
Automatic Classification of Change Requests for Improved IT Service Quality

Cristina Kadar, Dorothea Wiesmann, Jose Iria, Dirk Husemann, Mario Lucic
IBM Zurich Research Laboratory

Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
{cka,dor,jir,hud,cic}@zurich.ibm.com

Abstract—Faulty changes to the IT infrastructure can lead
to critical system and application outages, and therefore cause
serious economical losses. In this paper, we describe a change
planning support tool that aims at assisting the change re-
questers in leveraging aggregated information associated with
the change, like past failure reasons or best implementation
practices. The thus gained knowledge can be used in the
subsequent planning and implementation steps of the change.
Optimal matching of change requests with the aggregated
information is achieved through the classification of the change
request into about 200 fine-grained activities. We propose
to automatically classify the incoming change requests using
various information retrieval and machine learning techniques.
The cost of building the classifiers is reduced by employing
active learning techniques or by leveraging labeled features.
Historical tickets from two customers were used to empirically
assess and compare the accuracy of the different classification
approaches (Lucene index, multinomial logistic regression, and
generalized expectation criteria).

Keywords-service quality; change management; automation;
text classification; information retrieval; logistic regression;
generalized expectation criteria;

I. INTRODUCTION

In the past years IT Service Management (ITSM) has
become an important field of research to support IT Service
providers in their quest for delivering higher service quality
with ever increasing efficiency. A promising approach ap-
plied in a number of studies is to transpose methodologies
and frameworks that have yielded tremendous efficiency
and quality gains in the manufacturing industry. While
the adoption of a global delivery model by IT service
providers enabling standardization, economies of scale, and
cost optimization has subsequently led to increased delivery
efficiencies, the application of quality improvement frame-
works successfully deployed in manufacturing is only in
its beginnings [1]. In addition, to account for the large
human component in service delivery, efficient knowledge
sharing among service provider personnel is a promising
complementary means to increasing IT service delivery.

Previously the IT Infrastructure Library (ITIL) V2, the
de-facto standard for concepts and practices for Informa-
tion Technology Services Management, merely advocated
knowledge sharing in the area of incident and problem
management, e.g. through the establishment of a ”Known
Error Database”. However, its latest version (V3) reflects
the service quality improvement trends by adding both

the Continual Service Improvement (CSI) practice and a
Knowledge Management Process [2], [3].

Motivated by the observation that faulty changes have
been found to cause over 60% of critical system and
application outages [4], our research has focused on applying
continuous improvement and knowledge management con-
cepts to the reduction of failed IT changes. In particular,
we have devised and developed a tool, that assists a change
requester in understanding past failure reasons for similar
changes and in learning about best implementation practices.
Towards this end, our tool automatically classifies a new
change ticket and retrieves aggregated data from various
resources associated with the change category. In this paper,
we describe the applied change ticket classification scheme.
The remainder of the paper is structured as follows. A brief
review of related work on ticket classification is given in the
next section. Section III presents an overview of the system.
In Section IV we introduce the categorization methods we
applied to our classification problem. A complete description
of the experimental setting is given in Section V, and in
Section VI a comparative evaluation of the methods is
presented, followed by a discussion on the results obtained.
We conclude with a mention to our plans for future work in
Section VII.

II. RELATED WORK

Our paper bears similarities with a number of publications
on maintenance and incident ticket classification [5]–[7].
Lucca and coworkers have applied automatic classification
of user generated error-reporting logs, i.e. software mainte-
nance tickets, with the goal to automate assignment of the
tickets to the appropriate team of the maintenances provider.
Similar to our work, the texts to be classified are short,
natural language statements; however the number of classes
is significantly lower than ours, namely eight compared to
up to 200, respectively. Comparing various classification
methods, Lucca et al. find that probabilistic models perform
best and, unlike other methods, increase precision with
a growing training set. They further observe that expert
feedback increases the accuracy of the probabilistic model
by 7% [5].

Gupta’s and coworkers’ publication is based on a similar
scenario as ours: they describe the automatic classification
of an incident ticket as part of the record creation in the

2011 Annual SRII Global Conference

978-0-7695-4371-0/11 $26.00 © 2011 IEEE

DOI 10.1109/SRII.2011.95

444

2011 Annual SRII Global Conference

978-0-7695-4371-0/11 $26.00 © 2011 IEEE

DOI 10.1109/SRII.2011.95

444

2011 Annual SRII Global Conference

978-0-7695-4371-0/11 $26.00 © 2011 IEEE

DOI 10.1109/SRII.2011.95

444

2011 Annual SRII Global Conference

978-0-7695-4371-0/11 $26.00 © 2011 IEEE

DOI 10.1109/SRII.2011.95

430

2011 Annual SRII Global Conference

978-0-7695-4371-0/11 $26.00 © 2011 IEEE

DOI 10.1109/SRII.2011.95

430

Ticket summary

Search or suggest a category if not
satisfied with the classification results

Failure reasons and best practices
associated with the type of change

Details of the
selected
category Top 5 matching

categories

Figure 1. Classification screen.

IBM Tivoli Service Request Manager1 by a person with
limited expertise. As in our case, the alternative deployed
so far is a manual selection of one of many pre-configured
classes which is time consuming and error-prone [6]. The in-
cident tickets are either user-generated or system-generated
and thus Gupta et al. deploy two different classification
approaches, namely a machine learning approach (Naı̈ve
Bayesian) and a rule-based approach, respectively. In addi-
tion they allowed experts to bootstrap and/or complement the
machine generated features. The resulting incident classifier
achieved 70% accuracy with 1000 features.

In contrast to the above mentioned publications, in the
application scenario described by Diao and coworkers, sets
of incident tickets are classified into failure codes after
the incidents are resolved to facilitate root cause analysis
and failure trend monitoring [7]. Anticipating a number of
issues when applying machine-learning techniques for clas-
sification, namely cost of labeling, poor quality of incident
tickets, and inconsistency in tickets caused by the global
deployment, the authors have implemented a rule-based
classification and compared its accuracy with that of a Naı̈ve
Bayesian classifier. In their specific setting, in which all three
expert system roles are perform by the same community
of quality analysts, the rule-based classifier outperforms the
Naı̈ve Bayesian classifier both for smaller and larger data
sets. Additionally, initial tests reveal a lower cost of creating
the rule set compared to the cost of labeling the tickets.

1http://www-01.ibm.com/software/tivoli/products/service-request-mgr

III. SYSTEM

Our change preparation support tool implements three
process steps: (1) the change requester enters the change
ticket information; (2) the tool classifies the change request
into the catalogue categories and displays the top five match-
ing categories; if no matching category was found in the
previous step, or if the user is not satisfied with the returned
list, he can browse all categories for the appropriate one;
(3) the change requester selects the best matching category
and reviews past failure reasons/known issues as well as
best practices for the selected class of changes. The thus
gained knowledge can be used in the subsequent planning
and implementation steps to minimize the failure risk. The
classification screen, illustrating the process for a database
management related change, is shown in Figure 1.

A. Categories

The central artifacts of our approach are the categories
along which the changes are organized. The classification
schema is based on a catalogue of standard activities per-
formed to service outsourced IT infrastructure. We use up to
200 fine-grained activities. This high granularity is necessary
to ensure the relevance of the retrieved information to
the change requester but at the same time is making the
automatic classification a non-trivial task. On the other hand,
a category is more than just a label without meaning, as it
comes with various descriptive fields. Two of these fields
are the name and the description of the catalogue activity,
both in natural language. Moreover, activities from the same
technical area of services are grouped together into a service

445445445431431

line. We cover lines like database management, network
services, Unix servers management, etc.

B. Tickets

The change ticket is a record of the planned change in an
ticketing system that supports the change management work
flow. It contains information necessary to approve, classify,
and implement the change. ITIL prescribes the following
fields: unique ID, change initiator, date of submission, short
summary of the change to be implemented, reason for the
change to be implemented, business and IT infrastructure
impact, risks, priority, schedule, and resources. Some of
the fields are in natural language, e.g. the short summary
and reason for change, and some are predefined multiple-
choice fields. Some of the fields are filled in automatically
and not all of them are compulsory. Moreover, change
tickets are assigned to different work groups with different
specialization [2]. In the remainder of the paper we call these
technical expert groups responsible for the change owner
groups.

IV. AUTOMATIC CLASSIFICATION

We face a unique and challenging classification set-up.
Firstly, the large amount of very granular, often similar
categories poses a real threat to the success of any cat-
egorization attempt. In contrast, the extra information we
have on categories can be exploited to bootstrap learning,
e.g. the fact that categories belong to certain service lines
that can be mapped to the owner group feature of a ticket
instance. Secondly, pre-classified tickets for training are a
rare commodity but historical unlabeled tickets are easily
obtainable, as the customers had already been tracking their
changes. The laborious task of annotating old tickets requires
a skilled domain expert and represents the most costly aspect
of building a classifier. Thirdly, each customer has its own
lingua for describing changes and its specific distribution
over the classes, but the dissemination of learning across
customers is desired. Finally, user’s choice and feedback can
be saved and used in assessing and rebuilding the classifier.

The following subsections present the approaches we have
explored to tackle these classification challenges.

A. Information Retrieval Approach

Seeing the classification problem as an information need
(classify def

= retrieve the matching category), we use a text
search engine and build an index of all categories in the
schema. For each of the categories, we save its relevant
fields and additionally, keywords defined by experts of the
customer. Incoming change requests are seen as queries that
get scored against this static index. Returned is a ranked list
of matching categories.

We use Lucene2, an open-source text search engine li-
brary, to create and read the index.

2http://lucene.apache.org

Figure 2. Information retrieval setup.

Lucene extends the classical Vector Space Model (VSM)
of Information Retrieval [8]. In VSM, documents (in our
case: categories) and queries (in our case: tickets) are rep-
resented as weighted vectors in a multi-dimensional space,
where each distinct index term is a dimension, and weights
are tf-idf [9] values. According to this metric, the weight
of the j-th term of the vocabulary in the i-th document is
derived from the term frequency tfi,j of the term in the
document, and the inverse document frequency idfj of the
term over the entire set of documents, as follows:

tf -idfi,j = tfi,j · log(idfj)

The VSM score of document d for query q is the cosine
similarity of the weighted query vectors V (q) and V (d):

sim(q, d) =
V (q) · V (d)

|V (q)| · |V (d)|

where V (q) · V (d) is the dot product of the weighted
vectors, and |V (q)| and |V (d)| are their Euclidean norms.

Lucene refines the VSM score for both search quality
and usability. At index time, users can specify that certain
documents are more important than others or that certain
fields weight more, by assigning a document field boost
doc boost(d). At search time, users can specify boosts to
each query or each query term, hence the contribution of
a query term to the score of a document is multiplied by
the boost of that query term query boost(q). Aside from
that, a document may match a multi-term query without
containing all the terms of that query, and users can further
reward documents matching more query terms through a
coordination factor, which is usually larger when more terms
are matched: coord factor(q, d).

Based on the query q, the score of document d is com-

446446446432432

puted by the following (simplified) formula:

score(q, d) =

sim(q, d) · doc boost(d) · query boost(q) · coord factor(q, d)

Using this method, satisfactory accuracy levels in top 5
returned categories are recorded (refer to Section VI for the
exact results). However, because of the varying vocabulary,
a new set of keywords needs to be defined every time a
new customer is on-boarded. This makes the method not
scale-up.

B. Machine Learning Approach

As an alternative to the above approach, we use machine
learning techniques [10], which are able to automatically
discover discriminative features and learn over time and
across related domains. In the next subsection we explore
two different classification settings.

1) Supervised Setting: In a supervised setting, an in-
ductive process automatically builds a model by learning
from a set of pre-classified documents (in our case: tickets).
The classifier is built offline and its quality is estimated by
looking at the error rate when tested on another set of pre-
classified documents. To assure the correct validation, it is
vital that these documents were not seen in the learning
phase. As shown in Figure 3, the model will then be em-
ployed online to score every new incoming ticket. A ranked
list of matching categories is the final output. Rather than
allocate every unique word in the training corpus to a distinct
feature, we can optionally perform feature selection [11].
By reducing the dimensionality of the input, we enhance
the speed and the generalization capability of the learning
algorithm.

Figure 3. Supervised learning setup.

We choose to implement a regularized logistic regression
as it has been shown to provide outstanding predictive
performance across a range of text classification tasks and
corpora [12], [13]. The multinomial logistic regression clas-
sifier (also known in the literature as the maximum entropy
classifier) is the generalization of this model to multi-class
classification.

Below, we deduct the classification function for the multi-
class, single-label classification case. Let x be the input (a
vector of features xj), y the output (a discrete class label),
and θ the parameters of the model. The probability of output
y conditioned on input x is given by:

p(y|x; θ) =
exp(

∑
j θjxj)

Z(x)

where Z(x) =
∑
y exp(

∑
j θjxj)) is a normalizer which

ensures that
∑
y p(y|x; θ) = 1.

To learn the particular values of θ (in other words, the
weights of all features for each category), we compute the
log-likelihood of the labels on the training data T :

L(θ|T) =
∑

(x,y)∈T

log(p(y|x; θ))

The method of maximum likelihood estimates θ̂ by finding
a value of θ that maximizes the log-likelihood:

θ̂ = argmax
θ

L(θ|T)

So far the model implicitly assumes a uniform prior
distribution of parameters and can suffer from over-fitting.
By imposing as regularizer a univariate Gaussian prior with
mean µ = 0 and variance σ2 on the parameters, the model
will now prefer more uniform models. This way, overfitting
can be reduced and performance improved.

The final objective function to be maximized is:

O =
∑

(x,y)∈T

log(p(y|x; θ))−
∑
j

θ2j
2σ2

To speed-up the learning task, we employ active learning.
The key idea behind active learning is that a machine
learning algorithm can achieve greater accuracy with fewer
training labels if it is allowed to choose the data from which
it learns [14]. It is useful in settings where unlabeled data
may be abundant or easily obtained, but labels are difficult,
time-consuming, or expensive to obtain.

Pool-based active learning [15] assumes there is a small
set of labeled data L and a large pool of unlabeled data
U available. The queries are selected from the pool of
unlabeled instances using an uncertainty sampling query
strategy, which selects the instance in the pool about which
the model is least certain how to classify.

447447447433433

There have been many proposed ways of formulating such
query strategies in the literature. We choose to use a multi-
class uncertainty sampling variant called margin sampling
[16].

x∗ = argmin
x
p(x|ŷ1; θ)− p(x|ŷ2; θ)

where ŷ1 and ŷ2 are the first and the second most prob-
able class labels under the model, respectively. Intuitively,
instances with large margins are easy, since the classifier
has little doubt in differentiating between the two most
likely class labels. Instances with small margins are more
ambiguous, thus knowing the true label would help the
model discriminate more effectively between them.

In this supervised setting and with a large amount of
training data, the classifier can achieve very high accuracies
for one customer (refer to Section VI for the exact results).
However, applying the same model to a different customer
results in a dramatic drop in accuracy. This means that a
training set of pre-labeled tickets is needed for each new
customer, which is very expensive in terms of time and
money. Whenever a new customer is on-boarded, laborious
work is required of the domain experts, the ones responsible
for training the model before deployment for use by the
change requesters.

2) Semi-Supervised Setting with Weakly-Labeled Data: A
setup which uses weakly labeled data (”side-information”)
would allow us to automatically exploit the intention of each
class (that means, the extra information we have on the class,
like description or service line) and to point out any other
affinities between the input features and the classes.

Instead of learning from labeled instances (i.e. docu-
ments), the classifier learns this time from labeled features
(i.e. words). Figure 4 reflects the steps taken in building such
a classifier. First, the algorithm identifies a relatively small
set of words in the unlabeled corpus that are both highly
predictive of some class(es), and occur often enough to
have impact. Second, some of these words are automatically
labeled, whereas the others are presented to the user. For
each word, the user can choose to label it, that is, deliver
a class or a list of classes for which the respective feature
is a strong indicator. Alternatively, the user can choose to
reject the word, if he feels it is not a strong feature. Finally,
based solely on this information, a classifier is built. Similar
to the previous setup, new tickets are rated online against
this model.

Rather than requiring documents in the training to be
examined and labeled, our approach leverages a small set
of words that domain experts indicate to be positively
correlated with each class – the labeled features. We adopt
the generalized expectation criteria method [17], [18] to
translate this kind of domain knowledge into constraints on
model expectations for certain word-class combinations.

Figure 4. Semi-supervised learning setup with weakly-labeled data.

A generalized expectation (GE) criterion is a term in a
parameter estimation objective function that assigns scores
to values of a model expectation. Again, let x be the input, y
the output, and θ the parameters for a given model. Given a
set of unlabeled data U = {x} and a conditional model
p(y|x; θ), a GE criterion G(θ;U) is defined by a score
function V and a constraint function G(x, y):

G(θ;U) = V (EU [Ep(y|x;θ)[G(x, y)]]).

The GE formulation is generic enough to enable exploring
many different choices of score functions and constraint
functions. In this paper, we maximize the GE term together
with an entropy regularization term in the objective function,
although this can be easily combined with an empirical
loss term to form a composite objective function that takes
into account labeled instances as well. Moreover, we use
label regularization, that is, the constraints are expectations
of model marginal distributions on the expected output
labels. As such, we use estimated label marginal distribu-
tions g̃x,y = p̃(y) and consider constraints of the form
G(x, y) = ~1(y). Model divergence from these constraints
can be computed by using, for example, KL-divergence [19]:

G(θ;U) = −D(p̃(y)||EU [~1(y)p(y|x; θ)]).

We compute the model divergence by:

G(θ;U) = −
∑

i∈F (U)

D (p̂(y|xi > 0)||p̃θ(y|xi > 0))

where F is a function that returns the set of features
in the input data, p(y|xi > 0) = 1

Ci

~1(y)~1(xi > 0) is an

448448448434434

indicator of the presence of feature i in x times an indicator
vector with 1 at the index corresponding to label y and
zero elsewhere, and Ci =

∑
x
~1(xi > 0) is a normalizing

constant; p̃θ denotes the predicted label distribution on the
set of instances that contain feature i and p̂ are reference
distributions derived from the labeled features.

We estimate the reference distributions using the method
proposed by [20]: let there be n classes associated with a
given feature out of L total classes; then each associated
class will have probability qmaj/n and each non-associated
class has probability (1− qmaj)/(L−n), where qmaj is set
by the domain experts to indicate the correlation between
the feature and the class.

To encourage the model to have non-zero values on
parameters for unlabeled features that co-occur often with a
labeled feature, we select again as regularizer the Gaussian
prior on parameters, which prefers parameter settings with
many small values over settings with a few large values. The
combined objective function is finally:

O = −
∑

i∈F (U)

D (p̂(y|xi > 0)||p̃θ(y|xi > 0))−
∑
j

θ2j
2σ2

V. EXPERIMENTAL SETUP

We use two different datasets of historical tickets to
experimentally evaluate the proposed approaches. The col-
lection from the first customer, called in the following
customer A, contains 1317 tickets. Tickets in this dataset
span across 54 different categories (see Figure 5a), collected
from December 2009 to July 2010. The summaries of these
tickets are compact, very technical pieces of text – the whole
vocabulary consists of only 985 terms. On the other hand,
change requesters serving another customer, called in the
following customer B, describe their tickets in a lengthy
style more close to natural language, creating a vocabulary of
3446 terms. The dataset of customer B has approximately the
same size: 1317 tickets covering 88 categories (see Figure
5b). Worth mentioning is that the tickets are not evenly
distributed across the categories: some categories are over-
represented, whereas others have just some instances.

A. Information Retrieval Approach

In the information retrieval approach we index for each
category several of its fields (title, description, service line)
as well as human-defined keywords specific for the given
customer. To avoid indexing non-relevant tokens, some En-
glish stopwords (like the or a) were removed. Furthermore,
specific words were expanded to their synonyms (e.g. admin
→ {admin, administrator, SA, sysadmin}). We use ticket in-
formation (summary and owner group’s mapping to service
line) to search the static index, using different hit weights
depending on the field.

B. Machine Learning Approach

For all machine learning experiments we performed a
10-fold cross-validation. Initially, the dataset is randomly
partitioned into 10 samples. From these, in every of the
10 runs (the so-called folds), one sample is retained for
testing, while the other 9 are used to train the classifier.
The average accuracy across all runs is reported. Apart
from that, learning curves were built, by feeding gradually
more labeled data (instances or features) to the classifier.
In the supervised setting, we start with 10% of the labeled
instances and increase up to 90% – the maximum size of the
training set. In the weakly-supervised setting, we increase
the number of labeled features in each step by 50 or 100,
until the learning curve reaches a plateau. In this way, we
can determine the learning speed of the classifier and the
minimal amount of training data that is actually necessary
to achieve a satisfactory level of performance.

As features for the classifiers we only use words from
the short summary and the owner group fields of each
ticket. Examples of features in the short summary are
”cirats”, ”backup”, ”publication”, ”mq”. The owner group
field simply contains the name of the expert group, which is
associated with a certain service line, perfoming the change.
Minimal preprocessing was applied on the data: lowercasing
and removing of special characters from the summary input.
As feature selection, a list of English stopwords was re-
moved from the bag of words. Each document is represented
as a vector of words and their frequency in the corpus.

In the experiments for the supervised setting, the owner
group was mapped to the corresponding service lines. These
and the words in the short summary were used as features of
each ticket. We tested two methods for selecting the training
instances. Initially, we input to the algorithm instances
randomly selected from the training set, increasing the input
in several steps. In the second method, we make use of the
active learning paradigm: we retrain the classifier after each
step and apply it on the remaining unlabeled instances in the
pool. The instances to be labeled and used for training in
the next step are the instances about which the classifier is
currently most uncertain how to label (based on the margin
metric explained previously in Section IV).

In the experiments for the weakly-supervised setting, we
exploit the same two fields, namely short summary and
owner group. The owner group features are automatically
labeled by first mapping th eowner group to the service
lines it supports and then labelling each service line is
automatically with the activity categories belonging to it. For
labeling features from the short summary field, two methods
were employed for selecting candidate features. Firstly, we
use Latent Dirichlet Allocation (LDA) [21] to cluster the un-
labeled data around latent topics. As this is an unsupervised
technique, the discovered topics are not necessarily aligned
with the user-defined topics (i.e. categories). We set the

449449449435435

(a) Customer A (b) Customer B

Figure 5. Customers have different distributions over classes: 54 categories for customer A; 88 categories for customer B.

(a) Customer A (b) Customer B

Figure 6. Accuracy@top1 vs. percentage of instances used for training by the LR classifier.

(a) Customer A (b) Customer B

Figure 7. Accuracy@top1 vs. number of features used for training by the GE classifier.

450450450436436

number of topics to 50, independent of the dataset. For each
of the LDA topics, the features xj are sorted descending
according to their predictive power for the respective topic;
finally, only the top features of each cluster are returned.
In this paper, we take the top 25L features according to
these two metrics, where L is the number of classes in the
data. Secondly, to obtain an upper bound on feature selection
methods, we select features according to their predictive
power as measured by the mutual information of the feature
with the class label. The mutual information of the features
within each class is computed by an oracle - a common
experimental setup when human labelers are not available
- making used of the true instance labels. If the mutual
information is above a given threshold, the oracle labels
the feature with the class under which it occurs most often,
and also with any other class under which it occurs at least
half as often. In the experiments we use as threshold the
mean of the mutual information scores of the top 100L most
predictive features; and qmaj = 0.9 as the majority of the
probability mass to be distributed among classes associated
to a labeled feature. The oracle is conservative in practice,
simulating a scenario in which the user only knows about
the most prominent features.

VI. RESULTS AND DISCUSSION

Figure 8. Comparison of the three approaches for customer A.

The results of all approaches are presented using accu-
racy, also called success rate, as the evaluation metric. For
the binary case, the accuracy metric is defined as:

Accuracy =
(tp+ tn)

(tp+ fp+ tn+ fn)

where tp are the true positives, fp the false positives, tn the
true negatives, and fn the false negatives of the confusion
matrix [22]. In general, accuracy refers to the percentage
of correct predictions made by the model when compared
with the actual classifications and can be computed as the

sum of correct classifications (the sum of the elements in
the main diagonal of the confusion matrix) divided by the
total number of classifications (the sum of all elements of
the confusion matrix).

In the following, accuracy@top1 represents the fraction
of instances that have the correct label as their best predicted
label, whereas accuracy@topN represents the fraction of in-
stances that have the correct label within the topN returned
labels.

Figures 6a and 6b present the learning curves of the
multinomial logistic regression classifiers with and without
active learning. The results show that the active learning ap-
proach to labeling tickets invariably outperforms the baseline
approach, while, in addition, greatly reduces the supervision
requirements – already at 50% of the data the active learning
models reach the maximum accuracy, otherwise reached by
the baseline models only when training on 90% of the data.
Moreover, the performance of the classifiers induced on the
customer A data is significantly better than of those on
customer B: 88.6% vs. 79.7% accuracy. This comes as no
surprise, as firstly, the task of distinguishing between 54
categories is easier than choosing from 88 categories and
secondly, the size of the vocabulary is considerably smaller.
In other words, with fewer classes and features, there are
less θ parameters to be estimated.

Figures 7a and 7b show the learning curves obtained by
varying the number of labeled features input to the general-
ized expectation method. From these curves we are able to
obtain a deeper insight into the supervision requirements of
our weakly-supervised approaches. We conclude that, when
using features selected by the topic modeling, as little as
200 features for customer A and 400 features for customer
B are enough to achieve performances on the plateau of
the curves. When the candidate features for labeling are
selected according to their information gain, the classifiers
reach better accuracies because this method, having access to
the instance labels, discovers more discriminative features.

Figure 8 compares the three approaches on the customer
A data. It can be observed that the accuracy@top1 values
are very different across the three approaches: the Lucene
index yields an accuracy of just 53.8%, while the logistic
regression classifier already achieves an accuracy of 89.2%.
Starting with 5 returned categories, the performance of the
classifiers does not improve significantly anymore – this
is the reason why we always presents to the user the top
5 matching categories. At this point, both of the machine
learning approaches reach accuracy levels of over 88%, a
satisfactory threshold.

The reader must bear in mind that the GE approach is
based on the new paradigm of labeling words (as opposed
to labeling whole documents), which is less time consuming
and more natural for domain experts. For example, on the
customer A data, the LR classifier without active learning
requires 265 training documents to achieve an accuracy of

451451451437437

(a) Learning rates vs. tickets/category needed in the training phase by the
LR classifier with active learning.

(b) Learning rates vs. features/category needed in the training phase by the
GE classifier.

Figure 9. Learning rates of the two machine learning approaches.

75%. In comparison, the GE classifier achieves the same
accuracy level with only 200 labeled words for training.

Figure 9a presents the slopes of the learning curves for
the supervised approach vs. the average number of labeled
tickets per category. From these curves we are able to
conclude that, an average number of 7 pre-classified tickets
per category is enough to reach the maximum accuracy,
independently of the the dataset. We believe that the slight
translation of the curve of customer A to the right is
caused by the nature of its corpus: tickets that are in the
same category are actually very different and do not share
common terms. On the other hand, the wordiness of the
tickets from customer B generates ”overlaps” between the
tickets and creates representative features for each category.

Figure 9b, on the other hand, presents the slopes of the
learning curves for the weakly-supervised approach vs. the
average number of labeled features per category. Taking the
same learning rate as threshold, i.e. 0.02, we observe that,
as little as 4 annotated features per category are enough to
acquire top performances across the two customers. The cost
of labeling is thus reduced when labeling features rather than
instances both because fewer features need to be labelled
compared to instances and because feature labeling is less
costly than instance labeling [23].

We suspect these findings suggest the existence of a
”golden ratio” of the system. It is our expectation that,
with a higher number of trial customers, we will be able
to demonstrate that the same constant number of labeled
tickets or labeled features per category is enough to achieve
the plateau of the learning curves across all customers. By
just knowing the number of categories a new client uses,
we could then deduct the expected number of annotated
data (either tickets or words) needed to train an accurate
classifier. This would allow us to better estimate the effort

of embarking a new client and to develop different pricing
policies.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the application of several
approaches to automatic classification of change requests
that aim at decreasing the cost of training. We used a
classification schema based on a catalogue of standard
activities performed to service outsourced IT infrastructure,
containing up to 200 fine-grained activities. The effort of
labeling historical data was reduced by employing active
learning techniques or by leveraging labeled features.

The first of the methods, the information retrieval ap-
proach (a Lucene index), reported the worse performance
and did not scale-up with the increasing number of keywords
for each customer. The supervised machine learning setup (a
multinomial logistic regression classifier) yielded very good
results (89.2% accuracy@top1 and 96.2% accuracy@top5
for customer A), but required large amounts of training
data for each customer. To speed-up the learning process,
we employed active learning techniques and reduced to
half the number of required labeled documents for train-
ing. The semi-supervised setup with weakly-labeled data
(a generalized expectation criteria classifier) resulted in
satisfactory performance (74.2% accuracy@top1 and 88.3%
accuracy@top5 for customer A) at a very moderate cost:
200 labeled words. By this means, we were able to au-
tomatically exploit the extra information we have on the
class, like description or service line, and to let the domain
experts/oracles point out in a less time consuming and more
natural way the affinities between the input features and the
classes.

There are several possible avenues for future work that
we would like to explore. Firstly, we are currently exploring

452452452438438

ways of porting existing statistical models induced from the
corpus of one customer to other customers leveraging the
existing body of work on transfer learning across domains.
Secondly, we will study the interplay between labeled tickets
and labeled features through a set of experiments which will
allow us to analyze the behavior of the induced model under
varying amounts of labeled features and labeled documents.
This will build and extend prior work of Raghavan [23] who
has deployed a dual supervision in an active learning setup.
However, while in Raghavan’s work the feature labeling
merely results in a fine tuning of the classifier trained with
labeled instances - either by pruning the feature space or by
boosting certain features, our combined objective function
is able to exploit both labeled instances and features. This
consists in a more principled way of combining the various
types of supervision available – feature and instance labels –
than previous approaches that perform model induction and
feature selection in separate steps, and it is thus expected to
lead to enhanced classifier accuracy.

ACKNOWLEDGMENT

The authors would like to thank the rest of the
development team: Catalin-Mihai Barbu, Sinem Guven,
Sinziana Mazilu, Lev Merenkov, Madhumita Sadhukhan,
and Christoph Thomet.

REFERENCES

[1] A. Bose, A. Heching, and S. Sahu, “A framework for model-
based continuous improvement of global it service delivery
operations,” In IEEE International Conference on Services
Computing, 2008.

[2] O. of Government Commerce, The Official Introduction to
the ITIL Service Lifecycle, 2nd ed. The Stationery Office
(TSO), Norwich, 2010.

[3] G. Spalding and G. Case, ITIL Continual Service Improve-
ment, 2nd ed. The Stationery Office (TSO), Norwich, 2007.

[4] EMA, “Adding control to change management: how to assess
your requirements,” 2007.

[5] G. A. D. Lucca, M. D. Penta, and S. Gradara, “An approach
to classify software maintenance requests,” In ICSM, 2002.

[6] R. Gupta, K. H. Prasad, L. Luan, D. Rosu, and C. Ward,
“Multi-dimensional knowledge integration for efficient inci-
dent management in a services cloud,” In IEEE International
Conference on Services Computing, 2009.

[7] Y. Diao, H. Jamjoom, and D. Loewenstern, “Rule-based
problem classification in it service management,” In IEEE
International Conference on Cloud Computing, 2009.

[8] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in
Action, 2nd ed. Manning Publications, 2010.

[9] K. S. Jones, “A statistical interpretation of term specificity
and its application in retrieval,” Journal of Documentation,
vol. 28, pp. 11–21, 1972.

[10] F. Sebastiani, “Machine learning in automated text catego-
rization,” ACM Computer Survey, vol. 34, pp. 1–47, 2002.

[11] G. Forman, “An extensive empirical study of feature selection
metrics for text classification,” Journal of Machine Learning
Research, vol. 3, pp. 1289–1305, 2003.

[12] T. Zhang and F. J. Oles, “Text categorization based on regu-
larized linear classification methods,” Information Retrieval,
vol. 4, pp. 5–31, 2001.

[13] K. Nigam, J. Lafferty, and A. Mccallum, “Using maximum
entropy for text classification,” In IJCAI-Workshop on Ma-
chine Learning for Information Filtering, 1999.

[14] B. Settles, “Active learning literature survey,” University of
Wisconsin–Madison, Tech. Rep. 1648, 2010.

[15] D. D. Lewis and W. A. Gale, “A sequential algorithm for
training text classifiers,” IN SIGIR, 1994.

[16] T. Scheffer, C. Decomain, and S. Wrobel, “Active hidden
markov models for information extraction,” In CAIDA, 2001.

[17] G. Mann and A. McCallum, “Generalized expectation cri-
teria for semi-supervised learning with weakly labeled data,”
Journal of Machine Learning Research, vol. 11, pp. 955–984,
2010.

[18] G. Druck, G. Mann, and A. Mccallum, “Learning from
labeled features using generalized expectation criteria,” In
SIGIR, 2008.

[19] S. Kullback and R. Leibler, “On information and sufficiency,”
The Annals of Mathematical Statistics, vol. 22, pp. 79–86,
1951.

[20] R. E. Schapire, M. Rochery, M. Rahim, and N. Gupta,
“Incorporating prior knowledge into boosting,” In ICML,
2002.

[21] D. M. Blei, A. Y. Ng, M. I. Jordan, and J. Lafferty, “Latent
dirichlet allocation,” Journal of Machine Learning Research,
vol. 3, pp. 993–1022, 2003.

[22] R. Kohavi and F. Provost, “Glossary of terms,” Editorial for
the Special Issue on Applications of Machine Learning and
the Knowledge Discovery Process, vol. 30, 1998.

[23] H. Raghavan, O. Madani, and R. Jones, “Active learning
with feedback on both features and instances,” In Journal
of Machine Learning Research, vol. 7, pp. 1655–1686, 2006.

453453453439439

