhealthy habits and behaviors including smoking, improper diet, and lack 
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of exercise are negatively correlated to conscientiousness (Bogg and Roberts, 2004; Hampson et al., 
2000). Furthermore, people with lower levels in conscientiousness are less likely to follow medical pre-
scriptions, which could be shown for chronically ill people in particular (Christensen and Smith, 1995; 
O'Cleirigh et al., 2007). Not following medical prescriptions might lead to a greater risk for complica-
tions among patients and might lastly even increase the financial burden placed on society and them-
selves (Sokol et al., 2005).  
The personality trait of neuroticism (negative emotionality) represents individual differences in the fre-
quency and intensity of negative affect (Clark and Watson, 2008). Neuroticism includes the three key 
facets of anxiety, depression and emotional volatility. The facet of anxiety represents one’s level of 
stress and worries, for example how often someone feels stressed, anxious, afraid or tense. Depression 
as a facet of neuroticism includes the feeling of sadness, level of self-confidence and optimism. Some-
one’s level of temperament and the ability to control emotions adequately is represented in the third 
facet called emotional volatility (Soto and John, 2016). The relation between neuroticism, health and 
longevity is more complex since some studies support an association between neuroticism and increased 
risk of actual disease, whereas others show links with illness behavior only (Smith and Spiro III, 2002). 
Neuroticism, including vulnerability and rumination, seems to contribute to disease by shaping reactions 
to illness. For example, a study by (Brickman et al., 1996) could show that neuroticism seems to be 
predictive of the long-term health of chronic patients. Another study could show that neuroticism might 
also be related to somatic complaints (Rosmalen et al., 2007). Cuijpers et al. (2010) found that the eco-
nomic costs of neuroticism are enormous and even exceed those of common mental disorders and those 
of somatic disorders. Finally, it is well-known that stress, a facet of anxiety, is linked to both the causes 
and consequences of NCDs and thus plays a significant role in the health condition of individuals (Har-
rison and Cooper, 2011; Kozora et al., 2009). 
Against this background and consistent with recent findings indicating that conscientiousness (Magid-
son et al., 2014) and neuroticism (Armstrong and Rimes, 2016; Barlow et al., 2013) can be changed by 
appropriate interventions (Allemand and Flückiger, 2017; Mroczek, 2014), we now outline how person-
ality traits can be sensed unobtrusively with the long-term goal to design personality change DHIs.  

2.3 Automatic Personality Recognition 
A very common way to assess personality traits according to the Big Five framework is to use a self-
assessment questionnaire, in particular the Big-Five-Inventory (BFI) (John and Srivastava, 1999). How-
ever, filling out such an inventory with more than 40 items takes time and puts a relatively large burden 
on an individual. Moreover, when applied once, it does not allow to measure dynamic changes over time 
of the personality traits. Therefore, it is desirable that DHIs recognize personality traits and changes in 
these traits in a ubiquitous and unobtrusive fashion over the course of several weeks or months. Com-
putationally determining personality traits from behavioral data of individuals has been termed Auto-
matic Personality Recognition (APR) (Vinciarelli and Mohammadi, 2014). A suitable and commonly 
used method for APR is to use machine learning (ML) algorithms, which can learn to perform this task 
by generalizing from examples (Chittaranjan et al., 2011; Xu et al., 2016). In the context of APR, ML 
algorithms would learn to map a representation of behavioral data to a representation of personality. 
Critically, both representations need to be chosen and the choices are not straightforward. As we will 
discuss later in this paper, different APR approaches use different representations. The representation 
of behavioral data corresponds to the set of input variables for the ML algorithm. These input variables 
are termed “features” in the ML literature, and correspond to our digital markers. Domingos (2012) 
makes two noteworthy observations: (1) The choice of digital markers is easily the most important factor 
for whether a ML project succeeds or fails; (2) If the markers are numerous, independent from each 
other and each correlate well with the output variable, then learning is easy. Marker selection is the 
process of selecting a subset of best markers within a given set in order to improve prediction perfor-
mance and advance understanding of the data (Guyon and Elisseeff, 2003). It may also reduce data 
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collection efforts and privacy concerns, if it can remove the dependency on privacy-critical data (e.g., 
GPS data streams).  
In an attempt to address our research question, we will now outline the details about our systematic 
literature review in order to find digital markers that are related to conscientiousness and neuroticism. 

3 Finding Relevant Digital Markers 

3.1 Selection Criteria and Search Process 
In an effort to make the search process as transparent as possible we followed the guidelines for system-
atic literature reviews (Okoli and Schabram, 2010; vom Brocke et al., 2009; Webster and Watson, 2002). 
We started with an exploratory literature search using Google Scholar. This led to an initial list of rele-
vant publications, including a survey paper (Vinciarelli and Mohammadi, 2014) from which the search 
query was defined. From this initial list we developed the following search query:  

Title (OR) 
AND 

Abstract (OR) 
personality, conscientiousness, neuroti-

cism, "emotional stability" 
predict*, classif*, recogni*, determin*, "personality 

analysis", "personality detection" 
We set the relevant time range for the search query from January 2006 to May 2017, as a preliminary 
search of papers related to the topic almost exclusively yielded papers from the last 7 years, and none 
published before 2008. We also developed the following selection criteria of relevance, according to our 
focus on unobtrusive ARP for conscientiousness and neuroticism: 
Criterion 1: Inclusion of studies where personality data was collected unobtrusively from individuals’ 
interaction with information technology, i.e. studies with explicit test tasks were ignored. 
Criterion 2: Inclusion of studies that performed APR to predict personality traits and predict at least 
either conscientiousness or neuroticism.  
Criterion 3: Inclusion of studies that adopted the widely used Big Five framework to represent person-
ality related to conscientiousness and neuroticism, as ground truth and for comparability reasons. 
Criterion 4: Inclusion of studies that investigate personality-related data from smartphones or strongly 
frequented social platforms, i.e. with at least 100 million monthly active individuals. We used a recent 
report by We Are Social Singapore (2016) to determine social online platforms of that size. Specifically, 
we included Facebook, Twitter, and the Chinese social network “Weibo”, but excluded articles discuss-
ing personality prediction on personal blogs, the Chinese social network “RenRen” or with a special 
focus on subgroups, such as photo sharing and online gaming platforms. 
Our search strategy included top IS journals, i.e. the Senior Scholar’s Basket of Journals of the Associ-
ation for Information Systems. We also considered the journals Computers in Human Behavior, and 
Social Network Analysis and Mining, as these journals appeared during our exploratory search to be 
relevant outlets. Finally, the exploratory search also revealed that most relevant research was published 
in computer science outlets, and therefore we also included the ACM Digital Library and IEEE Explore 
to the list of relevant databases. Table 1 gives an overview of the journals and conferences, databases, 
number of hits, i.e. papers that matched the search query, and papers included for further analysis, i.e. 
papers that matched the selection criteria. Moreover, we added one paper that appeared to be highly 
relevant from our preliminary search and one paper that was cited in review paper. 

3.2 Analysis 
To judge the relevance of a digital marker for the prediction of conscientiousness or neuroticism, we 
observed four approaches from the list of selected articles as outlined in Table 2. These are: 
(1) Correlation approach: Nine articles report statistically significant correlations between personality 

traits and digital markers. Of these, eight provide the values of the correlations.  
(2) Digital marker selection approach: Six articles report results of marker selection ML algorithms. 
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(3) Digital marker importance measurement approach: One article reports a list of most important 
markers, which are selected by an ML algorithm. 

(4) Regression approach: one article reports regression coefficients. 
As we were interested in digital markers related to conscientiousness or neuroticism that are most rele-
vant not only within but also across the studies, we used the following two methods for our analysis: 
Across-study analysis: As already outlined above, with highly correlated digital markers, learning is 
easy. Therefore, we created a list of the most highly correlated markers, see Subsection 4.1. 
Within-study analysis: For the remaining articles, we discuss the digital markers that they have found 
particularly useful, see Subsection 4.2. 

# Journal / Conference Database Hits Included 

1 European Journal of Information Systems* Palgrave Macmillan 0 0 

2 Information Systems Journal* EBSCOhost 1 0 

3 Information Systems Research* Informs 1 0 

4 Journal of AIS* AIS eLibrary 0 0 

5 Journal of Information Technology* Palgrave Macmillan 0 0 

6 Journal of MIS* EBSCOhost 0 0 

7 Journal of Strategic Information Systems* ScienceDirect 0 0 

8 MIS Quarterly* AIS eLibrary 1 0 

9 Computers in Human Behavior ScienceDirect 63 1 

10 Social Network Analysis and Mining Springer Link 2 2 

11 (all journals and conferences) ACM Digital Library 98 9 

12 (all journals and conferences) IEEE Explore 178 7 

13 Included from explorative search process: De Montjoye et al. (2013) – 1 

14 Included from review articles: Bhardwaj et al. (2016) – 1 

  Total 344 21 
Table 1.  List of journals, conferences and databases. 

4 Results 
The list of relevant articles is provided in Table 2. It includes the results from the systematic search and 
the article of De Montjoye et al. (2013) that we identified being relevant during our explorative search 
process. We excluded three meta-review articles (Lambiotte and Kosinski, 2014; Pianesi, 2013; Vinci-
arelli and Mohammadi, 2014) that describe studies which either are covered already in other articles we 
reviewed or that do not match our criteria of relevance. However, we found one review article (Carvalho 
and Pianowski, 2017), from which we included one relevant article (Bhardwaj et al., 2016). The table 
also lists the performance metrics that the articles used to evaluate their prediction model. If several 
predictive models were described, we list the outcome that was best overall. We use the following no-
tation to describe the ML tasks: 2-Class represents a binary classification task, i.e. a personality trait has 
one of two values (high vs. low), while 3-Class represents a multi-class classification task with three 
values (high vs. middle vs. low) for either conscientiousness or neuroticism. It must be noted that some 
articles use evaluation metrics that depend on the scale and actual range of the input values, such as the 
Mean Absolute Error (MAE) or the Root Mean Square Error (RMSE). Two of those, i.e. the articles of 
Quercia et al. (2011) and Adalı and Golbeck (2014) do not provide any details about the actual distribu-
tion of the input values, making it difficult to interpret the error values. 
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# Reference Data Source, Analysis  
Approach & Sample Size 

Evaluation 
Metric C 

H
ig

h 
C

 

L
ow

 C
 

N 

H
ig

h 
N

 

L
ow

 N
 

1 Adalı and Gol-
beck (2014) Twitter CA, 

DS 60 MAE 0.14 – – 0.19 – – 

2 Bachrach et al. 
(2012) Facebook CA 180000 R-squared 0.17 – – 0.26 – – 

3 Bai et al. (2013) Weibo RA 444 MAE 0.14 – – 0.13 – – 

4 Bhardwaj et al. 
(2016) 

Facebook, 
LinkedIn 

CA, 
DS 31 MAE  

(0 to 100) 2.61 – – 3.58 – – 

5 Celli et al. (2014) Facebook – 112 2-Class 
Accuracy 0.75 – – 0.61 – – 

6 (Chapsky, 2011) Facebook DS 615 R-squared 0.19 – – 0.35 – – 

7 Chittaranjan et al. 
(2011) Smartphone CA 117 2-Class 

F-Measure 0.78 – – 0.75 – – 

8 De Montjoye et 
al. (2013) Smartphone CAS 69 3-Class 

Accuracy 0.51 – – 0.54 – – 

9 Gao et al. (2013) Weibo – 1766 Correlation 0.41 – – 0.32 – – 

10 Ghavami et al. 
(2015) Facebook CA 65 Accuracy 0.59 – – 0.48 – – 

11 Golbeck et al. 
(2011a) Twitter CA, 

DS 50 MAE on  
(0 to 1) 0.14 – – 0.18 – – 

12 Golbeck et al. 
(2011b) Facebook CA 167 MAE on  

(0 to 1) 0.10 – – 0.11 – – 

13 Mukta et al. 
(2016) Facebook – 663 2-Class  

AUC 
0.70
59 – – 0.68

60 – – 

14 Nie et al. (2014) Weibo DS 1792 MAE (0 to 5) 0.43 – – – – – 

15 Pratama and 
Sarno (2015) Twitter – 250 2-Class 

Accuracy 0.63 – – 0.58 – – 

16 Quercia et al. 
(2011) Twitter CA 335 RMSE 

(1 to 5) 0.76 – – 0.85 – – 

17 Staiano et al. 
(2012) Smartphone – 53 2-Class 

Accuracy 0.77 – – 0.74 – – 

18 Thilakaratne et 
al. (2016) Facebook DS 1000 2-Class 

Accuracy 0.65 – – 0.64 – – 

19 Wald et al. 
(2012) Facebook – 537 

Accuracy  
of Top /  

Bottom 10% 
– 0.42 0.40 – 0.35 0.40 

20 Wei et al. (2017) Weibo – 1804 
2-Class Accu-

racy; for High / 
Low: Precision 

0.70 0.73 0.68 0.58 0.70 0.60 

21 Xu et al. (2016) Smartphone DI 2043 3-Class 
F-Measure – 0.39 0.42 – 0.29 0.34 

Table 2.  List of relevant articles and evaluation results. Note: CA = Correlation approach; 
CAS = Significance of correlation coefficient is reported; DS = digital marker selec-
tion approach; DI: Digital marker importance measurement approach; RA: regres-
sion approach; – = none or only examples; MAE = Mean Absolute Error; RMSE = 
Root Mean Square Error; C = Conscientiousness; N= Neuroticism. 
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4.1 Between-Study Analysis: Digital Markers with Highest Correlations 
With respect to our between-study analysis, the list of digital markers is shown in Table 3. We report 
only digital markers related to conscientiousness or neuroticism that show a correlation coefficient of at 
least 0.2. This reflects a small (0.1) to medium (0.3) effect (Cohen, 1992). Correlation coefficients that 
are larger or equal to 0.2 and statistically significant (p < .05) are formatted in bold text. 
It turns out that many digital markers derived from content, i.e. classes of words and other text charac-
teristics, are relevant predictors of both conscientiousness and neuroticism, at least on LinkedIn, Face-
book and Twitter (Adalı and Golbeck, 2014; Bhardwaj et al., 2016; Golbeck et al., 2011b). Furthermore, 
digital markers based on the meta data of tweets, i.e. information about the sender, receiver, time of 
tweet, number of characters and communication patterns), also represent viable predictors particularly 
for conscientiousness (Adalı and Golbeck, 2014).  
In contrast to various relevant digital markers derived from these social media platforms, digital markers 
from smartphones are sparse. In fact, only one digital marker, i.e. the usage frequency of the YouTube 
app has a significant relationship with conscientiousness above our effect size threshold of 0.2 (Chit-
taranjan et al., 2011).  
The largest correlations are reported in Bhardwaj et al. (2016), however these correlations are based on 
rather a small sample size (N=31) and thus, these correlation coefficients have a larger error margin. 
The number of positive and negative words used on LinkedIn are reported as highly correlated with 
neuroticism, whereas the length of the profile, number of skills and number of photos on Facebook show 
a particularly high correlation with conscientiousness. Another digital marker that is negatively corre-
lated with conscientiousness of an individual is having contacts that write very long messages on Twit-
ter. The same holds for the use of negation words such as no, not or never, in tweets, or having a variety 
of balancedness of communication across different contacts. 
For neuroticism, the use of words related to religion or hearing show a high positive relationship (Gol-
beck et al., 2011a), as are deviations from an individual’s average message length across his or her 
contacts (Adalı and Golbeck, 2014). A special case is the use of exclamation marks, as this has a positive 
relationship with both conscientiousness and neuroticism (Golbeck et al., 2011a). Most other markers 
that correlate with both personality traits do so with opposite signs, i.e. have a positive correlation with 
either one and a negative one with the other. That is, the identified digital markers have the potential to 
differentiate between conscientiousness and neuroticism. 
 

Source Category Digital Marker Description [# Reference from Table 2] C N 
Smartphone App use NoYTU Number of times the YouTube app was used [7] -0.44 – 

LinkedIn 

 
LIWC 

NoPW Number of positive words [4] -0.44 0.90 
NoNW Number of negative words [4] -0.34 0.83 

Content LoP Length of profile [4] 0.75 -0.30 

Counts 
NoS Number of skills [4] 0.70 -0.60 
NoC Number of connections [4] 0.61 -0.12 

Facebook 

LIWC 

Social Processes e.g. mate, talk, they [12] 0.26 – 
Seeing Words e.g. view, saw, seen [12] -0.23 – 

Ingestion Words e.g. dish, eat, pizza [12] – 0.21 
Human Words e.g. baby, man [12] 0.20 – 

Counts 
NoP Number of photos [4] 0.83 -0.35 
NoF Number of friends [4] 0.40 -0.32 

Comments CLP A Node’s PageRank in CommentLikeGraph [10] – -0.25 
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Source Category Digital Marker Description [# Reference from Table 2] C N 

Facebook & 
Twitter Counts log(TIME) 

Log of TIME Magazine’s Influence Index (Sil-
ver, 2010), based on the number of Twitter fol-
lowers and Facebook contacts [16] 

0.18 -0.20 

Twitter 

LIWC 

Exclamation Marks “!”[11] 0.26 0.32 
Sadness  e.g. crying, grief, sad [11] -0.25 0.23 
Feeling  e.g. feels, touch [11] -0.24 0.24 
“You”  e.g. you, your [11] 0.25 -0.21 

Religion  e.g. altar, church, mosque [11] – 0.38 
Negations  e.g. no, not, never [11] -0.37 – 
Hearing  e.g. listen, hearing [11] – 0.34 
Death  e.g. bury, coffin, kill [11] -0.33 – 
Work  e.g. job, majors, xerox [11] 0.33 – 

Colons “:”[11] 0.32 – 

Content 

STD-Len STD of mean text length [1] -0.21 0.32 
FF-Len FF of mean text length [1] -0.32 – 

FF-STD-Hash FF of STD of mean number of hashtags in a 
tweet [1] -0.27 – 

FF-URL FF of Mean number URLs in a tweet [1] -0.26 – 
LpT Links per tweet [11] 0.26 – 

Counts 
FF-Fav FF of the number of messages favorited [1] -0.23 0.30 
STD-Fo STD of the number of followers [1] – 0.30 

NoD Number of days Twitter is used [16] – -0.27 

Tweets 

KL-RespH KL of Balance/reciprocity of response time 
A==>B; B==>A [1] -0.34 – 

KL-PMsg KL of Mean #messages A==>B [1] -0.30 – 

KL-ConvTau KL of Mean tau (time between messages) in 
conversations [1] -0.26 – 

KL-PriH KL of Mean priority reciprocity [1] -0.25 – 

Pri Mean priority (number of messages of A that are 
replied to before others) [1] -0.28 – 

STD-Worth 
STD of Mean worthiness of A (proportion of 
messages of A that are propagated by A’s con-
tacts) [1] 

-0.26 – 

ConvTau Mean tau (time between messages) in conversa-
tions [1] -0.25 – 

BalP Mean balance/reciprocity of msgs A==>B; 
B==>A [1] -0.30 – 

DelH Mean delay reciprocity [1] -0.28 – 

FF-STD-Worth 
FF of STD of Mean worthiness of A (proportion 
of messages of A that are propagated by A’s 
contacts) [1] 

-0.28 0.25 

FF-KL-ConvTau FF of KL of Mean tau (time between messages) 
in conversations [1] -0.34 – 

Table 3.  Correlation coefficients of digital markers with either conscientiousness (C) or neu-
roticism (N). Note: LIWC = Linguistic Inquiry and Word Count (Pennebaker et al., 
2001) is a program for extracting digital markers from text. Because of space con-
straints we do not list all digital markers of Adalı and Golbeck (2014) and Golbeck et 
al. (2011a), they can be looked up in their articles 
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4.2 Within-Study Analysis 
In this section we present the digital markers that have been found to be relevant for predicting consci-
entiousness and neuroticism, but for which no correlation coefficients have been reported. 
Xu et al. (2016) used data from the history of mobile app installations and updates on Android to predict 
personality traits. This data can be accessed by any Android smartphone app. Their digital markers are 
based on temporal patterns and the categories of Android apps. They used the Random Forest algorithm 
for prediction (Breiman, 2001). This algorithm provides a ranking of digital marker importance, based 
on which they report the most important digital markers. For neuroticism, the installation of apps in the 
categories Shopping and Puzzle Game, and the entropy across the categories of the installed apps were 
most important, along with temporal markers, in particular, the number of distinct app install days, the 
first quartile of an individual’s interval between installations, and the maximum number of apps installed 
per month. For conscientiousness, apps in the categories Video, Lifestyle, Photography, Game, Trivia 
Game, Social and Music were most relevant, besides the third quartile of app install intervals and the 
number of months with updates. Xu et al. also looked at the directions of some associations and found 
that neuroticism was positively associated with the adoption of photo and personalization apps. By con-
trast, conscientiousness was negatively associated with the adoption of music apps, video apps, photo 
apps and personalization apps. 
Staiano et al. (2012) used data acquired from Android smartphones. They focused on network-based 
digital markers and did not report on the association between individual markers and personality traits. 
However, they found that centrality measures from call data, i.e. from the network of who is calling 
whom, are particularly predictive for neuroticism. Centrality measures are also useful for predicting 
conscientiousness, particularly when combining data from Bluetooth with call data. 
De Montjoye et al. (2013) used call, text, and location data from smartphones. They indicated which of 
their digital markers were significantly correlated with personality traits. However, they did not report 
the correlation values. With this information, it is difficult to derive any conclusion about which markers 
are most relevant, as many markers are significantly correlated and there is no obvious pattern.  
Celli et al. (2014) recognized personality traits from an individual’s Facebook profile picture. Utilizing 
Scale-Invariant Feature Transform (SIFT) markers (Lowe, 2004), they predicted conscientiousness and 
neuroticism with similar performance as other studies. By manual inspection they concluded that indi-
viduals with lower degrees of neuroticism tend to have pictures where they are smiling and are together 
with other people. By contrast, neurotics tend to use an image without any close-up faces or even no 
person at all. They suggested that conscientiousness might be associated with the direction of eye gaze. 
It should however be noted that their model for prediction of conscientiousness is based on a very small 
dataset and thus requires further investigation. 
Chapsky (2011) used Facebook profile data, which they enriched with additional meta data, such as 
statistics about the population of cities. Conscientiousness was most associated with a low location lat-
itude and female sex. Neuroticism was most associated with younger female individuals. This is con-
sistent with known gender differences in average levels of neuroticism (Lynn and Martin, 1997). 
Thilakaratne et al. (2016) used the knowledge base DBpedia (Mendes et al., 2011) to enrich Facebook 
status updates with the categories of semantic concepts that are mentioned therein. Through digital 
marker selection techniques, they found that digital markers related to nature, perceptual skills, confi-
dence and developing skills, writing, songs, pianists, artists, television stations and movies were predic-
tive with respect to conscientiousness. By contrast, neuroticism was related to sadness, negativity and 
anger, illnesses, medicines, comedy movies, song writers, populated places, comic strips, and television 
programs. 
Mukta et al. (2016) used APR to find groups of people on Facebook that interact with each other and 
share similar personality traits. They found that for conscientiousness and neuroticism, prediction based 
on topic models yields better results than an approach based on LIWC markers. 
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In addition to reporting correlations on predicting personality traits from Twitter data, Adalı and Gol-
beck (2014) found that their digital markers of communication patterns, which do not consider the tex-
tual content (i.e. specific words), allows equally good prediction as digital markers based on specific 
words. They concluded that it is important to capture the kinds of relationships that a person has with 
others. For conscientiousness, they found that these relationships are characterized by a lack of distinc-
tive behavioral patterns, i.e. these individuals behave like other individuals on average. Neuroticism was 
associated with behavior that highly varies across communication partners.  
Four studies predicted personality traits from the Weibo microblogging service, which is widely used in 
China with about 222 million monthly active users in January 2016 (We Are Social Singapore, 2016): 
First, Nie et al. (2014) used digital marker selection to determine the best subset of markers. They found 
that more conscientious individuals have a more complete profile, more mutual followers, and shorter 
screen names. Individuals with a high degree of neuroticism, by contrast, seem to prefer to post new 
status messages after midnight or in the early morning, and they also publish more status updates. Se-
cond, Gao et al. (2013) used digital markers based on status statistics, sentence-based markers, word-
based markers, character-based markers, LIWC markers and Chinese-specific word categorizations 
based on Pinyin lexicons. They found that conscientious individuals tended to use more exclamation 
marks, and that more neurotic people used more words about religion and art. Third, Bai et al. (2013) 
used a set of 29 digital markers based on profile attributes and numbers of connections and status up-
dates. They found that, on the one hand, conscientious individuals have many mutual followers, a large 
number of friends but less followers overall. These individuals tend to have also shorter user names and 
publish less posts. On the other hand, individuals with high neuroticism tend to publish more status 
updates. Fourth, Wei et al. (2017) used heterogeneous information from the Weibo service. They derived 
their digital markers from language use, avatars, emoticon use, and response patterns. They found some 
correlations between language use and conscientiousness and neuroticism. For example, conscientious 
individuals tend to use formal words like era and society, while neurotic individuals tend to use theatrical 
emoticons that exaggerate their feelings. Overall, they concluded that combining different sources of 
information and, especially, considering an individual’s reaction to other people’s behavior improves 
the performance of social media-based APR. 
Finally, Wald et al. (2012) used demographic and text-based digital markers from Facebook while 
Pratama and Sarno (2015) employed text data from Twitter, but both groups did not report anything 
about which digital markers are associated with either conscientiousness or neuroticism.  

5 Discussion and Limitations 
With respect to our research question, we conducted a systematic literature review with the objective to 
identify a list of digital markers that were used in APR with a particular focus on personality traits with 
health impact, namely conscientiousness and neuroticism. The identified digital markers as outlined in 
Section 4 are relevant predictors of these personality traits and thus, are recommended to inform the 
design of DHIs that automatically take into account the personality traits of individuals without obtru-
sively requiring additional manual input. The current work builds therefore also the foundation with 
respect to our overall research goal, i.e. to build and evaluate personality change DHIs that help indi-
viduals to increase their conscientiousness trait and to reduce their neuroticism trait if applicable. In the 
following paragraphs, we will discuss and summarize our results and outline the limitations of the cur-
rent literature review.  
First, for conscientiousness, digital markers related to media consumption (e.g. watching video clips) 
and the creation of media (e.g. taking photos) were highly relevant. Moreover, digital markers related 
to a particular communication style (e.g. the use of negations), the behavior of social contacts and the 
variety of balancedness of relationships should be taken into account as digital markers of conscien-
tiousness, too. It should be, however, noted that the direction of correlations with these digital markers 
may differ depending on the data sources or categories. For example, the number of photos on Facebook 
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was positively associated with conscientiousness (Bhardwaj et al., 2016), whereas installation of photo 
apps on Android phones was negatively associated with conscientiousness (Xu et al., 2016).  
For neuroticism, we conclude that digital markers which are related to the use of words of particular 
classes such as religion, hearing, positive or negative words, were particularly relevant. Furthermore, 
variation in message length across contacts and the communication style, especially the use of exclama-
tion marks, reflect digital markers of neuroticism. 
It is also noteworthy that in our list of relevant digital markers, there is only one marker from a 
smartphone-based study that reports corresponding correlation coefficients (Chittaranjan et al., 2011). 
The absolute values of the correlations that they found are, in fact, rarely above 0.1. This is, however, 
only true for correlation coefficients concerning their entire population. They found different and higher 
correlations when considering male and female subjects separately. Consistent with prior research on 
personality traits (Toda et al., 2016), it is therefore recommended to explicitly consider demographic 
characteristics in studies that investigate digital markers of personality traits. If a reliable indication of 
gender is available, it may significantly boost prediction performance. 
In addition, it is recommended to combine digital markers from several sources and categories as it has 
been done in a recent approach to detect complex psychological states in couples with the help of multi-
modal wearable technology (Timmons et al., 2017; Toda et al., 2016). Another complementary data 
source could be the driving style of individuals based on car data (Dahlena et al., 2012; Taubman et al., 
2012).  
Finally, we outline the limitations of the current work. First, our between-study analysis does not con-
sider independence of the digital markers. Unfortunately, this is not possible as mutual correlations are 
not reported in the articles. That is, we could only speculate about how the digital markers from different 
studies would be correlated if used in a single study. Second, the between-study analysis also does not 
consider the interdependence of digital markers. As described in Guyon and Elisseeff (2003), a set of 
digital markers that are each individually uncorrelated with the target variable, i.e. in our case self-
reported conscientiousness or neuroticism, may be extremely useful for personality prediction through 
their combined use. And finally, the between-study analysis does not consider the size of the popula-
tions. That is, correlations found in smaller populations have per se a larger margin of error (Niven and 
Deutsch, 2012). 

6 Summary and Future Work 
Two personality traits, namely conscientiousness and neuroticism, have been neglected so far in the 
design process of DHIs although there is evidence on their impact on health outcomes. Conscientious-
ness is related to therapy adherence and neuroticism impacts long-term health. Being able to unobtru-
sively sense these personality traits via digital markers from various data sources and then to increase 
conscientiousness and / or to reduce neuroticism depending on an individual’s needs, may be an im-
portant active and generic ingredient for various DHIs, so called personality change DHIs. Because 
unprecedented and as a very first step towards the design of this novel class of DHIs, we have conducted 
a literature review to identify digital markers that can be measured unobtrusively and are related to 
conscientiousness and neuroticism.  
As a next step in our work, we will use the results of this systematic literature review, i.e. the list of 
relevant digital markers for conscientiousness and neuroticism to derive concrete design requirements 
for a personality change intervention. That is, we plan to cross-validate and assess recent assumptions 
and empirical evidence on personality change interventions (Allemand and Flückiger, 2017; Armstrong 
and Rimes, 2016; Barlow et al., 2013; Magidson et al., 2014; Mroczek, 2014) with the help of our digital 
markers in a prospective randomized controlled trial with healthy participants. The personality change 
intervention will be implemented on the open source behavioral intervention platform MobileCoach 
(Filler et al., 2015; Haug et al., 2017; Kowatsch et al., 2017a; Kowatsch et al., 2017b). Elements of the 
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intervention include psychoeducation in the form of video and text, goal-setting, behavioral experi-
ments, reminders, feedback, self-reflection exercises, and continuous tracking of conscientiousness and 
neuroticism using the digital markers (Allemand and Flückiger, 2017; Magidson et al., 2014). Thereafter 
and if successfully validated, we will use these elements as building blocks for DHIs targeting various 
non communicable diseases and chronic patients with the overall goal to improve their health and well-
being. 
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