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The detection of mild cognitive impairment (MCI), the transitional stage between normal

cognitive changes of aging and the cognitive decline caused by AD, is of paramount

clinical importance, since MCI patients are at increased risk of progressing into AD.

Electroencephalographic (EEG) alterations in the spectral content of brainwaves and

connectivity at resting state have been associated with early-stage AD. Recently,

cognitive event-related potentials (ERPs) have entered into the picture as an easy to

perform screening test. Motivated by the recent findings about the role of cross-frequency

coupling (CFC) in cognition, we introduce a relevant methodological approach for

detecting MCI based on cognitive responses from a standard auditory oddball paradigm.

By using the single trial signals recorded at Pz sensor and comparing the responses to

target and non-target stimuli, we first demonstrate that increased CFC is associated

with the cognitive task. Then, considering the dynamic character of CFC, we identify

instances during which the coupling between particular pairs of brainwave frequencies

carries sufficient information for discriminating between normal subjects and patients

with MCI. In this way, we form a multiparametric signature of impaired cognition.

The new composite biomarker was tested using data from a cohort that consists of

25 amnestic MCI patients and 15 age-matched controls. Standard machine-learning

algorithms were employed so as to implement the binary classification task. Based on

leave-one-out cross-validation, the measured classification rate was found reaching very

high levels (95%). Our approach compares favorably with the traditional alternative of

using the morphology of averaged ERP response to make the diagnosis and the usage

of features from spectro-temporal analysis of single-trial responses. This further indicates

that task-related CFC measurements can provide invaluable analytics in AD diagnosis

and prognosis.

Keywords: cognitive impairment, ERPs, phase-amplitude coupling, functional connectomics, dynamic
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Introduction

Alzheimer’s disease (AD) is a neuro-degenerative disorder,
characterized by loss of memory and declined cognitive and
intellectual abilities, that severely affects not only patients’ social
life but even their daily living. Currently, the diagnosis of AD is
performed via clinical neuropsychological tests with accuracies
ranging from 85 to 93%. However, this widely-used procedure
requires long sessions in hospitals and the involvement of
experienced staff (Paajanen et al., 2014). For this reason, the
definition of a reliable, low cost and, preferably, non-invasive
biomarker for the early diagnosis of AD is an active research
area. Toward this end electroencephalography (EEG) has been
adopted as a potential screening method, since functional
alterations due to ADmost probably are reflected in the recorded
cerebral activity of a patient (Ponomareva et al., 2013).

From the methodological side, the existing approaches fall
in either of the two main streams in brain signal analysis:
spectral and nonlinear dynamics (Dauwels et al., 2010, 2011).
Regarding the first and most popular trend, earlier studies have
demonstrated increased brain activity for δ (0.1–4Hz) and θ

(4–8Hz) frequency bands and decreased activity for α (8–12Hz)
and β (12–30Hz) frequency bands in AD patients (Cibils, 2002;
Dauwels et al., 2010). In terms of brain connectivity, a reduced
inter-hemispheric coherence for both α and β bands has been
associated with AD (Dunkin et al., 1994; Locatelli et al., 1998).
In addition to the alterations observed in the characteristics of
brainwaves (spectral power and coherence), a correlation with
the severity of disease has been demonstrated as well (Kowalski
et al., 2001). In a more recent study, the quantification of cross-
frequency amplitude-to-amplitude modulations during resting-
state was introduced as a means of differentiating patients with
mild AD symptoms from patients with moderate symptoms
(Fraga et al., 2013).

Mild cognitive impairment (MCI) is considered as the
transitional state between normal cognitive decline due to normal
aging and the cognitive decay caused by AD. MCI subjects are
in general at higher risk of suffering from dementia, where
an extensive variation in annual conversion rates to AD was
observed in many studies ranging from 10.2 to 33.6% (Espinosa
et al., 2013). The neuropathology of MCI may exhibit the
complex features of the early stages of AD, such as genomic
alterations, plaque formation, changes in protein metabolism,
synaptic dysfunction, and cellular injury (Stephan et al., 2012).
There are increased research efforts to define a methodology
for the reliable detection of MCI patients (Young et al., 2013).
The timely identification of such patients provides the clinicians
with the opportunity to organize therapeutic pharmaceutical
treatment (Doody et al., 2014) or alternative interventions like
serious gaming (Mosimann et al., 2004; Bahar-Fuchs et al., 2013;
Tarnanas et al., 2014b; Muscio et al., 2015; Tarnanas et al.,
2015a,b) and neurofeedback training (Fernández et al., 2008;
Berman and Frederick, 2009; Becerra et al., 2012) at the very
early stages of the AD, well before the neurogenerative processes
have pushed the cognitive substrate to the “point of no return.”
The early detection of MCI patients can enhance a positive
response to therapy. The last decade different subtypes of MCI

has been recognized, and a recommended diagnostic strategy is to
technically dichotomize the patients into those of amnestic type
(aMCI) and non-amnestic ones (Winblad et al., 2004). The aMCI
patients form a cohort of particular clinical importance, due to
the associated high conversion rate to AD (6 times higher risk
than the age-matched controls) and the empirical observation of
similar neuropathological findings with patients at early AD stage
(Petersen et al., 1999).

The majority of MCI patients exhibit, at first, a
cognitive decline in episodic memory. Apart from related
neuropsychological clinical screening tests (e.g., MMSE),
various neuroimaging techniques such as functional magnetic
resonance imaging (fMRI), volumetric magnetic resonance
imaging (vMRI), and positron emission tomography (PET) are
also employed for the clinical diagnosis of MCI (Ewers et al.,
2010; Patterson et al., 2011). On the contrary, EEG has not been
widely incorporated into clinical practice as a diagnostic tool for
detecting MCI and the rate of subsequent progression to AD.
There is however a certain amount of published research work
(Babiloni et al., 2010; Başar et al., 2013). This includes studies
of functional connectivity as reviewed in Wen et al. (2015) and
a few quantitative EEG (qEEG) studies reporting MCI-related
alterations in the spectral characteristics of the recorded brain
signal (Jelic et al., 2000; Moretti et al., 2012).

Recently, cognitive ERP studies have gained popularity for
understanding and revealing dementive disorders (Frodl et al.,
2002; Polich and Corey-Bloom, 2005; Jackson and Snyder, 2008;
Papaliagkas et al., 2008, 2011; Lai et al., 2010; Missonnier
et al., 2010; Laskaris et al., 2012), since they can target at
specific mental faculties (the same that are scrutinized via
neuropsychological screening) with the additional advantage of
leading to directly quantifiable indices. Among the possible
experimental designs (Olichney et al., 2002; Güntekin et al., 2013;
Gozke et al., in press), the standard auditory oddball stimulus
paradigm for Audiroty Event Related Potentials (AERPs) is
the simplest to perform. After averaging the brain responses
from the AERPs when targeting auditory tones, two of the
main morphological components (known as N200 and P300
based on their polarity and latency) appear deteriorated in
the case of MCI patients (Ritter et al., 1984; Golob et al.,
2001). P300 is an endogenous brain response that occurs as a
positive deflection, roughly, 300ms after the onset of stimulus
whenever the subject detects a meaningful task-relevant stimulus
(Polich and Corey-Bloom, 2005). N200 is a faster component
that reflects cognitive processes of stimulus evaluation, selective
attention, and conscious discrimination (Patel and Azzam,
2005). Despite the well-recognized difficulty in identifying the
neurophysiological origin of these deflections (Polich, 2007),
the related latency and amplitude measurements are considered
to suffice for assessing cognitive decline (Muscoso et al., 2006;
Bennys et al., 2007; Golob et al., 2007; Caravaglios et al., 2008).
More recently, the characteristics of event-related oscillations
participating in the AERP response were brought into focus, with
promising results regarding the clinical evaluation of MCI/AD
(Yener et al., 2012; Yener and Basar, 2013).

Here, we delve into the event related oscillations and
scrutinize further the underlying mechanisms so as to identify
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novel signatures of cognitive impairment. In particular we study
the functional interactions between distinct brain rhythms, based
on traces of oscillatory activity derived by filtering the single-
trial responses within the standard frequency bands (δ, θ, α1, α2,
β1, β2, γ1). The motivation came from the -recently established
in neuroscience- concept that CFC is a key mechanism for the
integration of distinct processes mediated by the distinct brain
rhythms, and the rapidly accumulating experimental evidence
about its role in cognition (Jensen and Colgin, 2007; Canolty and
Knight, 2010; Palva and Palva, 2011; Buzsáki and Watson, 2012;
Jirsa and Müller, 2013; Dimitriadis et al., 2015a). Four different
types of CFC are usually mentioned (Jensen and Colgin, 2007),
with each one considering a particular interaction mode (power
to power, phase to phase, phase to frequency, and phase to power)
between two distinct brain rhythms. Among these the fourth
scenario, according to which the amplitude of a brain rhythm
is modulated by the phase of a lower-frequency rhythm, is the
one most often confirmed by experiments (Tort et al., 2008, 2009,
2010; Cohen et al., 2009a,b; Colgin et al., 2009; Axmacher et al.,
2010a,b; Voytek et al., 2010).

For this work, we adopted a phase-to-amplitude (PAC)
estimator and quantified the CFC between event-related
oscillations recorded at the Pz electrode during an AERPs
paradigm so as to test the hypothesis that the cognitive responses
in aMCI patients are associated with deviations from a “normal”
profile of interactions between brain rhythms. For this reason the
CFCwasmeasured in the AERPs responses of non-impaired (NI)
elderly subjects as well. Since there had been no previous work on
the particular topic, we followed different stages of analysis so as
to verify that PAC estimates could lead to potential descriptor(s)
of cognitive response dynamics and indicators of impairment.
First, we examined the CFC in the case of normal subjects and
demonstrated, by contrasting the responses to target and not-
target stimuli that cognitive responses are associated with higher
PAC levels. That stage of analysis revealed the transient and
multifaceted nature of cross-frequency interactions that called
for sophisticated analysis that could handle the dynamic nature
of the examined phenomena. Next, we adopted the approach
of evolving (i.e., time-varying) patterns of function interactions
and formulated the search for a PAC-based biomarker as a
pattern analytic task. Following a statistical learning scheme (that
operated toward maximizing the discrimination between the
aMCI patients and controls), we then selected the time instants
and particular frequency-pairs that should be incorporated in
building an effective biomarker. Finally, we employed a standard
classifier so as to quantify the actual performance of the
proposed PAC-based profile in aMCI detection. In addition,
the overall learning scheme was repeated using morphological
characteristics of the averaged AERP responses and spectro-
temporal characteristics derived via single-trial analysis. The
attempted comparison showed that the introduced approach not
only provides new insights to the neuronal substrate of impaired
cognition, but also outperforms the conventional data-analytics
employed in ERP analysis.

The structure of the remaining paper is as follows. Section
Materials andmethods start by introducing the data and proceeds
by introducing the PAC estimator as adopted for the purposes

of this work. Results section includes the main results of our
study, while some additional results have been appended as
Supplementary Material. The final section is devoted to the
discussion of the results and the future perspectives of this work.

Materials and Methods

Subjects
Twenty-five amnestic MCI (aMCI) patients composed the MCI
group (mean age ± std = 70 ± 5 years). The elderly (control)
group consisted of a total of 15 healthy individuals with a similar
range of ages toMCI group. All the participants provided written,
informed consent. The subjects were selected over a pool of
subjects that visit for regular interventions the Day Centre of
Greek Association of Alzheimer Disease and Relative Disorders
(GAADRD). The Ethics Committee of the Greek Association of
Alzheimer Disease and Relative Disorders approved this study.

All subjects were assessed with a standardized
neuropsychological test battery and aMCI was diagnosed
using the following criteria: (1) memory complaint, (2) abnormal
memory for age, (3) normal activities of daily living, (4) normal
general cognitive function, and (5) not demented (Tarnanas et al.,
2015b). Conspicuous brain abnormalities that could account
for cognitive decline were excluded using structural magnetic
resonance imaging (MRI) data. The baseline neuropsychological
evaluation covered the following cognitive domains: episodic
and working memory, attention/psychomotor processing speed,
executive function, language, and visual-constructive abilities.
Impairment was determined if at least one score per domain was
1.5 SD below group means compared to test-specific normative
data (Petersen andMorris, 2005). The overall evaluation typically
included one or more composite or global measures of cognitive
function such as theMini-Mental Status Exam (MMSE), Folstein
et al. (1975) and the Dementia Rating Scale (DRS), Mattis
(1976). The participants were also assessed with conventional
neuropsychological tests like Stroop Color-Word Interference
Test, Trail-Making Test-B and Digit-span. More complex tasks of
executive function were assessed by the Wisconsin Card Sorting
Test. Memory assessment was based on the Rey Auditory Verbal
Learning Test. Visuoconstruction was assessed with tasks like
clock drawing.

Assessment of mood and emotional state is a critical
component of the evaluation of the MCI patient as emotional
distress can cause or exacerbate cognitive problems. The
assessment of mood was comprised of interview data and
responses to brief self-report measures, such as the miniGeriatric
Depression Scale. Neuropsychological scores for each population
are presented in Table 1.

As individuals age, they may experience changes in their
auditory processing and/or cognitive abilities. In the present
study, a neurologist performed the auditory test to assess the
hearing level of both groups. Groups didn’t differ significantly on
the hearing level.

Recordings
The standard auditory oddball paradigm was employed, as
summarized below. Participants were engaged in a simple
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TABLE 1 | Means and SDs of demographics and general

neuropsychological abilities.

Older adults aMCI patients ANOVA/

(n = 15) (n = 25) ANCOVAS

DEPRESSION

Mini GDS (cut-off <2/5) 0.4 (0.9) 0.1 (0.3) F < 1

GLOBAL COGNITION

MMSE 28.9 (0.8) 26.7 (1.6)* F(2, 49) = 83.8***

DRS 21.9 (11.9) 42.9 (15.1)* F(2, 49) = 25.8***

EXECUTIVE FUNCTIONS

WCST 18.8 (8.7) 25.1 (7.9) F(2, 49) = 8.2**

TMTB-A (s) 45.9 (13.4) 53.1 (24.1) F(2, 49) = 12.9***

Stroop 158.4 (119) 66 (48) F(2, 49) = 3.79*

Forward span 6.1 (0.3) 5.3 (1.3)* F(2, 49) = 14.9***

Backward span 3.6 (0.9) 2.9 (0.6)* F(2, 49) = 10.6***

VERBAL MEMORY

Delayed recall 15.9 (0.25) 13.3 (1.6)** F(2, 49) = 33.9***

Total recall (3 trials) 45.8 (1.3) 32.7 (8.2)*** F(2, 49) = 77.9***

Delayed total recall 15.9 (0.4) 11.6 (3) F(2, 49) = 95.1***

Intrusions 0 1.7 (1.4)** F(2, 49) = 28.1***

Perseverations 0 0.7 (1.5) F(2, 49) = 9.9***

Recognition: hits/false

recognitions

15.8 (0.5)/(0) 13.5 (1)/1(1) F(2, 49) = 9.75***

F(2, 49) = 5.1*

*p < 0.05, **p < 0.01, ***p < 0.001.

discrimination task. Two different tones were sequentially
applied. The standard or non-target stimulus was appearingmore
often than the target stimulus. The series of tones was presented
in randomized order, binaurally and at 70 dB sound pressure
level (SPL) with a 10ms rise/fall and a 100ms plateau time. The
standard (target) tone was set at 1 kHz (2 kHz) and corresponded
to 80% (20%) of the stimuli, while the inter-stimulus time interval
had been set as 2 s. The subject’s task was to distinguish between
the two tones by responding to the targets (via mentally counting
them) and not responding to the rest stimuli. Participants had
been instructed to pay attention in distinguishing the tones,
count the target tones silently and report the total number at
the end of the exam. Only subjects that “performed reasonably
well,” had been included in the study. To this end, we included
data from participant that reported a number of listened targets
that deviated less than 3 from the actual number of delivered
target tones. In addition, each subject was tested twice and the
reproducibility of the averaged AERPs response waveform was
examined (Näätänen et al., 1978).

EEG activity was recorded with a Neuropack 4 (Nihon-
Kohden, Tokyo) equipment, after bandpass filtering within
(0.1–50)Hz, with a sampling frequency fs = 1024Hz from scalp
AgCl electrodes at Cz and Pz sites according to the 10/20 system
referred to linked earlobe electrodes, with a right hand ground.
Signals had been segmented into single-trial segments of 1 s
duration, lasting from −100ms to +900ms with respect to
stimulus onset. An on-line routine had automatically removed
artifact contaminated trials based on extremely high amplitude
levels. The recording was terminated as soon as a predetermined

number of responses to target stimuli (30 trials) had been
collected. The two types of trials (responses to target and non-
target tones) were stored as distinct datasets for each subject. An
additional artifact trimming step, based on the pattern analytic
methodology of (Laskaris et al., 1997; Laskaris and Ioannides,
2001), was introduced so as to exclude any subtler outliers missed
by the online routine. Additionally, we inspected visually the
trials to further diminish any outlier missed by both the online
routine and the pattern analytic methodology.

Electrophysiological activity was recorded from two different
electrode positions at CZ and PZ but we analyzed the trials
recorded from Pz. N100, N200, and P300 components are
more prominent in PZ compared to CZ in an auditory oddball
paradigm with counting process (Huang et al., 2011). Moreover,
in general ERPs and the related components aremeasuredmainly
across the midline (FZ, CZ, PZ). Additionally, the N100, N200,
and P300 are often measured mainly at the central (Fz, Cz, Pz)
electrode sites with lateral electrodes typically not assessed, since
the midline scalp distribution provides significant information
about the attentional andmnestic processes thought to contribute
to P300 generation (Donchin et al., 1986; Donchin and Coles,
1988; Picton, 1992; Johnson, 1993).

Mental counting in an auditory oddball paradigm is a
demanding task that needs various resources in order to be
completed like concentration, attention, perception, cognition,
and memory. The functional abilities and generators of N100,
N200, and P300 in the brain have been reported. N100 is
involved in general attention, and its generator is regarded as the
primary auditory cortex (Hillyard et al., 1973; Kaga et al., 2004)
where the most closest sensor in the midline closed to temporal
lobe is Pz. P300 is involved in selective attention or cognitive
ability, and its generators are regarded to be the hippocampus
or limbic system and cerebral cortex (Donchin et al., 1975,
1986; Halgren et al., 1980; Donchin and Coles, 1988). N200
is involved in pre-attentive detection and superimposed with
mismatch negativity and it is a faster component that reflects
cognitive processes of stimulus evaluation, selective attention and
conscious discrimination (Patel and Azzam, 2005).

Methods

In contemporary neurosciences, the various patterns of
oscillatory activity are considered as signatures of the cortical
networks and key players in brain function by shaping the
dynamic substrate of perception, memory, and consciousness.
The oscillatory coupling between distinct neuronal assemblies
is postulated as a principal mechanism for information
exchange and integration (Varela et al., 2001; Buzsáki and
Draguhn, 2004; Buzsaki, 2006). Cross-frequency coupling has
recently been established as an additional communication
channel and provided a novel perspective for characterizing
and understanding the long established system of brain
oscillations (Canolty and Knight, 2010). Among the possible
CFC mechanisms, phase-amplitude coupling (PAC) is the one
most commonly encountered in experimental brain research.
Here, PAC is examined among the following 7 brain rhythm,
{δ, θ, α1, α2, β1, β2, γ}, defined respectively within the ranges
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{2–4Hz; 4–8Hz; 8–10Hz; 10–13Hz 13–20Hz; 20–30Hz, 30–
45Hz}. Among the available PAC estimators, we adopted the
one based on the phase coherence measure (Cohen, 2008;
Voytek et al., 2010) and further adapted it so as to operate
across trials and provide time-resolved profiles of CFC that
would be studied in relation with the established components
of the cognitive response (N2, P300, SW). In the followings,
we first introduce the PAC estimator. Then, we describe its
“ensemble” operation mode that is denoted, hereafter, as time-
varying PAC (TVPAC). Finally, we outline the machine-learning
strategy employed for identifying the PAC-features with the
highest discriminatory power for aMCI detection. The latter
methodological step is an important ingredient of this work,
since our data-driven approach resulted in a multitude of PAC
measurements, parameterized by the (possibly-interacting) pair
of brain rhythms and the corresponding time-interval (that
the particular functional interactions occurred). To derive the
oscillatory activity of each brain rhythm, a 3rd order Butterworth
filter was applied, in zero-phase mode, to concatenate multi-trial
responses. After filtering, a segmentation into filtered single-trial
response was performed.

PAC Estimation: the Basic Algorithm
Described in a more generic setting, let x(t), t = 1, 2, . . . , T
is the recorded single-sensor signal at hand. Based on filtered
versions of this signal, cross-frequency interactions will be sought
complying with a form in which the phase of low-frequency (LF)
oscillations modulates the amplitude of high-frequency (HF)
oscillations. Using narrowband filtering, the two signals xLF(t)
and xHF(t) are first formed and, then, their complex analytic
representations zLF(t) and zHF(t) are derived by means of Hilbert
transform (HT[.]).

zLF(t) = HT[xLF(t)] =
∣

∣zLF(t)
∣

∣ eiφLF(t) = ALF(t)e
iφLF(t) ,

zHF(t) = HT[xHF(t)] =
∣

∣zHF(t)
∣

∣ eiφHF(t) = AHF(t)e
iφHF(t)

In this way the amplitude and phase dynamics, captured
respectively by the envelope A(t) and instantaneous phase φ(t)
signal, can be treated independently. Next, the envelope of the
higher-frequency oscillations AHF(t) is bandpass-filtered within
the range of LF oscillations and the resulting signal undergoes
an additional step of Hilbert transform so as to isolate its phase-
dynamics component φ′(t),

z′(t) = HT[AHF,LF(t)] =
∣

∣z′(t)
∣

∣ eiφ
′
HF(t) =

∣

∣z′(t)
∣

∣ eiφLF→HF(t)

that reflects the modulation of HF-oscillations amplitude by
the phase of the LF-oscillations. The corresponding timeseries
will be used to estimate PAC, by means of phase-locking (or
synchronization index) technique.

PLV(LF,HF) = PLVLF→HF =

∣

∣

∣

∣

∣

1

T

T
∑

t= 1

ei(φLF(t)−φ′
HF(t))

∣

∣

∣

∣

∣

(1)

Phase-locking value PLV ranges between 0 and 1, with
higher values indicating stronger PAC interactions (i.e., higher
comodulations).

Figure 1 demonstrates the previous algorithmic steps using
a single-trial ERPs signal from one of the NI subjects. PAC
interactions are examined, between LF oscillatory response
activations corresponding to θ brain rhythm and HF activations
corresponding to β1 rhythm. The original signal is shown in
Figure 1A. The HF version of this signal is depicted in Figure 1B,
along with its envelope. Just beneath (Figure 1D), is shown
the low-pass filtered (within θ frequency range) version of the
previous envelope [i.e., the Aβ1, θ(t) signal]. The overriding,
saw-like, trace corresponds to its instantaneous phases φ′

β1(t).
On the other hand, the LF version of the original signal is
depicted in Figure 1C, along with the trace of the corresponding
instantaneous phases φθ(t). The φθ(t) and φ’β1(t) traces have
been plot aligned in Figure 1E, so as to form the instantaneous
phase differences as shown in Figure 1F. It is this sequence of
phase-differences 1φ(t) that enters in Equation (1) and will
be “integrated” across time via averaging the corresponding
directional vectors ei1φ(t) in the complex domain. It becomes
clear that the length T of this sequence has to be long enough,
so as the PLV index to result into a reliable measure of PAC.

Across-trials PAC Estimation: the TVPAC
Estimator
To provide a time resolved PAC profile, that would incorporate
the event-related CFC interactions which occurred systematically
during the AERPs experiment, we invoked the standard
algorithmic strategy for estimating the timecourse of PLV in
multi-trial datasets. All the above mentioned steps leading to the
time-integration in eq(1), were performed for every single-trial
response xj(t), j = 1,..., N available for each subject.

Next, the set of derived phase-differences 1φj(t) was formed
and, finally, across-trial “integration” was performed.

TVPLVLF→HF(t) =

∣

∣

∣

∣

∣

∣

1

N

N
∑

j= 1

ei1φj(t)

∣

∣

∣

∣

∣

∣

(2)

This resulted in a PAC-trace that had the same temporal
resolution as the original single-trials. Considering the low
number of trials available for each participant (on average 27
trials), we decided to use a temporal window of 2w + 1 samples
and extend the integration in extracted segments around each
latency.

TVPLVLF→HF(t
′) =

∣

∣

∣

∣

∣

∣

1

N(2w+ 1)

t+w
∑

t′ = t−w

N
∑

j= 1

ei1φj(t′)

∣

∣

∣

∣

∣

∣

(3)

With the scope of avoiding redundancies, the above
computations were performed by means of a stepping window
(with no overlaps between successive segments). In the above
equation, this is implied by the time index t’, that runs over the
number of formed segments. Hence, the derived TVPAC-traces
were of reduced temporal resolution, so as to smooth out unduly
variations (in particular, a window corresponding to 20ms had
been employed).

Figure 2 demonstrates the operation of the employed TVPAC
estimator using (in continuation of Figure 1) the whole set of
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FIGURE 1 | The algorithmic steps for PAC estimation. Using the first single-trial signal (A), from the cognitive responses of a control subject, we demonstrate the

detection of coupling between θ and β1 rhythm. To estimate θ-β1 PAC, the raw signal was band-pass filtered into both a (B) low-frequency θ (4–8Hz) component

where its envelope is extracted as well as (C) a high-frequency β1 (13–20Hz) component where its instantaneous phase is extracted. (D) We then extracted the

amplitude and the instantaneous phase of the band-passed β1 (13–20Hz) and filtered this amplitude time series at the same frequency as θ (4–8Hz), giving us the θ

modulation in lower β amplitude. (E) We then extracted the instantaneous phase of both the θ-filtered signal and the θ-filtered lower-β amplitude and computed the

phase-locking between these two signals. The latency depended differences (F), will be used in estimating the phase-locking that will reflect the PAC-interaction

between the two involved brain rhythms. This phase-locking represents the degree to which the lower β (β1) amplitude is comodulated with the θ phase.

single-trial responses of theNI subject. The two panels in first row
visualize the computed instantaneous phases of θ-rhythm and
β1-envelope-related oscillations and the subsequently derived
phase differences 1φj(t). The TVPLV(t) timeseries computed via
Equation (2) is shown in Figure 3C. Smoother estimations of
latency-dependent PAC, computed via Equation (3) at varying
resolution, are provided in Figure 2D. To ease comparison,
the corresponding TVPLV(t′) sequences have been relatively
shifted along y-axis and superimposed on the full-resolution PAC
waveform.

Handling TVPAC Measurements and Identifying
Discriminative Events
For each subject independently the TVPAC profiles were
computed for all possible pairs among the 7 defined brain
rhythms. Hence, there were in total ½ × 7 × 6 = 21
(LF→HF) PAC-related sequences. Each sequence consisted of
50 measurements and stored in a vector, the dimensions of
which corresponded to distinct latencies (i.e., the temporal
segments they had come from). The basic form of handling
all PLV-measurements was this of a [21 × 50] matrix for each
subject. An alternative form to represent these measurements
was by means of a 3D array of size [7 × 7 × 50], which
corresponded to a time series of connectivity patterns (or graphs).
That was less economical in terms of memory storage (as
the entries corresponding to HF→LF interactions had been
zeroed), but conceptually more fruitful in terms of presentation.
With that approach, it become possible to visualize multiple

cross-frequency interactions at “latencies-of-interest” and detect
emergent event-related PAC patterns (for instance see Figure 6).

To systematize the comparison between aMCI patients and
NI subjects, the TVPAC measurements were considered as the
initial set of extracted features, based on which the classification
should be performed and a “filtering” scheme for selecting the
most useful among them was applied. The overall scheme was
based on matlab routine rankfeatures (with the “Wilcoxon”
criterion activated), that realized feature ordering based on a
score measuring class-separability. In more details, for each pair
of interacting frequencies and every latency the corresponding
PLV-measurements for both groups ({aMCI#PLVLF,HF (t′)}i= 1:25,
{NI#PLVLF,HF (t′)}i= 1:15) were gathered as two distinct sets of
scalars and then statistically compared by means of wilcoxon
rank-sum test that resulted in a score, denoted as Wscore, that
its higher values indicated more deviating distributions. The use
of wilcoxon test was motivated by its non-parametric nature and
established robustness. The main idea was that the selection of
important features for aMCI detection would be accomplished
by keeping the most discriminative ones; in other words, the
top-ranked entries from the [21 × 50] PLV-matrix of each
participant. The battery of selected PAC measurements would
form a composite multifaceted set of feature, based on which
a biomarker would be built by way of a popular multivariate
classifier.

Considering the small-sized sample situation of our study
(only 40 participants were included) and the danger of
“overfitting,” since we were obliged to optimize feature-selection
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FIGURE 2 | Across-trials PAC-estimation. By repeating the steps shown in the previous figure, the instantaneous phase differences for the whole set of

single-trials have been computed (A,B). The TVPAC trace [reflecting PLV(t) measurements for θ→β1 interaction], at full temporal resolution, is shown (C), together with

the ensemble average waveform (from the wideband signals). TVPAC traces from a stepping window (of various widths) are shown in D).

FIGURE 3 | An approximation of the temporal patterning of oscillatory

cognitive responses by means of Grand Averaging. The GA-traces for

Non-impaired controls (A), and aMCI patients (B), have been derived

independently for each brain rhythm. Using the corresponding temporal

patterns from all the 40 participants, the separability between aMCI patients

and NI controls has been measured at every latency and for each brain

rhythm. A common scale is used for all the traces within the same stack.

(C) To demonstrate the temporal separability of oscillatory responses, Wscore

is presented for each individual brain rhythm.

and then design a classifier using the same dataset, we decide
to introduce an additional step of bootstrapping (Hastie et al.,
2003). During that step, by sampling (with replacement) from
the available set of 40 PLV matrices, we built 1000 equal-sized

datasets and repeated the estimation of Wscore for each (LF, HF)
pair and latency t′. The consistency of each PLV-related feature
was measured by the following index:

Wscore∗ = Wscore∗(PLVLV→HF(t
′)) =

Wscorebootstraps

std(Wscorebootstraps)
(4)

Wscore∗ reflected (inversely) the coefficient of variation for the
measurements over the bootstrap samples and served as a refined
score for ranking the PAC-estimates. In that way, the reported
results (selected frequency pairs and latencies) enjoyed a power
that was not limited in the particular cohort of 40 participants.
More importantly, the corresponding bias during the subsequent
stage of designing the classifier (based on the selected top-ranked
features) was reduced.

Results

In this section, apart from the main results concerning
the introduced biomarker, we have included some additional
indicative results in order to provide further justification of
employing PAC in analysing AERPs responses and appreciate
its dynamic character. In what follows, only signals recorded
at Pz electrode have been considered. The section begins
with the presentation of the Grand-Averaged responses from
the two groups, so as to provide an indication about the
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difficulty of the problem of discrimination between aMCI
patients and NI-controls based on the temporal patterning of
the (supposedly) time-locked responses. Then, the emergence of
PAC as a prominent characteristic of the underlying cognitive
processes is demonstrated, by comparing PAC measurements
from responses to target and non-target stimuli. Next, aMCI is
shown to be accompanied by aberrations in the response-related
mechanisms of CFC. Then the design of biomarker using relevant
PAC-features is presented and its performance is evaluated.
Finally, some quantitative comparisons using popular alternative
descriptors are provided.

The Event-Related Oscillations and Grand
Averaged Responses
After filtering the single-trial responses within the frequency
bands defined for the examined brain rhythms, a set of
7 temporal patterns was obtained, for each participant, via
ensemble averaging. Figure 3, in the first two columns, presents
the corresponding within-group averaged responses in a stack-
plot format. In addition, the corresponding wide-band patterns
(after band-pass filtering of single-trials within 1–45Hz) have
been appended at the bottom of each stack, making easier the
identification of the main morphological components of AERPs,
namely N100, N200, P300, and SW (slow-wave component). It
becomes apparent that the discrimination between aMCI patients
and NI subjects, based on the patterning of (averaged) cognitive
responses, is not an easy to perform task. To express such a
trend in quantitative terms (that in addition would facilitate
comparisons among the various rhythms), we considered these
temporal patterns as set of distinct features extracted from each
subject (in total 8192= [(7+1) bands× 1024 latencies]) and used
the wilcoxon score tomeasure its potentiality for aMCI detection.
The rightmost column in Figure 3 presents the computed
Wscore-measurements in a format fully compatible with the
associated temporal patterns. It is evident that each oscillatory
component shows its own idiosyncrasies which predominantly
reflect the corresponding characteristic timescale. Furthermore,
some morphological components appear as coupled (i.e., time-
locked) with the discriminability of some particular oscillatory
components (for instance SW component coincides with
an increase/decrease in discriminability of α1/α2 rhythm).
Interestingly, the γ1 rhythm is associated with the higher
Wscores, the temporal profile of which shows a clear modulation
from a slower oscillation rhythm. Finally, it is worth noting
that the discriminabilty in the wide-band filtered signals (see
the Wscore profile at the bottom) is much lower than in the
predefined brain rhythms.

Contrasting TVPAC Measurements from Evoked
and Event-related Responses
The first step toward the construction of a PAC-related biomarker
was to establish that the probed CFC phenomena could be,
indeed, associated with the examined cognitive processes of
the subject performed the auditory discrimination task. The
inherent experimental design (AERPs, which by-default includes
two comparable stimulation conditions and requires context-
related response), offered a unique opportunity to test that.

We systematically compared the TVPAC estimates obtained
from trials, in which a non-target stimulus had been delivered,
with the corresponding estimates from trials required from the
participant to perform the cognitive task (i.e., detection and
mental counting).

Figure 4 contains results from such a comparison based on
the responses from a NI-subject. Firstly, it needs to be mentioned
here, that during that contrasting-process two distinct time series
of CFC connectivity patterns were originally encountered. In
order to facilitate visualization, we employed the following steps.
The whole set of latency-dependent PLV-values, which had been
obtained at full temporal resolution using Equation (2), was
formatted as a 2D matrix of [#frequency-pairs × #latencies] = [21 ×
1024] size. At every latency t, the mean and the maximum of the
corresponding 21 PLVs were computed. The resultant temporal-
profiles of cross-frequency interactions have been included in
the middle and bottom panel of Figure 4. They provide only
rough summaries (of the multitude) of interaction happening
during the physical reaction to stimulus and its subsequent
evaluation. However, by contrasting them between evoked and
cognitive responses it becomes clear that an increased CFC can
be associated with the cognitive aspects of response. A similar
behavior was observed in the data from other normal subjects
well (not shown here). In particular, the profile of maximal
instantaneous PLVs reflected a waxing and waning behavior
that made necessary the disentanglement of cross-frequency
interaction, carried out as described below.

The TVPAC measurements for all NI subjects were first
assembled and then averaged on a latency-by-latency basis. Two
timeseries of connectivity patterns were formed, representing
the dynamics of CFC coupling during the response to target
and non-target stimuli. They were treated as 3D tensors, and
denoted respectively as targetGA_PLV and non-targetGA_PLV.
Based on the grand-averaged responses, we identified the
latency-intervals, shown in Figure 5A, that corresponded to the
morphological components of cognitive responses. By means of
integration within the denoted temporal segments, we estimated
a pair of CFC-patterns roughly corresponding to the identified
components (deflections). We then formed the pattern of relative
increase for each deflection (N100, P200, P300, and SW).

Relative− Increase (deflection) =

target
∑

segment
GA_PLVLF→HF(t)−

non-target
∑

segment
GA_PLVLF→HF(t)

non-target
∑

segment
GA_PLVLF→HF(t)

(5)

The Relative-Increase pattern consisted of 21 PLV-values
indicating the influence of cognitive task in the PAC-coupling
during the time-interval associated with each one of the main
AERPs deflections.

Figure 5B includes the derived patterns in the form of
weighted directed graphs: the nodes correspond to brain rhythms
and the edges to estimated levels of PAC. The color in each
arrow reflects the weight of the corresponding edge, that is
the Relative-Increase in the strength of LF→HF interaction.
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FIGURE 4 | Contrasting the TVPAC profiles from the responses (of an NI subject) to target and non-target stimuli. (A) The averaged evoked/event-related

response is shown in black/blue. (B) A rough summary of TVPAC measurements estimated by means of averaging across all frequency-pairs (LF, HF), independently

for each latency. (C) A summarizing profile derived by keeping the maximum PLV value at every latency.

The depicted snapshots of functional connectivity strengthening
are clearly suggestive of a positive correlation between CFC
and the cognitive task. The strongest increase emerged
during the P300 deflection and was associated with a δ→α1
interaction.

Contrasting TVPAC Measurements from
aMCI-patients and NI-subjects
Considering the previous observation about the increased
CFC associated with cognitive responses, and as the next step
before introducing the CFC-related biomarker, we proceeded
by comparing the TVPAC measurements between the patients
and the healthy controls, based on their responses to target
stimuli. From the corresponding 3D tensors of the group-
averaged measurements, aMCIGA_PLV and NIGA_PLV,

we derived patterns of cross-frequency coupling that were
associated with the latency-range of the three main deflections
in the Group-averaged waveforms (N100, N200, P300; as
shown in Figure 6A). These connectivity snapshots have
been presented in tabular format for NI and aMCI groups,
respectively, in the first and second row of Figure 6B.
The patterns in the last row are reflecting the contrast
between the paired-patterns, which has been formulated
as a relative difference expressing departure from normal
behavior.

Relative-difference (deflection) =

MCI
∑

segment
GA_PLVLF→HF(t)−

NI
∑

segment
GA_PLVLF→HF(t)

NI
∑

segment
GA_PLVLF→HF(t)

(6)

The most important observation, that can be made based on
Figure 6, is that the CFC differences are neither unidirectional
nor stable across the different segments. Hence, it is not a
straightforward task to craft a biomarker based on TVPAC-
measurements. Despite this complexity, the level of relative-
difference approaches the 30% (in both directions), which
is much higher than the corresponding difference in the
morphology of grand-averaged responses (shown in Figure 6A).

The CFC-Biomarker: Insights into the TVPAC
Features
Taking into account the observed non-stationarities, we
attempted to define a single, though composite, biomarker
that could encompass the complex dynamics of cross-frequency
interactions for the sake aMCI detection. Following the machine-
learning methodology described in Section Handling TVPAC
Measurements and Identifying Discriminative Events, we first
identified the most discriminative instances of CFC along with
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FIGURE 5 | Contrasting the CFC during responses to target and non-target stimuli based on group-averaged data from NI subjects. (A) The N100,

N200, P300, and SW deflections were first detected in the waveform of Grand-Averaged ERPs response. (B) Using the corresponding temporal segments,

PAC-related connectivity snapshots were then derived, for target and non-target stimuli separately, and then used to express the relative increase in coupling. A

common color scale was used across for all shown graphs.

the participating brain rhythms. Toward this end, we first
derived a 3D tensor of Wscore∗-values. That tensor was of a size
equal with the size of PLV-related tensors (i.e., [7 × 7× 50]).
The entries of the tensors contained the separability between
aMCI and NI participants and were parameterized by the
interacting frequencies and the temporal segments. To gain
some insights into that set of measurements, we identified,
independently for each segment, the maximal PLV-value
(among the 21 included in the corresponding connectivity
snapshot). The obtained temporal profile has been included in
Figure 7A, providing additional evidence about the dynamic
nature of the PAC-phenomena and the way they deviate between
healthy and impaired cognition. This temporal perspective was
complemented by an interaction-pattern perspective, which
was derived by estimating the maximum PLV-value across time
(i.e., among the set of corresponding 50 values) independently
for each LF→HF interaction. The emergent pattern has been
included, as a weighted directed graph, in Figure 7B, with edges
colored in proportion to the Wscore∗. From this graphical
synopsis of interactions between brain rhythms, two interactions
appear to stand-up, namely a θ→β1 and β2→γ. It is necessary to
mention here, that in the particular visualization the interactions
have been scored according to their importance in the particular
task of discriminating between aMCI-patients and NI-subjects,
without providing any hint about the “loss” or “gain” in CFC-
strength due to cognitive impairment. For this reason, we
accompanied the above two perspectives with the additional
one of evolving-graphs (Figure 7C). Using the patterns of
relative-difference (derived in analogy with Equation 6, but
based on particular segments), from the segments corresponding
to the 9 maxima in Figure 7A (indicated via red discs), we have

drawn a sequence of connectivity patterns, in which the edge
color indicates the relative-difference and, also, its sign. From
this timeseries, we can specify that the above mentioned θ→β1
modulation corresponds to the latencies of SW deflection, while
the β2→γ modulation corresponds to the latencies of N200
deflection (see Figure 6A). Both interactions exhibit increased
strength in the case of aMCI subjects. However, the set of most
discriminative interactions includes also interactions showing
the converse trend. One should notice that the level of estimated
relative-differences, now, ranges from 50% decrease to 120%
increase and compare it with the level shown in Figure 6B,
which corresponded to lower-resolution analysis (segments of
morphological components).

The CFC-Biomarker: Design and Performance
Measures
The comparative study between the two groups of participants
revealed that in order to fully exploit the TVPAC measurements,
for the purpose of aMCI detection, it was mandatory to
resort to a learning machine. The framework of multivariate
classifiers was appropriate for incorporating the derived PLV-
values and implementing the discrimination task (aMCI-patients
vs. NI-subjects). Since the emphasis of this work was put
on feature-engineering (Bengio et al., 2013), we employed two
widely-used classifiers and refrained from further improving
aMCI detection by means of a more sophisticated classifier.
We first experimented with the k-nearest-neighbor classifier
and then with the linear support vector machine (SVM). Since
the obtained results were slightly better for the latter learning
machine, we decided to confine the following presentation
accordingly.
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The feature-vectors (FVs) used as input to the SVM consisted
of the 30 most discriminative TVPAC-related characteristics,
as identified from the feature-ordering step, which was based
on Wscore∗. The reader can refer to the visualization of
Figure 7C, where the most informative among the candidate
characteristics have been included. The dimensionality p =

30 of the FVs was set experimentally. Starting with the two
most discriminative PAC-characteristics, namely the PLVθ→β1

(870ms) and PLVβ2→γ (270ms), we continued to include
features according to their ranks and measuring the performance
of the SVM classifier. The classifier peaked its performance after
including the 30th characteristic and kept behaving equivalently
till the 50th one.

The introduced biomarker was realized via feeding the
30D FVs to the svmtrain and svmclassify functions from the
statistics and machine learning toolbox of MATLAB. To reliably
estimate its performance in the task of aMCI detection, we
employed two alternative validation schemes, which assessed
how the biomarker would perform to an independent data set
of AERP-responses. The first scheme was the leave-one-out cross-
validation (LOOCV). Each subject, in turn, was considered of
unknown classification. By using his FV, a diagnosis (impaired
or healthy) was attempted, through the SVM classifier. The

FIGURE 6 | Comparing the level of CFC in cognitive responses,

between NI and aMCI participants. (A) Grand-Averaged waveforms from

the cognitive responses (AERPs) of both groups. (B,C) Group-related

(grand-averaged) PAC-connectivity patterns for the temporal-segments

corresponding to N100, N200, and P300 deflections. (D) The corresponding

patterns of relative differences, derived so as to express deviation from

normality; red/blue indicates higher/lower PAC levels in MCI subjects relatively

to NI subjects.

classifier had been previously trained using the FVs of the rest
of 39 subjects, who had been considered of known classification.
By comparing the SVM predictions with the correct labels, we
estimated classification accuracy and in addition the sensitivity
and specificity of the introduced biomarker. The second scheme
was a two-fold cross-validation (2-CV), that was repeatedly
applied as follows. We randomly picked a group of 35 subjects,
for whom the classification labels were considered to be known
(training-set). The remaining 5 subjects formed the second fold,
for whom the classification labels were considered unknown. An
SVM was first trained based on the FVs of participants in the
training set and, then, used to predict the classification-labels of
the participants in the test-set. The SVM predictions were used to
assess the performance. The whole procedure was repeated 200
times and the mean values of accuracy, sensitivity and specificity
were finally reported. Table 2 includes the results from both
validation schemes.

Comparing with Alternative Representations
As the very last part of this study, we applied the overall machine-
learning methodology to representations of the cognitive
responses obtained via diverse methodological approaches.
Starting with an initial set of extracted characteristics, we ranked

FIGURE 7 | Identifying discriminative PAC-interactions (group-level

analysis). (A) The temporal profile of the (quasi-instantaneous) maximal

separability measure and the identification of the timing of most discriminative

PAC couplings.The 9 red discs indicate the local maxima in the timecourse.

(B) A graphical representation of the maximal PAC-couplings (stacked across

time). (C) Snapshots of differences between grand-averaged PAC-patterns, at

instances of high discriminability. The shown graphs correspond to the 9

segments detected in (A). Positive/negative values of Relative-Difference

indicate higher/lower PAC for the MCI participants relatively to NI participants.

To enhance visibility, edges associated with a Wscore* lower than 2 are not

shown.

TABLE 2 | Biomarker performance in aMCI detection—SVM operating on
TVPAC characteristics.

% LOOCV 2-CV

Accuracy 97.5 95.0

Sensitivity 100.0 96.0

Specificity 93.3 93.0
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its elements according to the Wscore∗-index and selected the
most discriminative ones as the set of FVs to be fed into a linear
SVM so as to achieve the classification between aMCI-patients
and NI-controls. The achieved classification performance was
expressed as in the case of the introduced TVPAC-based
biomarker.

The first utilized representation was based on time-locked
averaging (TLA), and included the set of 7 temporal waveforms
(one for each brain rhythm) as extracted characteristics (7 ×

1024). It encapsulated the temporal patterning of cognitive
response and was well-aligned with the conventional (averaged)
format, that these responses are encountered in clinical practice.
The second examined representation was based on short-
time Fourier transform (STFT) and included the averaged
(across-trials) spectrogram. That representation is generally
considered suitable for incorporating the spectro-temporal
profiles of event-related induced oscillations. Finally, as an
alternative representation suitable for incorporating the multi-
scale character and the non-stationarities of the response, the
averaged scalogram derived via Morlet wavelet transform (WT)
was examined. The scoring of the involved characteristics in
the case of TLA can be seen in Figure 3C. The relevant
scoring corresponding to the two transforms has been included
as Supplementary Material. Table 3 presents, in comparative
fashion, the accuracy of all the potential biomarkers as this
was assessed, via cross-validation, based on the available data.
It should be noticed here that the final number of selected
features had been optimized independently for each approach
(as described is Section The CFC-Biomarker: Design and
Performance Measures). From Table 3, the superiority of the
introduced representation (compare first row with the rest ones)
becomes evident.

Discussion

A novel connectomic biomarker for detecting aMCI was
introduced, based on time-resolved estimates of cross-frequency
coupling estimates from single-trial cognitive responses recorded
during an ordinary auditory oddball paradigm. It is based on
a multiparametric signature of cognitive processes and reflects
the complex dynamical interactions among brain rhythms that
take place during the stimulus evaluation. Our experimentations
showed a high classification rate (95%) based on the proposed
TVPAC features. In addition, the superiority of our approach
against alternative popular methodologies was demonstrated by
bringing them within the same learning framework (see Table 3).
The novel concept of dynamic CFC during AERPs response is

TABLE 3 | Comparing representations based on the performance of

SVM-based aMCI detection.

Accuracy (%) LOOCV 2-CV

TVPAC 97.5 95.0

TLA 70 63.5

STFT 62.5 64.4

WT 77.5 75.5

added to the available EEG-related diagnostic tests for cognitive
impairment (Henderson et al., 2006; Lehmann et al., 2007;
Abásolo et al., 2008; Dauwels et al., 2010; Laskaris et al., 2012;
Latchoumane et al., 2012; Fraga et al., 2013; Tarnanas et al., 2014a,
2015b).

EEG signals are nonlinear and non-stationary signals and
contain oscillatory activity generated by different cortical areas.
To understand the interactions between brain rhythms of
different frequency content, EEG signals should be studied in
terms of CFC (Canolty and Knight, 2010). There are four
main types of CFC as documented in (Jensen and Colgin,
2007): (i) power to power, (ii) phase to phase, (iii) phase to
frequency, and (iv) phase to power. There is accumulating
evidence that the last form of CFC, the so- called phase-amplitude
modulation-coupling (PAC), occurs very often (Cohen, 2008;
Osipova et al., 2008; Tort et al., 2008, 2009, 2010; Cohen, 2008;
Cohen et al., 2009a,b; Colgin et al., 2009; Axmacher et al.,
2010a,b; Voytek et al., 2010). It is hypothesized that CFC between
different frequency bands within and between sensors is the key
mechanism for the integration of both local and global processes
and hence being related to the uninterrupted communication
between different brain states expressed within a characteristic
frequency band (Canolty and Knight, 2010; Buzsáki andWatson,
2012).

The pivotal role of CFC in neuronal computation,
communication and learning has been recently demonstrated.
In particular, the strength of PAC differs within and across
brain areas in relation to task, changes rapidly in response to
a stimulus (visual and auditory or both), motor and cognitive
events and (anti)-correlates with performance during learning
tasks (Canolty and Knight, 2010). Thus, CFC might serve as a
key mechanism of a syntactical organization of communication
between brain areas that oscillate on a prominent frequency
characteristic of a specific cognitive function. Phase orchestrates
such communication, while the interacting direction (toward
the amplitude of a higher frequency rhythm) further supports
the idea of hierarchical cross-frequency coupling organization
(Buzsáki and Watson, 2012). In a recent study, based on
normal aging and a short-term memory task, CFC unfolded the
inefficient organization of competing brain networks and finally
indicated the neural mechanism which is responsible for this
integration breakdown (Pinal et al., 2015).

PAC phenomena, often mentioned as “nested oscillations,”
occur when the amplitude of an oscillation at a particular
frequency is modulated by the phase of a lower frequency
oscillation. This form of CFC has been suggested as the key
mechanism for, amongst many others significant cognitive
functions, working memory (Jensen and Lisman, 1998), spatial
exploration (Lisman and Buzsaki, 2008), and visual perception
(VanRullen and Koch, 2003; Palva and Palva, 2011). Moreover,
it is the cross-frequency coupling between different frequency
bands that has been hypothesized to be the carrier mechanism
for the interaction of local and global processes and hence being
directly related to the integration of distributed information (Jirsa
and Müller, 2013).

The proposed biomarker exploits the dynamic behavior of
the phase-to-amplitude coupling (PAC) between frequency pairs
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(Canolty and Knight, 2010; Voytek et al., 2010; Jirsa and Müller,
2013). There are various indications about neural oscillations
interacting in a time-varying manner (Buzsáki and Draguhn,
2004; Buzsaki, 2006; Buzsáki and Watson, 2012). Neural
oscillations reflect interactions between the time (phase) and
the amplitude of oscillatory activity of individual components
captured even from a single sensor. Task-relevant oscillations of
different frequency component recorded at a single sensor reflect
different cognitive functions related to specific local brain areas.
Studying CFC in a dynamic fashion while subjects performed a
task is of significant importance. It is well-known that cortical
frequency ranges can form temporal windows in neural dynamics
(Canolty and Knight, 2010; Buzsáki and Watson, 2012) where
the phase of a lower-frequency band can modulate the amplitude
(power) of a higher frequency. In quasi-stable temporal windows,
this form of communication via PAC can be expressed with
different frequency pairs which interact accordingly to the
demands of the task and the cognitive resources that should be
accessed to perform the task and to process the external stimuli
and in general the task.

The scope of this work is to introduce a reliable dynamic
connectomic biomarker (DCB) for the detection of abnormal
cognitive declinement due to MCI. To address the prominent
non-stationarity of ERP functional connectivity and the
hierarchical organization of brain rhythms, the adaptation of a
dynamic functional connectivity approach (Dimitriadis et al.,
2010b, 2012a,b, 2013a,b, 2015b; Ioannides et al., 2012; Kopell
et al., 2014) based on CFC (Canolty and Knight, 2010; Buzsáki
and Watson, 2012; Dimitriadis et al., 2015a) is necessary. The
predictive power of the proposed (TICB) was 95% (Dimitriadis,
2015c) and it is the first TICB based on CFC biomarker in
relation to a brain disease compared to various connectomic
biomarkers extracted from static graphs (see reviews Sporns,
2014; Stam, 2014; Braun et al., 2015). A recent study explored
cross-frequency modulations and revealed a disappearance of
δ modulations of β frequency band and an appearance of δ

modulations in the θ frequency band, both intensified by the
severity of the disease (Fraga et al., 2013).

Our approach explored and quantified the multiplexity of
the brain in two groups while performing an auditory oddball
paradigm under the notion of a dynamic CFC approach. The
features extracted for the training of the classifier were PAC
values between frequency pairs at specific time windows that
differed between the two groups (Figure 7). PAC values can
be expressed as basic symbols of the neural syntax implying
the efficiency or deficiency of coding of the cognitive content
during a task-related stimulus (Buzsáki and Watson, 2012). PAC
phenomenon can be interpreted as the formation of “packets”
of higher frequency waves nested within the phase of the slower
rhythms. At a quasi-stable time - window, the number of cycles
of the higher frequency encapsulated within the phase of the
slower frequency and this number is related to the amount
of information being exchanged between different brain areas
oscillating on their prominent frequency. According to the above
interpretations of results, our approach bears some similarities
with symbolic dynamics (Dimitriadis et al., 2012a, 2015b; Porta
et al., 2015).

The frequency pairs that showed significant higher PAC value
forMCI compared to NI group are the δ−α2, θ−α2, θ−β1, θ−γ,
β1 − γ and β2 − γ (Figure 7). Previous studies demonstrated a
decreased of δ amplitude in auditory tasks for MCI compared to
the control group (Yener et al., 2012; Başar et al., 2013; Yener
and Basar, 2013; Kurt et al., 2014). In this context, the higher
coupling of δ phase with θ amplitude in MCI subjects can be
interpreted as an increased attention (Dimitriadis et al., 2010a;
Başar et al., 2013; Kurt et al., 2014). θ oscillations change during
attention focusing (Sauseng et al., 2008), while the phase coupling
in θ oscillation is known to reflect cognitive processes related
to memory (Schack et al., 2002). In MCI participants, memory
information which in general is stored within a distributed θ

network, it is coupled with stronger PAC value compared to NI
group with the amplitude of α2, β1, and γ frequencies showing
the higher demands for MCI subjects to synchronize memory
and attention state (Sauseng et al., 2008; Güntekin et al., 2013).
In a recent study, based on recordings from rats Belluscio et al.
(2012), showed that simultaneous maintenance of multiple items
in working memory is accompanied by θ:γ phase-amplitude CFC
in the hippocampus (Belluscio et al., 2012). Finally, phase of β

sub-bands demonstrated a higher PAC synchronization with γ

for MCI compared to NI group demonstrating high demands
to shift the system to an attention state as a result of higher
working memory load related to the counting mentally of the
frequent tone. Overall, frequency-pairs that showed higher PAC
values for MCI compared to the age-matched healthy group
can be considered as a higher effort needed for MCI patients
in order to perform accurately the auditory oddball task and
due to overloaded cognitive systems related to attention and
working memory. This hyper cross-synchronization observed
in aMCI group is a significant finding of the current study. A
previous MEG study where control and MCI group performed a
memory task higher synchronization values were revealed over
the parieto-occipital region in α and β frequency bands (Bajo
et al., 2012a). Finally, the combination of memory tasks with
connectivity analysis can differentiate healthy elderly from those
with subjective memory complaints (Bajo et al., 2012b).

The main strengths of the present study are the significant
MCI prediction improvement based on the proposed DCB,
compared to standard techniques, and the single-sensor analysis
methodology. Limitations of the study are the middle-sized
sample of participants and adoption of an internal cross-
validation scheme. Future studies will address those issues
targeting a larger sample of MCI subjects, employing a second
one for blinded classification and external cross-validation.
Finally, a follow-up study for the subjects that progress to AD
in the next 2 years will be of higher interest in order to explore
the validity and the sensitivity of the proposed DCB to unfold the
functional alterations, the inefficient organization of competing
brain networks and the final integration breakdown due to the
progression of the AD.

In summary, this study proves that the PAC in cognitive
responses may be listed among the known functional changes
due to MCI. Its quantification, maybe in conjunction with other
CFCmodes as well, can lead to reliable biomarkers. It is definitely
worth further investigation, based on extended clinical cohorts
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and longitudinal data, so as to empirically prove that the PAC
can serve as the basis of diagnostic and prognostic tools.
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Başar, E., Başar-Eroğlu, C., Güntekin, B., and Yener, G. G. (2013). Brain’s alpha,
beta, gamma, delta and theta oscillations in neuropsychiatric diseases: proposal
for biomarker strategies. Clin. Neurophysiol. 62, 287–324. doi: 10.1016/b978-0-
7020-5307-8.00002-8

Becerra, J., Fernández, T., Roca-Stappung, M., Díaz-Comas, L., Galán, L.,
Bosch, J., et al. (2012). Neurofeedback in healthy elderly humans with
electroencephalographic risk of cognitive disorder. J. Alzheimers Dis. 28,
357–367. doi: 10.3233/JAD-2011-111055

Belluscio, M. A., Mizuseki, K., Schmidt, R., Kempter, R., and Buzsáki, G.
(2012). Cross-frequency phase-phase coupling between θ and γ oscillations
in the hippocampus. J. Neurosci. 32, 423–435. doi: 10.1523/JNEUROSCI.4122-
11.2012

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: a review
and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828.
doi: 10.1109/TPAMI.2013.50

Bennys, K., Portet, F., Touchon, and, J., and Rondouin, G. (2007). Diagnostic
value of event-related evoked potentials N200 and P300 subcomponents in
early diagnosis of Alzheimer’s disease and mild cognitive impairment. J Clin.
Neurophysiol. 24, 405–412. doi: 10.1097/WNP.0b013e31815068d5

Berman, M. H., and Frederick, J. A. (2009). Efficacy of neurofeedback for
executive and memory function in dementia. Alzheimers Dement. 5, e8. doi:
10.1016/j.jalz.2009.07.046

Braun, U., Muldoon, S. F., and Bassett, D. S. (2015). On human
brain networks in health and disease. Encyclop. Life Sci. 1–9. doi:
10.1002/9780470015902.a0025783

Buzsaki, G. (2006). Rhythms of the Brain. New York, NY: Oxford University Press.
Buzsáki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks.

Science 304, 1926–1929. doi: 10.1126/science.1099745
Buzsáki, G., and Watson, B. O. (2012). Brain rhythms and neural syntax:

implications for efficient coding of cognitive content and neuropsychiatric
disease. Dialog. Clin. Neurosci. 14, 345–367. doi: 10.1371/journal.pcbi.1000879

Canolty, R. T., and Knight, R. T. (2010). The functional role of cross-
frequency coupling. Trends Cogn. Sci. 14, 506–515. doi: 10.1016/j.tics.2010.
09.001

Caravaglios, G., Costanzo, E., Palermo, F., and Muscoso, E. G. (2008). Decreased
amplitude of auditory event-related delta responses in Alzheimer’s disease. Int.
J. Psychophysiol 70, 23–32. doi: 10.1016/j.ijpsycho.2008.04.004

Cibils, D. (2002). Dementia and qEEG (Alzheimer’s disease). Clin. Neurophysiol.
54, 289–294. doi: 10.1016/s1567-424x(09)70463-5

Cohen, M. X. (2008). Assessing transient cross-frequency coupling in EEG data.
J. Neurosci. Methods 168, 494–499. doi: 10.1016/j.jneumeth.2007.10.012

Cohen, M. X., Axmacher, N., Lenartz, D., Elger, C. E., Sturm, V., and Schlaepfer, T.
E. (2009a). Good vibrations: cross-frequency coupling in the human nucleus
accumbens during reward processing. J. Cogn. Neurosci. 21, 875–889. doi:
10.1162/jocn.2009.21062

Cohen, M. X., Elger, C. E., and Fell, J. (2009b). Oscillatory activity and phase-
amplitude coupling in the human medial frontal cortex during decision
making. J. Cogn. Neurosci. 21, 390–402. doi: 10.1162/jocn.2008.21020

Colgin, L. L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., and Jensen, O.
(2009). Frequency of gamma oscillations routes flow of information in the
hippocampus. Nature 462, 353–357. doi: 10.1038/nature08573

Dauwels, J., Srinivasan, K., Ramasubba Reddy, M., Musha, T., Vialatte, F. B.,
Latchoumane C, et al. (2011). Slowing and loss of complexity in Alzheimer’s
EEG: two sides of the same coin? Int. J. Alzheimers Dis. 2011:539621. doi:
10.4061/2011/539621

Dauwels, J., Vialatte, F., and Cichocki, A. (2010). Diagnosis of Alzheimer’s disease
from EEG signals: where are we standing? Curr. Alzheimer Res. 7, 487–505. doi:
10.2174/156720510792231720

Dimitriadis, S. I. (2015c). Quantifying the predictive power of resting-state
functional connectivity (rs-fc) fMRI for identifying patients with Alzheimer’s

Frontiers in Neuroscience | www.frontiersin.org 14 October 2015 | Volume 9 | Article 350

http://journal.frontiersin.org/article/10.3389/fnins.2015.00350
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Dimitriadis et al. Cross-frequency-coupling in MCI detection

disease (AD). Clin. Neurophysiol. doi: 10.1016/j.clinph.2015.03.011. [Epub
ahead of print].

Dimitriadis, S. I., Laskaris, N. A., and Micheloyannis, S. (2015b). Transition
dynamics of EEG network microstates unmask developmental and task
differences during mental arithmetic and resting wakefulness. Cogn. Neurodyn.
9, 371–387. doi: 10.1007/s11571-015-9330-8

Dimitriadis, S. I., Laskaris, N. A., and Tzelepi, A. (2013a). On the quantization of
time-varying phase synchrony patterns into distinct Functional Connectivity
Microstates (FCµstates) in a multi-trial visual ERP paradigm. Brain Topo. 26,
397–409. doi: 10.1007/s10548-013-0276-z

Dimitriadis, S. I., Laskaris, N. A., Simos, P. G., Micheloyannis, S., Fletcher, J.
M., Rezaie, R., et al. (2013b). Altered temporal correlations in resting-state
connectivity fluctuations in children with reading difficulties detected viaMEG.
Neuroimage 83, 307–317. doi: 10.1016/j.neuroimage.2013.06.036

Dimitriadis, S. I., Laskaris, N. A., Tsirka, V., Erimaki, S., Vourkas, M.,
Micheloyannis, S., et al. (2012b). A novel symbolization scheme for
multichannel recordings with emphasis on phase information and its
application to differentiate EEG activity from different mental tasks. Cogn.
Neurodyn. 6, 107–113. doi: 10.1007/s11571-011-9186-5

Dimitriadis, S. I., Laskaris, N. A., Tsirka, V., Vourkas, M., and Micheloyannis,
S. (2010a). What does delta band tell us about cognitive processes: a mental
calculation study. Neurosci. Lett. 483, 11–15. doi: 10.1016/j.neulet.2010.07.034

Dimitriadis, S. I., Laskaris, N. A., Tsirka, V., Vourkas, M., and Micheloyannis,
S. (2012a). An EEG study of brain connectivity dynamics at the resting state.
Nonlin. Dynam. Psychol. Life Sci. 16, 5–22.

Dimitriadis, S. I., Laskaris, N. A., Tsirka, V., Vourkas, M., Micheloyannis,
S., and Fotopoulos, S. (2010b). Tracking brain dynamics via time-
dependent network analysis. J. Neurosci. Methods 193, 145–155. doi:
10.1016/j.jneumeth.2010.08.027

Dimitriadis, S. I., Sun, Y. U., Kwok, K., Laskaris, N. A., Thakor, N., and Bezerianos,
A. (2015a). Cognitive workload assessment based on the tensorial treatment
of EEG estimates of cross-frequency phase interactions. Ann. Biomed. Eng. 43,
977–989. doi: 10.1007/s10439-014-1143-0

Donchin, E., Karis, D., Bashore, T. R., Coles, M. G. H., and Gratton, G.
(1986). “Cognitive psychophysiology and human information processing,” in
Psychophysiology: Systems, Processes, and Applications, eds M. G. H. Coles, E.
Donchin, and S. W. Porges (New York, NY: The Guilford Press), 244–267.

Donchin, E., Tueting, T., Ritter, W., Kutas, M., and Heffley, E. (1975). On the
independence of the CNV and the P300 components of the human averaged
evoked potential. Electroencephalogr. Clin. Neurophysiol. 38, 449–461. doi:
10.1016/0013-4694(75)90187-X

Donchin, E., and Coles, M. G. H. (1988). Is the P300 component a
manifestation of context updating? Behav. Brain Sci. 11, 357–374. doi:
10.1017/S0140525X00058027

Doody, R. S., Thomas, R. G., Farlow, M., Iwatsubo, T., Vellas, B., and Joffe, S.
(2014). Phase 3 trials of solanezumab formild-to-moderate Alzheimer’s disease.
N. Engl. J. Med. 370, 311–321. doi: 10.1056/NEJMoa1312889

Dunkin, J., Leuchter, A., Newton, T., and Cook, I. (1994). Reduced EEG
coherence in dementia: state or trait marker? Biol. Psychiat. 35, 870–879. doi:
10.1016/0006-3223(94)90023-x

Espinosa, A., Alegret, M., Valero, S., Vinyes-Junqué, G., Hernández, I., Mauleón,
A., et al. (2013). A longitudinal follow-up of 550 mild cognitive impairment
patients: evidence for large conversion to dementia rates and detection of
major risk factors involved. J Alzheimers Dis. 34, 769–780. doi: 10.3233/
JAD-122002

Ewers, M., Walsh, C., Trojanowski, J. Q., Shaw, L. M., Petersen, R. C., Jack,
C. R. Jr., et al. (2010). Prediction of conversion from mild cognitive
impairment to Alzheimer’s disease dementia based upon biomarkers and
neuropsychological test performance. Neurobiol. Aging 33, 1203–1201. doi:
10.1016/j.neurobiolaging.2010.10.019

Fernández, T., Becerra, J., Roca, M., Espino, M., Bahlke, M., Harmony,
T., et al. (2008). Neurofeedback in healthy elderly humans with
electroencephalographic risk of cognitive impairment. Front. Hum. Neurosci.

Conference Abstract: 10th International Conference on Cognitive Neuroscience.
doi: 10.3389/conf.neuro.09.2009.01.173

Folstein, M., Folstein, S., and McHugh, P. R. (1975). Mini-mental state. A practical
method for grading the cognitive state of patients for the clinician. J. Psychiatr.
Res. 12, 189–198. doi: 10.1016/0022-3956(75)90026-6

Fraga, F. J., Falk, T. H., Kanda, P. A. M., and Anghinah, R. (2013).
Characterizing Alzheimer’s disease severity via resting-awake EEG amplitude
modulation analysis. PLoS ONE 8:e72240. doi: 10.1371/journal.pone.
0072240

Frodl, T., Hampel, H., Juckel, G., Burger, K., Padberg, F., Engel, R. R., et al. (2002).
Value of event-related P300 subcomponents in the clinical diagnosis of mild
cognitive impairment and Alzheimer’s disease. Psychophysiology 39, 175–181.
doi: 10.1111/1469-8986.3920175

Golob, E., Irimajiri, R., and Starr, A. (2007). Auditory cortical activity in
amnestic mild cognitive impairment: relationship to subtype and conversion
to dementia. Brain 130, 740–752. doi: 10.1093/brain/awl375

Golob, E., Johnson, J., and Starr, A. (2001). Auditory event-related potentials
during target detection are abnormal in mild cognitive impairment. Clin.
Neurophysiol. 113, 151–161. doi: 10.1016/S1388-2457(01)00713-1

Gozke, E., Tomrukcu, S., and Erdal, N. (in press). Visual event-related
potentials in patients with mild cognitive impairment. Int. J. Gerontol. doi:
10.1016/j.ijge.2013.03.006
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