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The detection of mild cognitive impairment (MCI), the traitional stage between normal
cognitive changes of aging and the cognitive decline causedy AD, is of paramount
clinical importance, since MCI patients are at increased gk of progressing into AD.
Electroencephalographic (EEG) alterations in the spectraontent of brainwaves and
connectivity at resting state have been associated with edy-stage AD. Recently,
cognitive event-related potentials (ERPs) have enteredtinthe picture as an easy to
perform screening test. Motivated by the recent ndings abait the role of cross-frequency
coupling (CFC) in cognition, we introduce a relevant methadogical approach for
detecting MCI based on cognitive responses from a standard aditory oddball paradigm.
By using the single trial signals recorded at Pz sensor and ¢oparing the responses to
target and non-target stimuli, we rst demonstrate that inceased CFC is associated
with the cognitive task. Then, considering the dynamic charcter of CFC, we identify
instances during which the coupling between particular pas of brainwave frequencies
carries suf cient information for discriminating betweermormal subjects and patients
with MCI. In this way, we form a multiparametric signature ofmpaired cognition.

The new composite biomarker was tested using data from a cohd that consists of

25 amnestic MCI patients and 15 age-matched controls. Standrd machine-learning
algorithms were employed so as to implement the binary claggation task. Based on

leave-one-out cross-validation, the measured classi cabn rate was found reaching very
high levels (95%). Our approach compares favorably with th&aditional alternative of
using the morphology of averaged ERP response to make the dimosis and the usage
of features from spectro-temporal analysis of single-trlaesponses. This further indicates
that task-related CFC measurements can provide invaluablanalytics in AD diagnosis
and prognosis.

Keywords: cognitive impairment, ERPs, phase-amplitude coupl ing, functional

coordination, dynome, connectomic biomarkers

connectomics, dynamic
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Introduction has been recognized, and a recommended diagnostic strategy i
technically dichotomize the patients into those of amnestjme
Alzheimer's disease (AD) is a neuro-degenerative disprde@MCI) and non-amnestic one$\(inblad et al., 2004 The aMClI
characterized by loss of memory and declined cognitive angatients form a cohort of particular clinical importance, due to
intellectual abilities, that severely a ects not only pat&isocial the associated high conversion rate to AD (6 times highek ris
life but even their daily living. Currently, the diagnosiSAD is  than the age-matched controls) and the empirical obserwatio
performed via clinical neuropsychological tests with acci@s® similar neuropathological ndings with patients at early Alage
ranging from 85 to 93%. However, this widely-used proceduréPetersen et al., 1909
requires long sessions in hospitals and the involvement of The majority of MCI patients exhibit, at rst, a
experienced sta Raajanen et al., 20).4For this reason, the cognitive decline in episodic memory. Apart from related
de nition of a reliable, low cost and, preferably, non-inixgs neuropsychological clinical screening tests (e.g., MMSE),
biomarker for the early diagnosis of AD is an active researcharious neuroimaging techniques such as functional m&agnet
area. Toward this end electroencephalography (EEG) has bessonance imaging (fMRI), volumetric magnetic resonance
adopted as a potential screening method, since functionamaging (vVMRI), and positron emission tomography (PET) are
alterations due to AD most probably are re ected in the receald also employed for the clinical diagnosis of MGv(ers et al.,
cerebral activity of a patienPonomareva et al., 20).3 2010; Patterson et al., 2010n the contrary, EEG has not been
From the methodological side, the existing approaches falidely incorporated into clinical practice as a diagnostic oo
in either of the two main streams in brain signal analysisdetecting MCI and the rate of subsequent progression to AD.
spectral and nonlinear dynamic®&uwels et al., 2010, 2011 There is however a certain amount of published research work
Regarding the rst and most popular trend, earlier studies havéBabiloni et al., 2010; Basar et al., 20TEhis includes studies
demonstrated increased brain activity fdr(0.1-4Hz) and"  of functional connectivity as reviewed iWen et al. (2015and
(4-8 Hz) frequency bands and decreased activitgf(8—12 Hz) a few quantitative EEG (QEEG) studies reporting MCl-related
andb (12-30 Hz) frequency bands in AD patientSifils, 2002; alterations in the spectral characteristics of the recorbeain
Dauwels et al., 20)0In terms of brain connectivity, a reduced signal (elic et al., 2000; Moretti et al., 2012
inter-hemispheric coherence for both and b bands has been Recently, cognitive ERP studies have gained popularity for
associated with ADQunkin et al., 1994; Locatelli et al., 1998 understanding and revealing dementive disorde¥so(ll et al.,
In addition to the alterations observed in the charactécistof 2002; Polich and Corey-Bloom, 2005; Jackson and Snydes; 200
brainwaves (spectral power and coherence), a correlation witPapaliagkas et al., 2008, 2011; Lai et al.,, 2010; Missonnier
the severity of disease has been demonstrated askwelig(ski et al., 2010; Laskaris et al., 2))18ince they can target at
et al., 200). In a more recent study, the quanti cation of cross- speci ¢ mental faculties (the same that are scrutinized via
frequency amplitude-to-amplitude modulations during regtt  neuropsychological screening) with the additional advgetaf
state was introduced as a means of di erentiating patienth wit leading to directly quanti able indices. Among the possible
mild AD symptoms from patients with moderate symptoms experimental design€)lichney et al., 2002; Guntekin etal., 2013;
(Fragaetal., 20)3 Gozke et al., in pre}sthe standard auditory oddball stimulus
Mild cognitive impairment (MCI) is considered as the paradigm for Audiroty Event Related Potentials (AERPS) is
transitional state between normal cognitive decline dugdonal  the simplest to perform. After averaging the brain responses
aging and the cognitive decay caused by AD. MCI subjects afeom the AERPs when targeting auditory tones, two of the
in general at higher risk of suering from dementia, where main morphological components (known as N200 and P300
an extensive variation in annual conversion rates to AD wabased on their polarity and latency) appear deteriorated in
observed in many studies ranging from 10.2 to 33.6%p(nosa the case of MCI patientsR(tter et al., 1984; Golob et al.,
et al., 2018 The neuropathology of MCI may exhibit the 200). P300 is an endogenous brain response that occurs as a
complex features of the early stages of AD, such as genonpositive de ection, roughly, 300 ms after the onset of stinsulu
alterations, plaque formation, changes in protein metabolis whenever the subject detects a meaningful task-relevintiksts
synaptic dysfunction, and cellular injurys{ephan et al., 20).2 (Polich and Corey-Bloom, 2005N200 is a faster component
There are increased research e orts to de ne a methodologyhat re ects cognitive processes of stimulus evaluatiolectize
for the reliable detection of MCI patients/pung et al., 2003  attention, and conscious discriminationPétel and Azzam,
The timely identi cation of such patients provides the clios  2005. Despite the well-recognized di culty in identifying the
with the opportunity to organize therapeutic pharmaceuticalneurophysiological origin of these de ection®dlich, 200Y,
treatment Qoody et al., 201or alternative interventions like the related latency and amplitude measurements are considere
serious gamingNlosimann et al., 2004; Bahar-Fuchs et al., 2013p su ce for assessing cognitive declin&l(iscoso et al., 2006;
Tarnanas et al., 2014b; Muscio et al., 2015; Tarnanas et @ennys et al., 2007; Golob et al., 2007; Caravaglios et &), 200
2015a,p and neurofeedback trainingFernandez et al., 2008; More recently, the characteristics of event-related osiclia
Berman and Frederick, 2009; Becerra et al., p@tzhe very participating in the AERP response were brought into focus, with
early stages of the AD, well before the neurogenerative psese promising results regarding the clinical evaluation of MCDA
have pushed the cognitive substrate to the “point of no return. (Yener et al., 2012; Yener and Basar, 3013
The early detection of MCI patients can enhance a positive Here, we delve into the event related oscillations and
response to therapy. The last decade di erent subtypes of MCGcrutinize further the underlying mechanisms so as to idgnt
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novel signatures of cognitive impairment. In particular wadst ~ of this work. Results section includes the main results of our
the functional interactions between distinct brain rhytenbased study, while some additional results have been appended as
on traces of oscillatory activity derived by ltering the gie- Supplementary Material. The nal section is devoted to the
trial responses within the standard frequency bardl$ (a;, a2,  discussion of the results and the future perspectives of thigkw

b1, by, g1). The motivation came from the -recently established

in neuroscience- concept that CFC is a key mechanism for thgiaterials and Methods

integration of distinct processes mediated by the distinetiro

rhythms, and the rapidly accumulating experimental evidencg&ypjects

about its role in cognition {ensen and Colgin, 2007; Canolty andTwenty- ve amnestic MCI (aMCI) patients composed the MCI
Knlght, 2010, Palva and PalVa, 2011, Buzsaki and WatSOE; ZOéroup (mean age stdD 70 5 years)_ The e|der|y (Contro|)
Jirsa and Muller, 2013; Dimitriadis et al., 20).58our di erent  group consisted of a total of 15 healthy individuals withrair
types of CFC are usually mentionege(isen and Colgin, 2007  range of ages to MCI group. All the participants provided written
with each one considering a particular interaction mode (poweinformed consent. The subjects were selected over a pool of
to power, phase to phase, phase to frequency, and phase to pow&iihjects that visit for regular interventions the Day Centf
between two distinct brain rhythms. Among these the fourthGreek Association of Alzheimer Disease and Relative Disorders
scenario, according to which the amplitude of a brain rhythmGAADRD). The Ethics Committee of the Greek Association of
is modulated by the phase of a lower-frequency rhythm, is th@\|zheimer Disease and Relative Disorders approved this study.
one most often con rmed by experiment$ ¢rt et al., 2008, 2009, All  subjects were assessed with a standardized
2010; Cohen et al., 2009a,b; Colgin et al., 2009; Axmaclar, et neuropsychological test battery and aMCl was diagnosed
2010a,b; Voytek et al., 2010 using the following criteria: (1) memory complaint, (2) abnaal

For this work, we adopted a phase-to-amplitude (PAC)memory for age, (3) normal activities of daily living, (4)mual
estimator and quantied the CFC between event-relatecyeneral cognitive function, and (5) not dement&e(nanas et al.,
oscillations recorded at the Pz electrode during an AERPS015)). Conspicuous brain abnormalities that could account
paradigm so as to test the hypothesis that the cognitive regsonsfor cognitive decline were excluded using structural magneti
in aMCI patients are associated with deviations from a “nolfma resonance |mag|ng (MR|) data. The baseline neuropsycho|bgica
pro le of interactions between brain rhythms. For this reagbe  evaluation covered the following cognitive domains: episodic
CFC was measured in the AERPs responses of non-impaired (Ndhd working memory, attention/psychomotor processing speed,
elderly subjects as well. Since there had been no previodsamor executive function, language, and visual-constructivditas.
the particular topic, we followed di erent stages of analysi®so |mpairment was determined if at least one score per domain was
to verify that PAC estimates could lead to potential descri{®o 1.5 SD below group means compared to test-speci ¢ normative
of cognitive response dynamics and indicators of impairmentgata Petersen and Morris, 20)5The overall evaluation typically
First, we examined the CFC in the case of normal subjects anflcluded one or more composite or global measures of cognitive
demonstrated, by contrasting the responses to target and nofynction such as thélini-Mental Status ExantMMSE), Folstein
target stimuli that cognitive responses are associatedhigther ¢t a|. (1975)and the Dementia Rating ScalDRS), Mattis
PAC levels. That stage of analysis revealed the transieiht ap976) The participants were also assessed with conventional
multifaceted nature of cross-frequency interactions tballed  neuropsychological tests liktroop Color-Word Interference
for sophisticated analysis that could handle the dynamiairet Test Trail-Making Test-B and Digit-spaiore complex tasks of
of the examined phenomena. Next, we adopted the approackecutive function were assessed by\Wisconsin Card Sorting
of evolving (i.e., time-varying) patterns of function in&&tions  Test Memory assessment was based onRig Auditory Verbal

and formulated the search for a PAC-based biomarker as Bearning TestVisuoconstruction was assessed with tasks like
pattern analytic task. Following a statistical learningesol (that  clock drawing

Operated toward maXimiZing the discrimination between the Assessment of mood and emotional state is a critical

aMCl patients and controls), we then selected the time inistan component of the evaluation of the MCI patient as emotional
and particular frequency-pairs that should be incorporated ingistress can cause or exacerbate cognitive problems. The
building an e ective biomarker. Finally, we employed a stamida assessment of mood was comprised of interview data and
classier so as to quantify the actual performance of th&esponses to brief self-report measures, such as theGeniatric
proposed PAC-based prole in aMCI detection. In addition, pepression Scaleuropsychological scores for each population
the overall learning scheme was repeated using morphologicgfe presented iffable 1

characteristics of the averaged AERP responses and spectro-as individuals age, they may experience changes in their
temporal characteristics derived via single-trial analySise  auditory processing and/or cognitive abilities. In the prese
attempted comparison showed that the introduced approach naftydy, a neurologist performed the auditory test to assees th

only provides new insights to the neuronal substrate of im@air hearing level of both groups. Groups didn't di er signi cantiyn
cognition, but also outperforms the conventional data-atie/  the hearing level.

employed in ERP analysis.

The structure of the remaining paper is as follows. SectiofRecordings
Materials and methods start by introducing the dataand pemtse  The standard auditory oddball paradigm was employed, as
by introducing the PAC estimator as adopted for the purposesummarized below. Participants were engaged in a simple
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TABLE 1 | Means and SDs of demographics and general
neuropsychological abilities.

Older adults aMCI patients ANOVA/
(n D 15) (n D 25) ANCOVAS

DEPRESSION
Mini GDS (cut-off <2/5) 0.4 (0.9) 0.1(0.3) F<1
GLOBAL COGNITION
MMSE 28.9 (0.8) 26.7 (1.6)* Fo; 49)D 83.8*
DRS 21.9 (11.9) 42.9 (15.1)*  Fp. 49)D 25.8*
EXECUTIVE FUNCTIONS
WCST 18.8 (8.7) 25.1(7.9) F2; 49)D 8.2
TMTB-A (s) 45.9 (13.4) 53.1(24.1)  Fz 49)D12.9%
Stroop 158.4 (119) 66 (48) F2; 49)D 3.79*
Forward span 6.1(0.3) 5.3 (1L.3)* F2; 49)D 14.9%**
Backward span 3.6 (0.9) 2.9 (0.6)* F(2, 49)D 10.6***
VERBAL MEMORY
Delayed recall 15.9 (0.25) 13.3 (1.6)** F(2; 49)D 33.9%*
Total recall (3 trials) 45.8 (1.3) 32.7 (8.2  Fp 49)D 77.9%
Delayed total recall 15.9 (0.4) 11.6 (3) F(2: 49)D 95.1%
Intrusions 0 1.7 (1.4 F(2; 49)D 28.17
Perseverations 0 0.7 (1.5) F(2: 49)D 9.9**
Recognition: hits/false 15.8 (0.5)50) 13.5 (1¥1(1) F(2; 49)D 9.75**

recognitions

Fz 49)D 5.1*

*p < 0.05, *p < 0.01, *p < 0.001.

number of responses to target stimuli (30 trials) had been
collected. The two types of trials (responses to target and non
target tones) were stored as distinct datasets for eachcubje
additional artifact trimming step, based on the pattern atialy
methodology of (askaris et al., 1997; Laskaris and loannides,
200)), was introduced so as to exclude any subtler outliers missed
by the online routine. Additionally, we inspected visuallyeth
trials to further diminish any outlier missed by both the amé
routine and the pattern analytic methodology.

Electrophysiological activity was recorded from two di eten
electrode positions at CZ and PZ but we analyzed the trials
recorded from Pz. N100, N200, and P300 components are
more prominent in PZ compared to CZ in an auditory oddball
paradigm with counting process$i(iang et al., 201 Moreover,
in general ERPs and the related components are measured mainly
across the midline (FZ, CZ, PZ). Additionally, the N100, N200
and P300 are often measured mainly at the central (Fz, Cz, Pz)
electrode sites with lateral electrodes typically not agsksince
the midline scalp distribution provides signi cant infornian
about the attentional and mnestic processes thought to doute
to P300 generation{onchin et al., 1986; Donchin and Coles,
1988; Picton, 1992; Johnson, 1R93

Mental counting in an auditory oddball paradigm is a
demanding task that needs various resources in order to be
completed like concentration, attention, perception, cogmiti
and memory. The functional abilities and generators of N100
N200, and P300 in the brain have been reported. N100 is
involved in general attention, and its generator is regdrds the

discrimination task. Two dierent tones were sequentiallyprimary auditory cortex (illyard et al., 1973; Kaga et al., 2004
applied. The standard or non-target stimulus was appearing mor@here the most closest sensor in the midline closed to temporal
often than the target stimulus. The series of tones was pteden lobe is Pz. P300 is involved in selective attention or cogmit
in randomized order, binaurally and at 70dB sound pressurability, and its generators are regarded to be the hippocampus
level (SPL) with a 10 ms rise/fall and a 100 ms plateau time. The limbic system and cerebral corteXo¢nchin et al., 1975,
standard (target) tone was set at 1 kHz (2 kHz) and correspdndel986; Halgren et al., 1980; Donchin and Coles, JL.98R00
to 80% (20%) of the stimuli, while the inter-stimulus time intal  is involved in pre-attentive detection and superimposed with
had been set as 2's. The subject's task was to distinguisked®tw mismatch negativity and it is a faster component that re ects
the two tones by responding to the targets (via mentally cougnt  cognitive processes of stimulus evaluation, selectivetaiteand
them) and not responding to the rest stimuli. Participants hadconscious discriminationfatel and Azzam, 2005
been instructed to pay attention in distinguishing the tones
count the target tones silently and report the total number at\Methods
the end of the exam. Only subjects that “performed reasonably
well,” had been included in the study. To this end, we incldide In contemporary neurosciences, the various patterns of
data from participant that reported a number of listened tagget oscillatory activity are considered as signatures of theicairt
that deviated less than 3 from the actual number of deliveredetworks and key players in brain function by shaping the
target tones. In addition, each subject was tested twicethed dynamic substrate of perception, memory, and consciousness.
reproducibility of the averaged AERPs response waveform wd$e oscillatory coupling between distinct neuronal asserablie
examined (aatanen et al., 19)8 is postulated as a principal mechanism for information
EEG activity was recorded with a Neuropack 4 (Nihon-exchange and integrationVérela et al., 2001; Buzsaki and
Kohden, Tokyo) equipment, after bandpass Itering within Draguhn, 2004; Buzsaki, 200&Cross-frequency coupling has
(0.1-50) Hz, with a sampling frequenfyD 1024 Hz from scalp recently been established as an additional communication
AgCl electrodes at Cz and Pz sites according to the 10/26rayst channel and provided a novel perspective for characterizing
referred to linked earlobe electrodes, with a right handuy@d.  and understanding the long established system of brain
Signals had been segmented into single-trial segments of bscillations Canolty and Knight, 2010 Among the possible
duration, lasting from 100ms toC900ms with respect to CFC mechanisms, phase-amplitude coupling (PAC) is the one
stimulus onset. An on-line routine had automatically renedv most commonly encountered in experimental brain research.
artifact contaminated trials based on extremely high ampiu Here, PAC is examined among the following 7 brain rhythm,
levels. The recording was terminated as soon as a predetedmin{d, ", a1, a. b1, b2, g}, de ned respectively within the ranges
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{2-4Hz; 4-8Hz; 8-10Hz; 10-13Hz 13-20Hz; 20-30Hz, 30— Figure 1 demonstrates the previous algorithmic steps using
45Hz}. Among the available PAC estimators, we adopted tha single-trial ERPs signal from one of the NI subjects. PAC
one based on the phase coherence meas@ehd¢n, 2008; interactions are examined, between LF oscillatory response
Voytek et al., 2010and further adapted it so as to operate activations corresponding tbbrain rhythm and HF activations
across trials and provide time-resolved proles of CFC thatcorresponding tob; rhythm. The original signal is shown in
would be studied in relation with the established componentsigure 1A The HF version of this signal is depictedrigure 1B,

of the cognitive response (N2, P300, SW). In the followingsalong with its envelope. Just beneathigure 1D), is shown

we rst introduce the PAC estimator. Then, we describe itsthe low-pass ltered (within" frequency range) version of the
“ensemble” operation mode that is denoted, hereafter, as-tim previous envelope [i.e., thepf "(t) signal]l. The overriding,
varying PAC {YPAC). Finally, we outline the machine-learning saw-like, trace corresponds to its instantaneous ph#%@(s:).
strategy employed for identifying the PAC-features with theOn the other hand, the LF version of the original signal is
highest discriminatory power for aMCl detection. The latter depicted inFigure 1C, along with the trace of the corresponding
methodological step is an important ingredient of this work,instantaneous phases (t). The #-(t) and #'py(t) traces have
since our data-driven approach resulted in a multitude of PAQoeen plot aligned irFigure 1E so as to form the instantaneous
measurements, parameterized by the (possibly-interacting) paphase di erences as shown Figure 1F It is this sequence of

of brain rhythms and the corresponding time-interval (that phase-di erencesl #(t) that enters in Equation (1) and will
the particular functional interactions occurred). To degithe be “integrated” across time via averaging the corresponding
oscillatory activity of each brain rhythm, a 3rd order Butt®rth  directional vectors '€#® in the complex domain. It becomes
Iter was applied, in zero-phase mode, to concatenate muiétr clear that the length T of this sequence has to be long enough,
responses. After Itering, a segmentation into Itered singt@al  so as the PLV index to result into a reliable measure of PAC.

response was performed. _ o
Across-trials PAC Estimation: the  TVPAC

PAC Estimation: the Basic Algorithm Estimator

Described in a more generic setting, let)xt D 1,2, ..., T To provide a time resolved PAC pro le, that would incorporate
is the recorded single-sensor signal at hand. Based on dterethe event-related CFC interactions which occurred systerakly
versions of this signal, cross-frequency interactionsvéibought  during the AERPs experiment, we invoked the standard
complying with a form in which the phase of low-frequency (LF)algorithmic strategy for estimating the timecourse of PLV i
oscillations modulates the amplitude of high-frequency YHF multi-trial datasets. All the above mentioned steps leadintpe
oscillations. Using narrowband ltering, the two signalss&)  time-integration in eq(1), were performed for every singied
and »ur(t) are rst formed and, then, their complex analytic responset), j D 1,..., N available for each subject.
representations z(t) and z4r(t) are derived by means of Hilbert  Next, the set of derived phase-di erence#;(t) was formed

transform (HT[.]). and, nally, across-trial “integration” was performed.
ze(t) D HT[xLe(®] D zee(t) € O D ALe()e O ; 1
. . Y% < i1 ()
24r(®) D HT[xue()] D zu(®) € O D Aue(tel O PLVR we() D Nlee' ' @)

In this way the amplitude and phase dynamics, capture
respectively by the envelopeth@nd instantaneous phagkt)
signal, can be treated independently. Next, the envelopeeof t
higher-frequency oscillations(t) is bandpass- Itered within
the range of LF oscillations and the resulting signal undesy
an additional step of Hilbert transform so as to isolate itapé-
dynamics component t),

dl'his resulted in a PAC-trace that had the same temporal
H’esolution as the original single-trials. Considering thewl|
number of trials available for each participant (on average 27
trials), we decided to use a temporal window of 2w + 1 samples
and extend the integration in extracted segments around eac
latency.

1 pew N

2t) D HT[AurLr()] D 23t) € A0 D 24ty & 17w v
PLMia we(tY D N@wC 1)

dl i ©)

that re ects the modulation of HF-oscillations amplitude by €Dt w D1

th.e phase of the LI_:-osciIIations. The corresponding timgseri With the scope of avoiding redundancies, the above
will be used to estimate PAC, by means of phase-locking (Qomputations were performed by means of a stepping window
synchronization index) technique. (with no overlaps between successive segments). In the above
< equation, this is implied by the time index t, that runs ovéet
PLV(LF: HF) D PLVig pf D 1 dOF ) () number of formed segments. Hence, the deriV¥dPAC-traces
T were of reduced temporal resolution, so as to smooth out updul

variations (in particular, a window corresponding to 20 ms had
Phase-locking value PLV ranges between 0 and 1, witheen employed).
higher values indicating stronger PAC interactions (itegher Figure 2demonstrates the operation of the employedPAC
comodulations). estimator using (in continuation ofigure 1) the whole set of

tD1
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FIGURE 1 | The algorithmic steps for PAC estimation.  Using the rst single-trial signal(A), from the cognitive responses of a control subject, we demostrate the
detection of coupling between" and b; rhythm. To estimate”-b; PAC, the raw signal was band-pass lItered into both a(B) low-frequency" (4-8 Hz) component
where its envelope is extracted as well a§C) a high-frequencyb; (13—-20 Hz) component where its instantaneous phase is extcéed. (D) We then extracted the
amplitude and the instantaneous phase of the band-passed; (13—20Hz) and lItered this amplitude time series at the samaéquency as" (4-8 Hz), giving us the'
modulation in lowerb amplitude. (E) We then extracted the instantaneous phase of both thé- Itered signal and the "- Itered lower-b amplitude and computed the
phase-locking between these two signals. The latency depetted differences(F), will be used in estimating the phase-locking that will re etthe PAC-interaction
between the two involved brain rhythms. This phase-lockingepresents the degree to which the lowerb (b;) amplitude is comodulated with the" phase.

single-trial responses of the NI subject. The two panelsinrest  cross-frequency interactions at “latencies-of-interasid detect
visualize the computed instantaneous phase$-dfythm and emergent event-related PAC patterns (for instanceFsgere 6).
bl-envelope-related oscillations and the subsequently eéériv.  To systematize the comparison between aMCI patients and
phase di erenced #(t). TheTVPLV(t) timeseries computed via NI subjects, the'YPAC measurements were considered as the
Equation (2) is shown irFigure 3C. Smoother estimations of initial set of extracted features, based on which the claasion
latency-dependent PAC, computed via Equation (3) at varyinghould be performed and a “ Itering” scheme for selecting the
resolution, are provided inFigure 2D. To ease comparison, most useful among them was applied. The overall scheme was
the corresponding™VPLV(t9 sequences have been relativelypased on matlab routineankfeatures(with the “Wilcoxon”
shifted along y-axis and superimposed on the full-resoluti&@P criterion activated), that realized feature ordering lthem a

waveform. score measuring class-separability. In more details, fchn eair

of interacting frequencies and every latency the correspand
Handling "VPAC Measurements and Identifying PLV-measurements for both groupS¥C¥PLVL £ He (1Y} 1:25,
Discriminative Events (N*PLVLERE (19}ip115) were gathered as two distinct sets of

For each subject independently thE'PAC proles were scalars and then statistically compared by means of wilcoxon
computed for all possible pairs among the 7 de ned brainrank-sum test that resulted in a score, denoted as Wscosg, th
rhythms. Hence, there were in total 2 7 6 D 21 its higher values indicated more deviating distributionbeTuse
(LF! HF) PAC-related sequences. Each sequence consistedobfvilcoxon test was motivated by its non-parametric naturel an
50 measurements and stored in a vector, the dimensions @stablished robustness. The main idea was that the seleaftio
which corresponded to distinct latencies (i.e., the temporaimportant features for aMCl detection would be accomplished
segments they had come from). The basic form of handlingpy keeping the most discriminative ones; in other words, the
all PLV-measurements was this of a [2150] matrix for each top-ranked entries from the [21 50] PLV-matrix of each
subject. An alternative form to represent these measuresenparticipant. The battery of selected PAC measurements would
was by means of a 3D array of size [77  50], which form a composite multifaceted set of feature, based on which
corresponded to a time series of connectivity patterns (opgs). @ biomarker would be built by way of a popular multivariate
That was less economical in terms of memory storage (egassier.

the entries corresponding to HFLF interactions had been Considering the small-sized sample situation of our study
zeroed), but conceptually more fruitful in terms of preseiuat  (only 40 participants were included) and the danger of
With that approach, it become possible to visualize multiple'over tting,” since we were obliged to optimize feature-sél@t
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FIGURE 2 | Across-trials PAC-estimation. By repeating the steps shown in the previous gure, the instataneous phase differences for the whole set of
single-trials have been computedA,B). The TYPAC trace [re ecting PLV{) measurements for"! by interaction], at full temporal resolution, is showifC), together with
the ensemble average waveform (from the wideband signaIsWPAC traces from a stepping window (of various widths) are shen in D).

datasets and repeated the estimation of Wscore for each (EF, H

A NI subjects B aMCLpatients C  Wseore pair and latencyt® The consistency of each PLV-related feature
Y i was measured by the following index:
B2
Bl WAAAAMAAN P A ~ANVANAAAAAAA A Wi
SCOI'Gootst
@y ANV AN Wscore D Wscore(PLVy1 He(t9) D oosTaps 4
& \AAAAA NAAAA Stdwscorgootstrapl
o ’\/\/\/\-"- 3 Wscore re ected (inversely) theoe cient of variationfor the
5 ’/\/\ ' measurements over the bootstrap samples and served as are ned
. H;W score for ranking the PAC-estimates. In that way, the regbrte
" e . d 5 5 results (selected frequency pairs and latencies) enjoyeavarpo
i e s — . B that was not limited in the particular cohort of 40 participants
More importantly, the corresponding bias during the subseduen
FIGURE 3 | An approximation of the temporal patterning of oscil latory stage of designing the classi er (based on the selectedanked
cognitive responses by means of Grand Averaging.  The GA-traces for features) was reduced.

Non-impaired controls (A), and aMCI patients(B), have been derived
independently for each brain rhythm. Using the correspondi temporal
patterns from all the 40 participants, the separability beteen aMClI patients Resu|ts
and NI controls has been measured at every latency and for e&cbrain
rhythm. A common scale is used for all the traces within the sae stack.

(C) To demonstrate the temporal separability of oscillatory ponses, Wscore
is presented for each individual brain rhythm.

In this section, apart from the main results concerning
the introduced biomarker, we have included some additional
indicative results in order to provide further justi cationfo
employing PAC in analysing AERPs responses and appreciate
and then design a classi er using the same dataset, we deciide dynamic character. In what follows, only signals reeatd

to introduce an additional step of bootstrappingldstie et al., at Pz electrode have been considered. The section begins
2003. During that step, by sampling (with replacement) from with the presentation of the Grand-Averaged responses from
the available set of 40 PLV matrices, we built 1000 equattsiz¢he two groups, so as to provide an indication about the
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diculty of the problem of discrimination between aMCl We systematically compared the/PAC estimates obtained
patients and NlI-controls based on the temporal patterning ofrom trials, in which a non-target stimulus had been delsgy
the (supposedly) time-locked responses. Then, the emergéncevath the corresponding estimates from trials required frohet
PAC as a prominent characteristic of the underlying cogeitiv participant to perform the cognitive task (i.e., detection and
processes is demonstrated, by comparing PAC measurememtental counting).

from responses to target and non-target stimuli. Next, aM€li  Figure 4 contains results from such a comparison based on
shown to be accompanied by aberrations in the response-telatéhe responses from a NI-subject. Firstly, it needs to be noeeiil
mechanisms of CFC. Then the design of biomarker using reteva here, that during that contrasting-process two distinct tisegies
PAC-features is presented and its performance is evaluatedf CFC connectivity patterns were originally encountereul. |
Finally, some quantitative comparisons using popular alteweat order to facilitate visualization, we employed the followstgps.

descriptors are provided. The whole set of latency-dependent PLV-values, which had bee
o obtained at full temporal resolution using Equation (2), was

The Event-Related Oscillations and Grand formatted as a 2D matrix of féquencypairs ~ Hiatencied D [21

Averaged Responses 1024] size. At every latentythe mean and the maximum of the

After ltering the single-trial responses within the frequey corresponding 21 PLVs were computed. The resultant temporal-
bands de ned for the examined brain rhythms, a set ofproles of cross-frequency interactions have been includted

7 temporal patterns was obtained, for each participant, vithe middle and bottom panel oFigure 4 They provide only
ensemble averagingigure 3, in the rst two columns, presents rough summaries (of the multitude) of interaction happening
the corresponding within-group averaged responses in a stackluring the physical reaction to stimulus and its subsequent
plot format. In addition, the corresponding wide-band pattern evaluation. However, by contrasting them between evoketl an
(after band-pass ltering of single-trials within 1-45Hzpave cognitive responses it becomes clear that an increased CFC can
been appended at the bottom of each stack, making easier the associated with the cognitive aspects of response. A simila
identi cation of the main morphological components of AERPs, behavior was observed in the data from other normal subjects
namely N100, N200, P300, and SW (slow-wave component). Well (not shown here). In particular, the prole of maximal
becomes apparent that the discrimination between aMCl pasientinstantaneous PLVs re ected a waxing and waning behavior
and NI subjects, based on the patterning of (averaged) ciognit that made necessary the disentanglement of cross-frequency
responses, is not an easy to perform task. To express suchngeraction, carried out as described below.

trend in quantitative terms (that in addition would facilita The TVPAC measurements for all NI subjects were rst
comparisons among the various rhythms), we considered thesssembled and then averaged on a latency-by-latency basis. Tw
temporal patterns as set of distinct features extracted fraohe timeseries of connectivity patterns were formed, representi
subject (intotal 819D [(7C1) bands 1024 latencies]) and used the dynamics of CFC coupling during the response to target
the wilcoxon score to measure its potentiality foraMCl détat ~ and non-target stimuli. They were treated as 3D tensors, and
The rightmost column inFigure 3 presents the computed denoted respectively &89 GA_PLV and "ontaget GA PLV.
Wscore-measurements in a format fully compatible with theBased on the grand-averaged responses, we identied the
associated temporal patterns. It is evident that each osmijlat latency-intervals, shown iRigure 5A, that corresponded to the
component shows its own idiosyncrasies which predominantlynorphological components of cognitive responses. By means of
re ect the corresponding characteristic timescale. Funth@re, integration within the denoted temporal segments, we estadat
some morphological components appear as coupled (i.e., time-pair of CFC-patterns roughly corresponding to the identi ed
locked) with the discriminability of some particular oscibay = components (de ections). We then formed the pattern of relati
components (for instance SW component coincides withincrease for each de ection (N100, P200, P300, and SW).

an increase/decrease in discriminability afi/a, rhythm).

Interestingly, thegi rhythm is associated with the higher Relative Increasdde ectior) D

Wscores, the temporal pro le of which shows a clear modulation tapget nonpsarget

from a slower oscillation rhythm. Finally, it is worth notn GA PLV R nyr(t) GA PLV R npr(t)

that the discriminabilty in the wide-band lItered signalse@ segment segment (5)

the Wscore pro le at the bottom) is much lower than in the norparget

prede ned brain rhythms. segmemGA—PLV'-F! Hr (1)

Contrasting "VPAC Measurements from Evoked The Relative-Increase pattern consisted of 21 PLV-values
and Event-related Responses indicating the in uence of cognitive task in the PAC-coupdin

The rststep toward the construction of a PAC-related biorkar  during the time-interval associated with each one of the mai
was to establish that the probed CFC phenomena could b&ERPs de ections.

indeed, associated with the examined cognitive processes of Figure 5B includes the derived patterns in the form of
the subject performed the auditory discrimination task. Theweighted directed graphs: the nodes correspond to brain mmgth
inherent experimental design (AERPs, which by-defaultideki and the edges to estimated levels of PAC. The color in each
two comparable stimulation conditions and requires context arrow re ects the weight of the corresponding edge, that is
related response), o ered a unique opportunity to test thatthe Relative-Increase in the strength of 'LHF interaction.
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FIGURE 4 | Contrasting the TVPAC pro les from the responses (of an NI subject) to target and non-target stimuli. (A) The averaged evoked/event-related
response is shown in black/blue.(B) A rough summary of ' YPAC measurements estimated by means of averaging across dtequency-pairs (LF, HF), independently
for each latency.(C) A summarizing pro le derived by keeping the maximum PLV valuat every latency.

The depicted snapshots of functional connectivity strengihg Relativedi erence(de ection) D
are clearly suggestive of a positive correlation between CFC NI [~
and the cognitive task. The strongest increase emerged GA PLMip HE(t) GA PR HE(Y)
during the P300 de ection and was associated witltl aa; segment segment ©)
interaction. ! GA PLViA ne(t)

segment

Contrasting "VPAC Measurements from

aMCl-patients and NI-subjects The most important observation, that can be made based on
Considering the previous observation about the increasefiigure 6, is that the CFC di erences are neither unidirectional
CFC associated with cognitive responses, and as the next stegy stable across the dierent segments. Hence, it is not a
before introducing the CFC-related biomarker, we proceedegtraightforward task to craft a biomarker based dKMPAC-

by comparing theVPAC measurements between the patientgneasurements. Despite this complexity, the level of relative
and the healthy controls, based on their responses to targéf erence approaches the 30% (in both directions), which
stimuli. From the corresponding 3D tensors of the group-is much higher than the corresponding dierence in the
averaged measurements?MC! GA PLV and N'GA PLV, morphology of grand-averaged responses (showFigure 6A).

we derived patterns of cross-frequency coupling that were

associated with the latency-range of the three main deceti The CFC-Biomarker: Insights into the  TVPAC

in the Group-averaged waveforms (N100, N200, P300; dseatures

shown in Figure 6A). These connectivity snapshots haveTaking into account the observed non-stationarities, we
been presented in tabular format for NI and aMCI groups,attempted to de ne a single, though composite, biomarker
respectively, in the rst and second row oFigure 6B that could encompass the complex dynamics of cross-frequency
The patterns in the last row are reecting the contrastinteractions for the sake aMClI detection. Following the niaeh
between the paired-patterns, which has been formulatettarning methodology described in Section Handling TVPAC
as a relative dierence expressing departure from normaMeasurements and Identifying Discriminative Events, we rst
behavior. identi ed the most discriminative instances of CFC alongtwi
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FIGURE 5 | Contrasting the CFC during responses to target and non-target stimuli based on group-averaged data from NI subje cts. (A) The N100,
N200, P300, and SW de ections were rst detected in the wavefom of Grand-Averaged ERPs response(B) Using the corresponding temporal segments,
PAC-related connectivity snapshots were then derived, fotarget and non-target stimuli separately, and then used to xpress the relative increase in coupling. A
common color scale was used across for all shown graphs.

the participating brain rhythms. Toward this end, we rst drawn a sequence of connectivity patterns, in which the edge
derived a 3D tensor of Wscoreralues. That tensor was of a sizecolor indicates the relative-di erence and, also, its sigror
equal with the size of PLV-related tensors (i.e., [77 50]). this timeseries, we can specify that the above mentidredb;
The entries of the tensors contained the separability batweemodulation corresponds to the latencies of SW de ection, while
aMCIl and NI participants and were parameterized by thethe by! g modulation corresponds to the latencies of N200
interacting frequencies and the temporal segments. To gaide ection (seeFigure 6A). Both interactions exhibit increased
some insights into that set of measurements, we identi edstrength in the case of aMCI subjects. However, the set ot mos
independently for each segment, the maximal PLV-valueliscriminative interactions includes also interactionsowsing
(among the 21 included in the corresponding connectivitythe converse trend. One should notice that the level of et
snapshot). The obtained temporal pro le has been included irrelative-di erences, now, ranges from 50% decrease to 120%
Figure 7A, providing additional evidence about the dynamicincrease and compare it with the level shown Rigure 6B,
nature of the PAC-phenomena and the way they deviate betweeavhich corresponded to lower-resolution analysis (segmeifits
healthy and impaired cognition. This temporal perspective wamorphological components).

complemented by an interaction-pattern perspective, which

was derived by estimating the maximum PLV-value across timéhe CFC-Biomarker: Design and Performance

(i.e., among the set of corresponding 50 values) indepenglentMeasures

for each LF HF interaction. The emergent pattern has beenThe comparative study between the two groups of participants
included, as a weighted directed graphFigure 7B with edges revealed that in order to fully exploit thE/ PAC measurements,
colored in proportion to the Wscore From this graphical for the purpose of aMCI detection, it was mandatory to
synopsis of interactions between brain rhythms, two intéoas ~ resort to a learning machine. The framework of multivariate
appear to stand-up, namely'a by andby! g. Itis necessaryto classiers was appropriate for incorporating the derived PLV-
mention here, that in the particular visualization the indetions  values and implementing the discrimination task (aMCl-pat&
have been scored according to their importance in the paricul vs. NI-subjects). Since the emphasis of this work was put
task of discriminating between aMCl-patients and NI-sulbgec on feature-engineerin(3engio et al., 20)3we employed two
without providing any hint about the “loss” or “gain” in CFC- widely-used classi ers and refrained from further improgin
strength due to cognitive impairment. For this reason, weaMCl detection by means of a more sophisticated classi er.
accompanied the above two perspectives with the additionale rst experimented with the k-nearest-neighbor classier
one of evolving-graphs F{gure 7Q. Using the patterns of and then with thelinear support vector machinéSVM). Since
relative-di erence (derived in analogy with Equation 6, butthe obtained results were slightly better for the lattemirag
based on particular segments), from the segments correspgndimachine, we decided to conne the following presentation
to the 9 maxima inFigure 7A (indicated via red discs), we have accordingly.
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The feature-vectors (FVs) used as input to the SVM consistedassi er had been previously trained using the FVs of the rest
of the 30 most discriminative’¥ PAC-related characteristics, of 39 subjects, who had been considered of known classi cation
as identi ed from the feature-ordering step, which was basedy comparing the SVM predictions with the correct labels, we
on Wscore. The reader can refer to the visualization ofestimated classi cation accuracy and in addition the séwvisjt
Figure 7C where the most informative among the candidateand speci city of the introduced biomarker. The second scleem
characteristics have been included. The dimensiongityD was a two-fold cross-validation2{CV), that was repeatedly
30 of the FVs was set experimentally. Starting with the twapplied as follows. We randomly picked a group of 35 subjects,
most discriminative PAC-characteristics, namely the RLyy  for whom the classi cation labels were considered to be known
(870ms) and PLWx ¢ (270ms), we continued to include (training-set). The remaining 5 subjects formed the secfuid,
features according to their ranks and measuring the perfaroea for whom the classi cation labels were considered unknown. A
of the SVM classi er. The classi er peaked its performanceraft SVM was rst trained based on the FVs of participants in the
including the 30th characteristic and kept behaving eqeintdy  training set and, then, used to predict the classi cationdksbof
till the 50th one. the participants in the test-set. The SVM predictions were ueed t

The introduced biomarker was realized via feeding theassess the performance. The whole procedure was repeated 200
30D FVs to thesvmtrain and svmclassiffunctions from the times and the mean values of accuracy, sensitivity and spci ¢
statistics and machine learning toolt@XVIATLAB. To reliably were nally reported. Table 2 includes the results from both
estimate its performance in the task of aMCIl detection, wevalidation schemes.
employed two alternative validation schemes, which asdesse
how the biomarker would perform to an independent data sefComparing with Alternative Representations
of AERP-responses. The rst scheme wasl#@e-one-out cross- As the very last part of this study, we applied the overall machine
validation (LOOCV). Each subject, in turn, was considered oflearning methodology to representations of the cognitive
unknown classi cation. By using his FV, a diagnosis (impdire responses obtained via diverse methodological approaches.
or healthy) was attempted, through the SVM classi er. TheStarting with an initial set of extracted characteristios, ranked

FIGURE 7 | Identifying discriminative PAC-interactions (gro up-level
analysis). (A) The temporal pro le of the (quasi-instantaneous) maximal
separability measure and the identi cation of the timing of rast discriminative
PAC couplings.The 9 red discs indicate the local maxima in #htimecourse.
(B) A graphical representation of the maximal PAC-couplings {acked across
time). (C) Snapshots of differences between grand-averaged PAC-paétrns, at
instances of high discriminability. The shown graphs corspond to the 9
segments detected in(A). Positive/negative values of Relative-Difference
indicate higher/lower PAC for the MCI participants relativg to NI participants.
To enhance visibility, edges associated with a Wscordower than 2 are not

shown.

FIGURE 6 | Comparing the level of CFC in cognitive responses, TABLE 2 | Biomarker performance in aMCI detection—SVM operatin g on
between NI and aMClI participants. (A)  Grand-Averaged waveforms from TVPAC characteristics.
the cognitive responses (AERPs) of both groupgB,C) Group-related
(grand-averaged) PAC-connectivity patterns for the tempal-segments % LOOCV 2-CV
corresponding to N100, N200, and P300 de ections. (D) The corresponding
patterns of relative differences, derived so as to expresseliation from Accuracy 97.5 95.0
normality; red/blue indicates higher/lower PAC levels in MGlubjects relatively Sensitivity 100.0 96.0
to NI subjects. o

Speci city 93.3 93.0
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its elements according to the Wscormdex and selected the added to the available EEG-related diagnostic tests foritegn
most discriminative ones as the set of FVs to be fed into aline impairment (Henderson et al., 2006; Lehmann et al., 2007;
SVM so as to achieve the classi cation between aMCl-patientsbasolo et al., 2008; Dauwels et al., 2010; Laskaris eDaR; 2
and NI-controls. The achieved classi cation performanceswalatchoumane etal., 2012; Fragaetal., 2013; TarnanasX&ia,
expressed as in the case of the introducBdPAC-based 20150).
biomarker. EEG signals are nonlinear and non-stationary signals and
The rst utilized representation was based dime-locked contain oscillatory activity generated by di erent corticaleas.
averagingTLA), and included the set of 7 temporal waveformsTo understand the interactions between brain rhythms of
(one for each brain rhythm) as extracted characteristics (7 di erent frequency content, EEG signals should be studied in
1024). It encapsulated the temporal patterning of cognitivéaerms of CFC Canolty and Knight, 2010 There are four
response and was well-aligned with the conventional (awetag main types of CFC as documented idefisen and Colgin,
format, that these responses are encountered in clinicatipeac 2007: (i) power to power, (ii) phase to phase, (iii) phase to
The second examined representation was basedsbort- frequency, and (iv) phase to power. There is accumulating
time Fourier transform(STFT) and included the averaged evidence thatthe last form of CFC, the so- called phase-anajgit
(across-trials) spectrogram. That representation is gelyera modulation-coupling (PAC), occurs very ofterC¢hen, 2008;
considered suitable for incorporating the spectro-temporalOsipova et al., 2008; Tort et al., 2008, 2009, 2010; Cohe8; 200
pro les of event-related induced oscillations. Finally, as Cohen et al., 2009a,b; Colgin et al., 2009; Axmacher et al.,
alternative representation suitable for incorporating thelthn ~ 2010a,b; Voytek et al., 201t is hypothesized that CFC between
scale character and the non-stationarities of the respotige, di erent frequency bands within and between sensors is the key
averaged scalogram derived Wrlet wavelet transforffVT)  mechanism for the integration of both local and global proesss
was examined. The scoring of the involved characteristics iand hence being related to the uninterrupted communication
the case of TLA can be seen iRigure 3C The relevant between dierent brain states expressed within a charadieris
scoring corresponding to the two transforms has been inaudefrequency band@anolty and Knight, 2010; Buzsaki and Watson,
as Supplementary Materialable 3 presents, in comparative 2012.
fashion, the accuracy of all the potential biomarkers as this The pivotal role of CFC in neuronal computation,
was assessed, via cross-validation, based on the avalkthle communication and learning has been recently demonstrated.
It should be noticed here that the nal number of selectedin particular, the strength of PAC diers within and across
features had been optimized independently for each approadirain areas in relation to task, changes rapidly in response to
(as described is Section The CFC-Biomarker: Design ara stimulus (visual and auditory or both), motor and cognéiv
Performance Measures). Froifable 3 the superiority of the events and (anti)-correlates with performance during léagn
introduced representation (compare rst row with the rest @je tasks Canolty and Knight, 2010 Thus, CFC might serve as a

becomes evident. key mechanism of a syntactical organization of communarati
between brain areas that oscillate on a prominent frequency
Discussion characteristic of a speci ¢ cognitive function. Phase ostrates

such communication, while the interacting direction (towlar
A novel connectomic biomarker for detecting aMCl wasthe amplitude of a higher frequency rhythm) further supports
introduced, based on time-resolved estimates of croggifrecy  the idea of hierarchical cross-frequency coupling orgaivma
coupling estimates from single-trial cognitive responsesrged  (Buzsaki and Watson, 20J.2In a recent study, based on
during an ordinary auditory oddball paradigm. It is based onnormal aging and a short-term memory task, CFC unfolded the
a multiparametric signature of cognitive processes and its ec ine cient organization of competing brain networks and nal
the complex dynamical interactions among brain rhythms thaindicated the neural mechanism which is responsible for this
take place during the stimulus evaluation. Our experimenotai integration breakdownHFinal et al., 201)5
showed a high classi cation rate (95%) based on the proposed PAC phenomena, often mentioned as “nested oscillations,’
TVPAC features. In addition, the superiority of our approachoccur when the amplitude of an oscillation at a particular
against alternative popular methodologies was demonstiiayed frequency is modulated by the phase of a lower frequency
bringing them within the same learning framework (S&ble 3.  oscillation. This form of CFC has been suggested as the key
The novel concept of dynamic CFC during AERPs response iwechanism for, amongst many others signi cant cognitive
functions, working memory Jensen and Lisman, 1998patial
exploration (isman and Buzsaki, 20)3&and visual perception

TABLE 3 | Comparing representations based on the performance of (Van Rullen and Koch, 2003; Palva and Palva, XGMDI‘GOVGI‘,

SVM-based aMCI detection. it is the cross-frequency coupling between di erent frequenc

Accuracy (%) LoocvV 2.cv bands that has been hypothesized to be the carrier mechanism
for the interaction of local and global processes and henaggbei

Veac 975 950  directly related to the integration of distributed informah (Jirsa

TLA 70 635  and Mdller, 2013

STFT 62.5 64.4 The proposed biomarker exploits the dynamic behavior of

WT 775 755  the phase-to-amplitude coupling (PAC) between frequency pairs
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(Canolty and Knight, 2010; Voytek et al., 2010; Jirsa and Muller The frequency pairs that showed signi cant higher PAC value
2013. There are various indications about neural oscillationdor MCl compared to NI group arethd ap,” ap," b1," g,
interacting in a time-varying mannerBuzsaki and Draguhn, b; gandby g (Figure 7). Previous studies demonstrated a
2004; Buzsaki, 2006; Buzsaki and Watson, RONeural decreased adamplitude in auditory tasks for MCI compared to
oscillations re ect interactions between the time (phasayl a the control group {ener et al., 2012; Bagar et al., 2013; Yener
the amplitude of oscillatory activity of individual comportsn and Basar, 2013; Kurt et al., 201 this context, the higher
captured even from a single sensor. Task-relevant osciltidd coupling of d phase with" amplitude in MCI subjects can be
di erent frequency component recorded at a single sensor re ecinterpreted as an increased attentioniitriadis et al., 2010a;
di erent cognitive functions related to speci c local braimems. Bagsar et al., 2013; Kurt et al., 2014 oscillations change during
Studying CFC in a dynamic fashion while subjects performed attention focusing@auseng et al., 200®#hile the phase coupling
task is of signi cant importance. It is well-known that catél in " oscillation is known to re ect cognitive processes related
frequency ranges can form temporal windows in neural dynamicto memory Schack et al., 2002In MCI participants, memory
(Canolty and Knight, 2010; Buzsaki and Watson, J0@Rere information which in general is stored within a distributed
the phase of a lower-frequency band can modulate the amplitudeetwork, it is coupled with stronger PAC value compared to NI
(power) of a higher frequency. In quasi-stable temporal windp  group with the amplitude ofp, b1, andg frequencies showing
this form of communication via PAC can be expressed withthe higher demands for MCI subjects to synchronize memory
dierent frequency pairs which interact accordingly to the and attention statefauseng et al., 2008; Guntekin et al., 32013
demands of the task and the cognitive resources that shoeld bn a recent study, based on recordings from ratsluscio et al.
accessed to perform the task and to process the external stim(2012) showed that simultaneous maintenance of multiple items
and in general the task. in working memory is accompanied Byg phase-amplitude CFC

The scope of this work is to introduce a reliable dynamicin the hippocampus Eelluscio et al., 20)2Finally, phase ob
connectomic biomarker (DCB) for the detection of abnormalsub-bands demonstrated a higher PAC synchronization with
cognitive declinement due to MCI. To address the prominentfor MCI compared to NI group demonstrating high demands
non-stationarity of ERP functional connectivity and the to shift the system to an attention state as a result of higher
hierarchical organization of brain rhythms, the adaptatioha working memory load related to the counting mentally of the
dynamic functional connectivity approactD{mitriadis et al., frequent tone. Overall, frequency-pairs that showed highet P
2010b, 2012a,b, 2013a,b, 2015b; loannides et al., 2012 Kopalues for MCI compared to the age-matched healthy group
et al., 201)based on CFC(anolty and Knight, 2010; Buzsaki can be considered as a higher e ort needed for MCI patients
and Watson, 2012; Dimitriadis et al., 20)5s necessary. The in order to perform accurately the auditory oddball task and
predictive power of the proposed (TICB) was 9556n(itriadis, due to overloaded cognitive systems related to attention and
20159 and it is the rst TICB based on CFC biomarker in working memory. This hyper cross-synchronization observed
relation to a brain disease compared to various connectomim aMCI group is a signi cant nding of the current study. A
biomarkers extracted from static graphs (see revi€msrns, previous MEG study where control and MCI group performed a
2014; Stam, 2014; Braun et al., 20 recent study explored memory task higher synchronization values were revealed ov
cross-frequency modulations and revealed a disappearance tbé parieto-occipital region ira and b frequency bandsHajo
d modulations ofb frequency band and an appearance df et al., 2012g Finally, the combination of memory tasks with
modulations in the" frequency band, both intensi ed by the connectivity analysis can di erentiate healthy elderly frémose
severity of the diseasEr@aga et al., 20)3 with subjective memory complaint&gjo et al., 2019b

Our approach explored and quanti ed the multiplexity of  The main strengths of the present study are the signi cant
the brain in two groups while performing an auditory oddball MCI prediction improvement based on the proposed DCB,
paradigm under the notion of a dynamic CFC approach. Thecompared to standard techniques, and the single-sensor sinaly
features extracted for the training of the classi er wereGPA methodology. Limitations of the study are the middle-sized
values between frequency pairs at speci c time windows thagample of participants and adoption of an internal cross-
di ered between the two groupsF{gure 7). PAC values can validation scheme. Future studies will address those s$ssue
be expressed as basic symbols of the neural syntax implyitargeting a larger sample of MCI subjects, employing a second
the e ciency or de ciency of coding of the cognitive content one for blinded classication and external cross-validati
during a task-related stimulu3(zséaki and Watson, 20.L2PAC  Finally, a follow-up study for the subjects that progress to AD
phenomenon can be interpreted as the formation of “packetsin the next 2 years will be of higher interest in order to explore
of higher frequency waves nested within the phase of the slowéhe validity and the sensitivity of the proposed DCB to unfdie t
rhythms. At a quasi-stable time - window, the number of cgcle functional alterations, the ine cient organization of copeting
of the higher frequency encapsulated within the phase of thbrain networks and the nal integration breakdown due to the
slower frequency and this number is related to the amounprogression of the AD.
of information being exchanged between di erent brain areas In summary, this study proves that the PAC in cognitive
oscillating on their prominent frequency. According to theave  responses may be listed among the known functional changes
interpretations of results, our approach bears some simiéexit due to MCI. Its quanti cation, maybe in conjunction with o#r
with symbolic dynamics@imitriadis et al., 2012a, 2015b; Porta CFC modes as well, can lead to reliable biomarkers. It is idielyn
etal., 201p worth further investigation, based on extended clinical axf
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and longitudinal data, so as to empirically prove that the PAGIrugcandidates for neurodegenerative diseases in earligallin
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