DEMO TRACK

A Decentralised Sharing App running a Smart Contract on
the Ethereum Blockchain

Andreas Bogner Mathieu Chanson Arne Meeuw
ETH Zurich ETH Zurich University of St. Gallen
Zurich, Switzerland Zurich, Switzerland St. Gallen, Switzerland
abogner @ethz.ch mchanson@ethz.ch arne.meeuw @unisg.ch

ABSTRACT

The sharing economy, the business of collectively using pri-
vately owned objects and services, has fuelled some of the
fastest growing businesses of the past years. However, popular
sharing platforms like Airbnb or Uber exhibit several draw-
backs: a cumbersome sign up procedure, lack of participant
privacy, overbearing terms and conditions, and significant fees
for users. We demonstrate a Decentralised App (DAPP) for the
sharing of everyday objects based on a smart contract on the
Ethereum blockchain. This contract enables users to register
and rent devices without involvement of a Trusted Third Party
(TTP), disclosure of any personal information or prior sign up
to the service. With increasing distribution of cryptocurrencies
the use of smart contracts such as proposed in this paper has
the potential to revolutionise the sharing economy.

ACM Classification Keywords
K.4.4 Electronic Commerce: Distributed commercial transac-
tions

Author Keywords
Sharing; Sharing Economy; Blockchain; Ethereum; Smart
Contract; Decentralised App (DAPP); privacy protection.

INTRODUCTION

The sharing economy has emerged as an important driver of
growth in the last decade, creating some of the fastest growing
unicorns like Airbnb, Uber or Lyft [4]. Common problems of
these platforms are the need of a Trusted Third Party (TTP)
(i.e. a platform operator), lack of privacy when using them and
repetitive individual sign up for each platform. We propose
that these problems could be resolved using Ethereum based
smart contracts replacing the intermediary.

An Ethereum based smart contract is a cryptographic box
which stores information, processes inputs, writes outputs and
is only accessible to the outside if certain predefined condi-
tions are met [1]. In practice, Ethereum allows for an easy
implementation of such smart contracts [3]. These contracts

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

10T’ 16 November 07-09, 2016, Stuttgart, Germany

© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4814-0/16/11...$15.00

DOI: http://dx.doi.org/10.1145/2991561.2998465

177

YOUR ACCOUNT

SELECT A POWER TOOL

OBJECT DETAILS
power drll
20000 Ether
20,0000 Ether

INFORMATION

Figure 1. DAPP in use: The owner of the smart contract registers devices
by scanning a barcode with a numerical id (left screen). After scanning
the same barcode on a registered device, the app displays the rental con-
ditions to the interested renter (right screen).

contain code comprising a Turing complete set of operations.
This code is executed by the Ethereum Network once a func-
tion of a smart contract is called. Such a computation may
result in several outcomes: alteration in the state of the smart
contract, returning a result and transferring monetary value.

We demonstrate a web app (shown in Figure 1) for the sharing
of objects based on a smart contract running on the Ethereum
test network. Users are inherently identified by their Ethereum
public key which allows for anyone in possession of such a
key to participate in the app without sign up or revelation
of personal financial information. All details of the rental
agreement are accessible in the public Ethereum blockchain
and are executed as specified, thus avoiding a TTP. The rental
terms and conditions are set by the owner of an object during
the registration process. Objects are identified by scanning a
QR code referencing a key in the smart contract. The details
of the procedure are explained in the following section.

SYSTEM ARCHITECTURE

An overview of the system architecture is shown in Figure 2.
The main components are a smart contract hosted on the
blockchain, the local Ethereum client, and a web app. The
web app provides a graphical user interface for the (local)
Ethereum client, which in turn interacts with the smart con-
tract on the Ethereum blockchain. Objects participating in
the rental scheme are labeled with a QR code that encodes a
unique numerical ID for the web app.

Ethereum
\Blockchain

. Renter

fffffffffff 8

&

Vil v
Ethereum " Ethereum
Client Client
I 4: reclaim | i3 rent |

Figure 2. Schematic procedure of the DAPP with the smart contract at
its core. A tool owner is allowed to register and reclaim an object while
a renter is solely authorised to rent out an object of his choice.

Smart Contract

The smart contract defines four core functions within the sys-
tem which create the smart contract itself, register new objects,
and rent devices and reclaim them (see Figure 2).

The constructor is executed by the transaction which defines
the smart contract. The sender of this transaction becomes the
owner of the smart contract.

The contract holds a key value store named objects. Calling
the registerObject function inserts a new key value pair
where the value is an object with its relevant properties (de-
scription, daily rental price, deposit due) and the key is the
numerical ID contained in the QR code.

The rentObject function assigns a renter to an object and
stores the current timestamp. This only succeeds if the corre-
sponding transaction transfers an amount larger or equal to the
object’s defined deposit and whether the object is free at the
time of the transaction (see Figure 3).

The reclaimObject function can only be triggered by the
contract owner. It assigns a rented object back to its owner,
calculates the rental fee (in reference to the timestamp from
the previous step), and sends the rental fee to the owner and
the remaining deposit (less the rental fee) back to the renter.

All functions listed above are fully deterministic and publicly
available on the blockchain, eliminating the TTP. The two
parties agree to these conditions when signing the respective
calls to the contract. The Ethereum network guarantees that
the contract is executed accordingly. In particular, the deposit
is put in escrow with the smart contract and neither the owner
nor the renter nor any other third party can get hold of it.

Web App

The web app written in JavaScript and HTMLS5 provides the
user interface for the Ethereum client, which in turn interacts
with the blockchain.

The registration of an object is automatically initiated when
its QR code is read the first time by the DAPP. The owner is
prompted to state the details of the rental agreement. On
submission, the web app issues a transaction calling the
registerObject function of the smart contract with the de-
tails provided. This contract ensures that solely the creator of
the contract is authorised to register objects.

178

6th International Conference on the Internet of Things (loT'16)

function rentObject(uint _objId) returns (bool) {
if (objectIsRented(_objId) ||
msg.value < objects[_objId].deposit) {
throw;
}
// add renter to object
objects[_objId].renter =
Renter({address: msg.sender, since: now});
// send back any excess ether
uint change = msg.value - objects[_objId].deposit;
if ('objects[_objId].renter.address.send(change)) {
throw;

}

return true;

Figure 3. The method rentObject in the central smart contract.

Upon scanning a registered object the user is presented with
the rental terms (see Figure 1). When the user clicks "Rent
object", the app triggers a transaction calling the rentObject
function with the object ID and simultaneously transfers the
required deposit to the smart contract.

The object owner analogously reclaims the object by triggering
the returnObject function via the same web app.

The authors have built the web app using the Truffle develop-
ment framework [2]. This framework, amongst others, gener-
ates JavaScript bindings for the smart contract and includes
libraries such as web3.js [5] that facilitates the communication
between the web app and the Ethereum client.

DEMONSTRATION SETUP

Our demonstrator shows a practical implementation of a DAPP
for sharing objects. While this DAPP may be used for sharing
any kind of tangible object, we implement a sharing solution
for power tools. In our setup two mobile devices, used by the
object owner and the renter, access the Ethereum test network.

In our smart contract demonstration, we have an owner add a
cordless drill to the web app, have an additional person rent
the drill, and then return the drill thereafter; thus presenting
the four core functions of our smart contract.

REFERENCES
1. Vitalik Buterin. 2014. A next-generation smart contract
and decentralized application platform. white paper
(2014).

2. ConSensys. 2015. Truffle - A development framework for
Ethereum. (2015).
https://github.com/ConsenSys/truffle.

3. Kevin Delmolino, Mitchell Arnett, Ahmed E Kosba,
Andrew Miller, and Elaine Shi. 2015. Step by Step
Towards Creating a Safe Smart Contract: Lessons and
Insights from a Cryptocurrency Lab. IACR Cryptology
ePrint Archive 2015 (2015), 460.

4. Alberto Marchi and Ellora-Julie Parekh. 2016. How the
sharing economy can make its case. McKinsey Quarterly
1 (2016), 112.

5. Fabian Vogelsteller. 2015. web3.js. (2015).
https://www.npmjs.com/package/web3.

