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Abstract 

In recent years, Radio Frequency Identification (RFID) has been widely adopted as a 
solution for the fully automatic identification of physical objects. However, 
technological and physical constraints may sometimes hamper a productive use. One of 
the key issues is the problem of false-positive RFID tag reads, that is, RFID 
transponders that are detected unintentionally by the reader hardware. The present 
paper proposes and evaluates a comprehensive time-series analysis technique to 
identify and filter false-positives from the RFID data stream. Furthermore, we 
investigate the value of additional knowledge about the business process to be 
monitored. We empirically test our approach using a large set of RFID data collected at 
the distribution center of a large European retailer.  

Keywords:  RFID; Logistics; Algorithms; Data. 

Introduction 

In recent years, Radio Frequency Identification (RFID) has been widely adopted as a solution for the fully 
automatic identification of physical objects. The manifold fields of application include supply chain 
management (Angeles 2005)(Whang 2010)(Kärkkäinen and Mikko 2003) (Asif and Mandviwalla 2005), 
health-care (Chowdhury and Khosla 2007)(Lewis et al. 2010)(Triche et al. 2011)(Wu et al. 2011)(Janz et 
al. 2005), enterprise event processing (Zang and Fan 2007), and library systems (Golding and Tennant 
2007). In any case, business value estimates of RFID rely on the assumption that the technology shows a 
high detection accuracy under real-world conditions. However, technological and physical constraints 
may sometimes hamper a productive use. One of the key issues is the problem of false-positive RFID tag 
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reads, that is, RFID transponders that are detected unintentionally by the reader hardware. This 
phenomenon occurs when not only the tag of interest but more tags are accidentally located within the 
read range of the RFID reader. Here, a true-positive read denotes an expected tag detection. In contrast, a 
false-positive read corresponds to undesired readings of tag ID numbers (Miles et al. 2008), (Chawathe et 
al. 2004), (Floerkemeier and Lampe 2004) (Brusey et al. 2003).  

Brusey et al. (2003) propose basic algorithms for RFID data filtering, including noise removal and 
duplicate elimination. Y analyze false-positive RFID tag reads in the context of a first in, first out product 
queue. Tu and Piramuthu (2008) analyze true and false reads in terms of the presence and absence of 
RFID-tagged objects. In their theoretical scenario, two readers are used simultaneously and two tags are 
expected to be present at the same time. Jiang et al. (2006) analyze false-positive reads in terms of object 
interaction. Their approach relies on the observation that when an object is moved or rotated, the distance 
and the angle between the reader and the RFID tag changes. Notwithstanding the promising results found 
in the literature, all proposals presented so far suffer from weaknesses, which we aim to address in this 
paper. First, no prior study is based on real-world data; they instead use computer simulations or trials 
under lab conditions. Assumptions regarding RFID hardware behavior and the generalizability of the 
results are thus questionable, given the complex physical characteristics of RF communications (e.g., the 
phenomenon of electromagnetic reflections). We avoid this shortcoming through a massive dataset 
obtained over a longer period of time in a productive environment. Second, RFID data generated by 
reader devices are richer than suggested in the literature and not limited to timestamps of individual tag 
reads. Additional low-level reader data used in our research include the tag's signal strength and 
information on the antenna that detected it. Third, the concept of increasing the number of readers or 
tags appears rather simplistic considering the high costs of RFID hardware components. In contrast to 
this 'brute force' approach, we propose applying more sophisticated data mining techniques to solve the 
false-positive read problem. 

The issue of false-positive RFID tag reads is highly related to the problem of movement detection of RFID 
tags. Examples include an automatic self-checkout system at a retailer where all tagged items that pass the 
point-of-sale need to be identified prior to billing as well as a logistics scenario where one wants to 
identify only those tagged pallets that move through an incoming or outgoing goods portal. In both cases 
false positives pose inaccuracies in the RFID data stream that must be removed before the data can be 
forwarded to the enterprise system. In (Keller et al. 2010) and (Keller et al. 2012), the use of low-level 
reader data was proposed for the classification of RFID tag reads as either moved (i.e. true positive) or 
static (i.e. false positive). The classification decision is based on aggregated attributes that may be derived 
from the raw RFID data. Examples include, among others, the maximum received signal strength (RSSI) 
or the number of tag detections during a predefined period of time, called a gathering-cycle (see next 
section for more details). Under this approach, the question whether a pallet was moved or not is then 
answered using threshold values such as a predetermined maximum RSSI value that characterizes a 
specific class of RFID readings.  

Against the backdrop of these prior studies, the present paper presents and evaluates an even more 
comprehensive time-series analysis technique to identify and classify the typical behavior of moved and 
static tags over the time of a gathering-cycle. The data we work on was collected in distribution center, 
however, the approach may be applied to virtually any scenario where it is necessary to detect movements 
of RFID tags (e.g., patients leaving a room in hospital, moving a book over a counter in the library). 

The remainder of the paper is organized as follows. First, we provide an overview of the technological 
foundations of low-level RFID reader data. Next, we present the concepts of time-series analysis, 
similarity measures, and the techniques for dealing with variations in movement speed, general 
readability of tags, and missing values. What follows is an explanation of how these concepts are utilized 
to generate typical moved reference series and how these allow for detecting moved RFID tags. Moreover, 
we investigate to what extent additional knowledge about the observed physical events (i.e., the number of 
moved objects) may improve the classification performance even further. We evaluate the practicability of 
our approach based on an extensive data set of more than 31,000 detected RFID tags. 
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Theoretical Background 

In (Keller et al. 2010) the idea of using the so called low-level RFID reader data to detect movement was 
presented. While scanning for tags in range, RFID reader devices store additional data about every single 
tag detection – the so-called tag event – that contain useful information when it comes to classifying 
detected RFID tags as either moved or static. The different types of low-level reader data are summarized 
in Table 1. 

Table 1 - Description of Low-Level Reader Data 

Information Description Example 
TagID This is the ID of the detected tag. For example, in a 

retail or logistics scenario an “Electronic Product 
Code” (EPC) is used to uniquely identify different 
products. 

315506B4ACB38C6286000000 
(Electronic Product Code) 

RSSI-value The Received Signal Strength Indicator (RSSI), 
measured in dBm, is a measurement of the received 
signal the tag emits and can intuitively be 
interpreted as how loud the tag has been heard by 
the antennas. By nature the RSSI value becomes 
higher the closer a tag is to the antennas. 

-64dBm 

Timestamp The timestamp can either represent a global time 
stamp with exact date and time or it can be relative, 
that is, represent a time period that has passed since 
the start of the scanning process (Note: the present 
study considers relative timestamps). 

1’534ms 
(have passed since the reader 
started scanning for tags in 
range) 

Antenna Most readers are connected to multiple antennas. In 
our context, every reader receives signals from four 
different antennas. 

Antenna 2 

 

Some real-world examples from our dataset are shown in Figure 1. Depicted are the measured RSSI values 
over time during a gathering-cycle of 5,000ms. For the sake of simplicity, the information about which 
exact antenna has detected the tag was omitted. In any gathering-cycle exactly 1 tag has been moved. 
However, as can be observed Figure 1 (a & c) one additional static RFID tags was present within the read 
range of the RFID reader and in Figure 1 (b & d) even two additional tags were present. It is evident that 
some kind of filtering procedure is required to distinguish moved and static RFID tags for a productive 
RFID system to work reliably. 

The tag-event sequence of a specific RFID tag during a gathering cycle is temporally ordered and can thus 
be considered a time series. Generally, a time-series TS consists of an ordered sequence of n>0 data 
points di, which are usually real or integer values: TS = (d1, …, dn). A tag read may hence be represented as 
a sequence of RSSI values and a timestamp encompassing n individual tag events (Keller et al. 2014): 

  {                  )                     )  

The idea of the approach presented in the following is to classify a tag based on its time series. The 
classification decision is made depending on the similarity to a typical time series of a moved tag M = (m1, 
…, mo) or to a typical static time series of a static tag S = (s1, …, sp). For this purpose it is necessary to 
develop a formal understanding of the terms “similarity” in general and particularly the “similarity of time 
series”. 
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(a) (b) 

  

(c) (d) 

Figure 1 - Real-word examples of RFID reader data 

About the Similarity between Time-Series 

Distance Functions 

In contrast to decision tree classification, for example, comparisons among time series do not result in a 
clear class determination in the form of a rule and a leaf. In fact, there is a decision to be made as to 
whether a series is more similar to one series than to another. Two objects are generally said to be similar 
to each other if they have a small distance. The distance between two objects of class O is determined by 
evaluating a distance function 

         

If o, p and q are objects of class O, then a distance function has to satisfy the following conditions:  

(i) Non-Negativity      )   . The distance between two objects cannot be negative.  
(ii) Identity of Indiscernible      )         The two objects have a distance of 0 - if, and 

only if, they are identical.  
(iii) Symmetry      )       ) The distance between o and p is always the same as the distance 

between p and o.  
(iv) Triangle Inequality      )       )       ) . The distance between o and p is always 

determined by the shortest connection between the two objects. 

A common method to determine the similarity between two time series is to interpret them as vectors in a 
metric space (Zezula et al. 2006) and then to calculate one of the Minkowski Distances. Given two time-
series T = (t1, …, tp) and U = (u1, …, up) then these distances (also called Lp distances) are defined as 
follows: 

      )  √∑       
 

 

   

 

 



 Short Title up to 8 words 
  

 Thirty Fifth International Conference on Information Systems, Auckland 2014 5 

where L1 is called the Manhattan Distance, L2 the Euclidean Distance and L∞ is known as the Chessboard 
Distance. In any case, the similarity is determined by summing up the distance between two 
corresponding data points of T and U. For optimization reasons the calculation of the square root can be 
omitted because it does not alter the relative similarity ranking of objects according to a reference point. 
Initial tests for this scenario have shown that from the Lp distances using the Euclidean Distance leads to 
the best classification results and therefore it was chosen for the distance calculation of individual data 
points over Manhattan and Chessboard Distance. 

Dealing with Variations in Tag Readability 

The readability of an RFID tag depends on various factors like the material it is placed on or the relative 
position on the object (Singh et al. 2009). For example, tags placed on paper towels yield better reads 
than those placed on bottled water; an RFID-tagged patient in a hospital is easier to detect if the tag is 
placed on her coat than when it is in her pocket. Consequently, we have to keep in mind that not all tags 
lead to the same RSSI value in the same situation as easier-to-read tags (e.g. on the coat) yield higher 
RSSI values whereas more difficult-to-read tags (e.g. in the pocket) yield lower RSSI values. 

As stated above, two time series are said to be similar if they have a small distance between each other. 
Intuitively, the distance between two time-series is small if they have the same shape. In Figure 2 some 
fictitious sample time-series are depicted with developing values of an arbitrary attribute over a period of 
50 seconds. Considering Figure 2 (a) it is evident that the reference series and series A are similar because 
they have exactly the same shape. Series B in Figure 2 (b) has the same shape as the reference series, the 
only difference being that it has a different amplitude due to different tag readability. But nevertheless, 
one would also consider it as similar to the reference series (though not as similar as series A). 

  

(a) Offset Translation (b) Amplitude Scaling 

Figure 2 - Variation in Tag-Readability leads to high distances despite similar shapes 

In both cases the Euclidean Distance would determine a high distance although the respective series have 
obviously similar shapes. Strictly speaking, calculating the Euclidean distance between the reference 
series and series A yields a distance of 44.83. However, the distance between the reference series and 
series B amounts to only 40.75. Intuitively, one would have expected a distance of 0 between the reference 
series and series A and a small distance between the reference and series B. In order to deal with these 
two types of time series, distortions known as offset translation and amplitude scaling a normalization 
before calculating the distance appears to be reasonable (Euachongprasit and Ratanamahatana 2008). 

Let T = (t1, …, tn) be a time-series. Then the normalized time-series  ̂ is acquired by subtracting the 
average value of the series,  ̅, from the individual data points and then dividing them by the standard 
deviation of the values,    ) (Goldin and Kanellakis 1995). 

 ̂  (
     ̅

   )
   

     ̅

   )
)                          ̅  

 

 
 ∑  

 

   

                          )  √∑      ̅) 
 

   

 

However, this procedure makes sense if, and only if, the shape of the two series is relevant and not their 
absolute values. To demonstrate the effect Figure 3 shows series B from Figure 2 (b) after the 
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normalization. The shape is basically the same as before but the amplitude scaling effect has almost 
disappeared. 

 

Figure 3 - Normalization of a Time-Series 

Dealing with Variations in Tag Movement Speed and Acceleration 

Another important issue with time-series similarity is the occurrence of stretching or compression, which 
may be present either locally or globally. If the time series is based on data acquired from a human 
interaction, for example, the movement of a pallet through an RFID portal, compression or stretching can 
be the result of the warehouseman walking faster or slower. This effect was described, among others, by 
(Keogh et al. 2004)(Pullen and Bregler 2002). Considering our hospital example, this effect might occur 
because different patients move with different speed. For example, a patient with a broken leg apparently 
tends to move slower compared to a patient with a broken arm. Figure 4 shows a reference series together 
with a compressed version of itself denoted as series C. In this case the Euclidean Distance is not defined 
at all, because no data exists for series C after 35 seconds. This is problematic because it is necessary to 
calculate the distance between two corresponding data points from each series. 

 

Figure 4 - Example of a compressed Time-Series due to Variation in Tag Movement Speed 

It seems intuitively reasonable to stretch series C to the length of the reference series or to compress the 
reference series to the length of series C. However, two more meaningful approaches to deal with this 
problem can be found in the literature: Uniform Scaling and Dynamic Time Warping (Fu et al. 2005). 
The main difference between these is that Uniform Scaling tries to perform a global compression or 
stretching whereas Dynamic Time Warping does the same only locally.  

Uniform Scaling 

The idea of Uniform Scaling is to perform a uniform warping of time to address the effect of shrunken or 
stretched time series (Keogh 2003). In order to calculate the similarity between two different time series 
using some kind of distance function like the Euclidean Distance introduced above, it has to be clear 
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which data point of the one series has to be compared to which data point of the other series. Let T = (t1, 
…, tn) and U = (u1, …, um) be two different time-series with n<m. Shrinking U to the size of T is not a valid 
option because this would mean a loss of information and so T has to be stretched to the size of U. 
Consequently m-n data points have to be inserted into T resulting in a new time-series T’ = (t’1, …, t’m) 
with length m. The distance d between T and U is then calculated by 

     )   (        )         ))       
      

 )         )) 

where the individual data points t’I are calculated by  

  
   

⌊
   
 

⌋
                              

The resulting time series after applying Uniform Scaling to series C is shown in Figure 5. 

 

Figure 5 - Uniform Scaling applied to a compressed Time-Series 

Because every data point in the reference series now has a corresponding data point in the scaled series C, 
the Euclidean Distance can be calculated in the usual way. 

Dynamic Time Warping 

Rather than using a global stretching factor to scale a time-series, Dynamic Time Warping (DTW) uses 
local scaling to determine the distance between two time-series. This can be interpreted as a temporary 
acceleration or deceleration of the warehouseman moving the pallet through a portal or a patient walking 
through the hospital. Originally, this approach was introduced as a technique for speech recognition to 
cope with different speaking speeds (Sakoe and Chiba 1978). Today, Dynamic Time Warping is 
successfully applied to all kinds of data, including for example audio, video and graphics data, in multiple 
disciplines such as computer science, biology, medicine and economics. The most important difference 
compared to all other distance measures described so far is that Dynamic Time Warping is far more 
flexible as it dynamically chooses which data point pairs are compared to each other. 

Dynamic Time Warping is formally defined as 
 

   )  ))   

     ))     )  )    

     )         )      {

            )           ))

          )           ))

            )         ))

 

where d is called the ground distance function as it is used to determine the distance between two single 
data points and not the entire time series. Usually the Euclidean Distance or the Manhattan distance is 
used for this purpose. Figure 6 shows Dynamic Time Warping applied to the compressed series C. Note 
that the distance is now determined between different data points than in the previous similarity 
measures. In particular, a single data point can be used multiple times as a reference to a data point of the 
other time series. This effect becomes most apparent at the last data point of C where it is compared to the 
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remaining data points of the reference series. Note that the line drawn between two data points does not 
correspond to their distance but is used only for presentation purposes to show which points are 
compared. The distance is still determined by the difference between their absolute values. 

 

 
Figure 6 - Dynamic Time Warping applied to a compressed Time-Series 

Initial experiments were performed to determine whether Dynamic Time Warping or Uniform Scaling 
would lead to the best classification results with respect to the problem of stretched and/or compressed 
time-series. It turned out that Dynamic Time Warping was able to handle the variance in speed during a 
gathering-cycle much better than Uniform Scaling could. The reason for this is that the first has the ability 
to deal with complex local distortions (e.g., spontaneous acceleration or deceleration of a moving person), 
while the latter, in contrast, can only deal with global distortions. 

Generation of Reference Time-Series 

As previously stated, our approach is to determine whether the time series of an RFID tag is more similar 
to a typical moved or more similar to a typical static time series. The tricky part of this approach, besides 
the concept of similarity, is the identification of such typical time-series. In the previous section, different 
time-series were compared to a reference series. This section therefore aims at the generation of such a 
reference series for moved and static time-series, respectively, against which the tags can be compared 
afterwards. In general, a reference series R for a tag class C has to satisfy the following two conditions:  

(i) R is as similar as possible to all time-series in C and  
(ii) R is as dissimilar as possible to all time-series not in C.  

The question is how to find such a reference series. Basically there are two possibilities:  

(i) Use an existing time series from the sample data set as a reference (called median approach) 
and  

(ii) construct a new reference from the existing sample data (called mean approach). 

Median Approach 

The idea of the first possibility, called median approach, is that for each moved time series m the average 
distance to all other moved series     is calculated. The time-series which has the least average distance 
to all others is obviously the most typical and is thus chosen as the reference time series for all moved 
tags. An alternative way of identifying the reference series is not to calculate the average minimum 
distance to all moved series but to calculate the average maximum distance to all static series. However, 
initial tests have shown that the first approach results in a much better classification performance as a 
reference series having a high distance to all static tags does not necessarily need to have a low distance to 
the moved tags. Or in other words: dissimilarity to static tags does not implicate similarity to moved tags. 
Consequently such a reference series is useless. 
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Mean Approach 

The major drawback of the median approach is that the reference series has to be one that already exists 
in the sample data set. Consequently the approach is both limited by, and depends upon, the number of 
sample time series available for the two tag classes. It seems likely that creating a completely new 
reference series is probably going to yield better results. 

The second approach presented here is called mean approach and the idea is that from all available 
samples an average time series is calculated and returned as the reference. This leads directly to the 
question of how the average of a set of time series is defined. Let T = (t1, …, tn) and U = (u1, …, un) be two 
time series. Then the average time series V of T and U can be calculated by averaging the respective data 
points: 

  (
     

 
   

     

 
) 

Or more generally, if there are k different time-series   {        then an average data point vi is 
calculated as 

   
∑    

 
   

 
 

However, this technique requires that all time series have the same length, since only in this case can an 
average value be computed. Uniform Scaling was presented above as an approach to compress or stretch 
time series to the same length. However, compressing and stretching each and every time series in the 
sample data set to a specific length is computationally very expensive - especially because a suitable length 
is very difficult to choose. Another problem with this approach is that every single data point (i.e., tag 
event) is taken into account and is sometimes repeated multiple times in order to stretch a time series. 
This in turn means that the information about the timestamp showing exactly when the tag event 
occurred is blurred and can hardly be reconstructed. To deal with this problem another approach is 
presented here to interpolate a time-series while keeping the temporal order of the individual tag events. 

Dealing with Missing Values 

The entire gathering cycle is divided into k time intervals of equal length t. Consequently the reference 
series R is going to have a length of k data points. If M = (m1, …, mn) is a time series with corresponding 
timestamps (t1, …, tn) then the k-th data point of R is the average of all data points of M that lie within the 
interval  

  [     )        )]  

In a case where no tag event occurred in a specific interval then the two preceding and the two succeeding 
tag events will be averaged and used as the interpolation. If there are no preceding or succeeding tag 
events then the first or the last tag-event is used, respectively. 

An example of this procedure is shown in Figure 7. Figure 7(a) shows the reference time-series introduced 
above before the interpolation. Note that six data points have been removed from the series (seconds 15-
16 and seconds 31-34) to show the effect of interpolating missing data points in an interval. Figure 7(b) 
shows the same series after the interpolation. The period of 50 seconds has been divided into k=25 

intervals with an equal length of t=2 seconds. Some important effects can be observed here: for example 
on the one hand, the shape of the time series has been retained, including the temporal order of the 
individual tag-events; and on the other hand, in the intervals without any tag events the mean approach is 
able to successfully interpolate data points. This also holds true for the case where multiple intervals in a 
row are missing tag events. 
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(a) (b) 

Figure 7 - Time-Series before (a) and after (b) missing value interpolation 

Identification of multiple reference series for moved RFID tags 

Observations in the distribution center where we collected our data have shown that there is no one and 
only typical moved reference time series. Rather, further sub classes exists that correspond to different 
movement types. It is evident, that in these cases different shapes exist for different time series. In order 
to facilitate the identification of moved RFID tags, these sub classes have to be identified and appropriate 
reference time series have to be generated.  

A common method used in machine learning to find such sub-classes is cluster analysis with k-Means 
(MacQueen 1967) and k-Medoid (Kaufman and Rousseeuw 1990) being the two most popular techniques. 
These two methods are called partitioning methods because they aim at partitioning the data set into k 
disjunctive sub sets where each is represented by an individual cluster center. The major drawback of 
these two algorithms compared to other clustering algorithms is that the number of clusters, k, has to be 
chosen in advance. To solve this problem the performances of the algorithms using different k values are 
compared. Initially the k cluster centers are chosen randomly. Then every time series in the data set is 
assigned to the cluster where the distance to the cluster center is minimal. After all time-series have been 
assigned to a cluster the cluster centers for each cluster are recalculated. Again all time-series are assigned 
to the new clusters where the distance to the center is minimal. This procedure is repeated until there are 
no more changes in the clustering, that is, the cluster centers do not change after the recalculation. 
Another drawback of these partitioning cluster algorithms is that the result depends on the initial choice 
of the k cluster centers which means that different initial cluster centers yield a different result. 
Consequently, the clustering is repeated multiple times for each value of k and the best clustering is 
returned. We used the Davies-Bouldin Index (Davies and Bouldin 1979) to determine the quality of our 
clustering. It is notable that we do not use specific low-level reader data to perform the clustering but 
actually cluster the time-series themselves for every RFID tag constructed using the approach above. For a 
clustering with k clusters it is defined in the following way: 

   
 

 
∑   

   
{
    )      )

       )
}

 

   

 

where    ) is denoted intra-cluster distance and is a measure of scatter of the objects within a cluster and 
       ) is denoted inter-cluster distance and corresponds to the distance between two clusters. For a 
cluster C with n objects    and a cluster center c,    ) is defined as follows: 

   )   (
 

   
∑      )

 

   

) 

Where       ) corresponds to the distance calculated using Dynamic Time Warping between an object    
and the cluster center c. The distance between two clusters    and   is defined as the distance between 

their cluster centers    and   :  

 (     )         ) 
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Small DB values correspond to compact clusters where the centers of different clusters are far away from 
each other. Consequently, the clustering minimizing DB is considered the best clustering. As stated above, 
the initial choice of the k cluster centers as well as the number of clusters, k itself, is unknown in advance. 
Calculating DB multiple times for different k values results in the best choice for these parameters. For 
our scenario k=5 turned out to be the optimal choice resulting in the 5 moved reference time series shown 
in Figure 8. 

 

 

Figure 8 - Reference Moved Time Series from our Dataset 

Identification of moved RFID tags 

In the previous sections the theoretical background regarding the low-level reader data was explained. It 
was shown how the similarity between time series is calculated and how reference time series are created 
that correspond to typical moved and static tags. In this section we will first describe the real-world data 
set that we will use to demonstrate the power of our approach. Second, we will show how the concept of 
similarity is used for building a classification model that can eventually be used to distinguish between 
moved and non-moved (i.e. static) RFID tags. We show the results of two different experiments. In the 
first experiment, every tag that has been detected is classified independently from all other tag detections. 
As a result, multiple tags in the same gathering cycle might be classified as moved. In the second example, 
we will improve our approach even further by taking into consideration that we know for sure from the 
business process that exactly one tag has been moved and it is only important to find out which one of 
them it was. 

Data Collection 

The data set used in this paper was collected in a productive environment and under real-world 
conditions at the METRO Group central distribution center located in Unna, Germany. This center sees 
between 3,500 and 8,000 pallet movements a day and all of the 87 shipment dock doors have been 
equipped with RFID portals to automatically register any outgoing pallets. In total 53,988 pallets have 
been monitored representing 13,245 moved and 40,743 static pallets. This corresponds to a total false-
positive rate of 75.47%, that is, for every moved tag that we detect on average three more non-moved 
RFID tags are detected. However, this number includes some cases where multiple tags have been moved 
at the same time. This may happen, for example, in the case of stacked pallets where the warehouseman 
indeed loads multiple pallets at the same time. If the logistics- or any other process, however, can ensure 
that only one pallet at a time is moved, we can use this additional process knowledge in order to create a 
more distinct approach. Thus, to validate our algorithm from the originally collected data, we consider 
only the gathering cycles where we know for sure that only one pallet had to be loaded.  

An overview of our dataset is shown in Table 2. In total there are 11,466 gathering cycles where exactly 
one RFID tag was moved through the RFID portal. Consequently, there are also exactly 11,466 moved 
RFID tags samples in the dataset. However, as has been described above, in most cases not only the tag of 
interest is detected but additional tags that are in read range by accident as well. The number of such 
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unwanted (static) RFID tag reads sums up to 19,873. In total, this amounts to a false-positive rate of 
63.4% meaning that without any further analytical decision support only in 36.6% of all cases would the 
RFID tag of interest be recognize correctly. 

 

Table 2 - Data collected at METRO Group Distribution Center 

Number of 
Gathering-

Cycles 

Number of 
Moved RFID 

Tags 

Number of 
static RFID Tags 

Total number of 
RFID tags 
detected 

False-positive 
Rate 

11’466 11’466 19’873 31’339 63.4% 

 

Table 3 shows are more detailed view of our data set broken down to the individual cases with respect to 
the number of RFID tags detected per gathering cycle. The first column indicates the case; between 1 and 
14 tags were detected (cases 1-14) per gathering-cycle. The second column indicates how often each case 
occurred. As by definition exactly one tag was moved, the number of moved RFID Tags always equals the 
number of occurrences. 

 

Table 3 - Detailed Description of collected Data 

Case 
Occurrences 

in our dataset 

Moved 
RFID 
Tags 

Static 
RFID 
Tags 

Total 
RFID 
Tags 

False-positive 
Rate [%] 

1 RFID Tag per GC 2,812 2,812 0 2,812 0.0% 

2 RFID Tags per GC 3,193 3,193 3,193 6,386 50.0% 

3 RFID Tags per GC 2,515 2,515 5,030 7,545 66.7% 

4 RFID Tags per GC 1,472 1,472 4,416 5,888 75.0% 

5 RFID Tags per GC 765 765 3,060 3,825 80.0% 

6 RFID Tags per GC 366 366 1,830 2,196 83.3% 

7 RFID Tags per GC 178 178 1,068 1,246 85.7% 

8 RFID Tags per GC 98 98 686 784 87.5% 

9 RFID Tags per GC 40 40 320 360 88.9% 

10 RFID Tags per GC 13 13 117 130 90.0% 

11 RFID Tags per GC 7 7 70 77 90.9% 

12 RFID Tags per GC 2 2 22 24 91.7% 

13 RFID Tags per GC 4 4 48 52 92.3% 

14 RFID Tags per GC 1 1 13 14 92.9% 

Total 11,466 11,466 19,873 31,339 63.4% 

 

Classification without additional Process Knowledge 

Based on our real-world data set, we have created several reference time series for moved and non-moved 
RFID tags using the approach described above. Eventually we ended up with 5 different reference series 
for moved RFID tags and 2 different reference series for non-moved RFID tags. The distances between 
every time series and the 7 reference series using Dynamic Time Warping were calculated and used as 
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input variables to decision tree classification model (average over 10 times stratified repeated random sub 
sampling, with 70% training and 30% test set). In principle any classification method can be used. We 
deliberately chose decision trees over other classifiers like neural networks, support vector machines or 
logistic regression as it was crucial to (1) interpret and (2) adapt the decision algorithm if necessary. The 
final classification procedure of moved RFID tags is straight forward and can be done in real-time. After a 
gathering cycle is completed, we construct the time series for every detected tag as described above, 
calculate the distances to our reference series and let the decision tree model decide about movement. The 
decision takes only a couple of milliseconds and is immediately forwarded to the warehouse management 
system where the information is processed accordingly. The results are shown in Table 4. As can be seen 
the detection of moved RFID tags performs very well, on average about 94.78% (error rate: 5.22%) of all 
moved RFID tags are detected correctly. This is an enormous improvement over using no algorithmic 
approach at all, where the error rate is 63.4%. The results are slightly worse compared to (Keller et al. 
2014) where the time series approach was able to perform with an error rate of only 3.37% but it is 
notable that in that prior study a superset of the data used in the present study was analyzed. 
Consequently, the results are not directly comparable in this case.  

 

Table 4 - Detection Results of Moved RFID Tags without additional Process Knowledge 

Case Number of moved 
RFID Tags 

Correctly classified 
as moved [n] 

Correctly classified 
as moved [%] 

1 2812 2718 96.66% 

2 3193 3051 95.55% 

3 2515 2382 94.71% 

4 1472 1367 92.87% 

5 765 706 92.29% 

6 366 333 90.98% 

7 178 165 92.70% 

8 98 84 85.71% 

9 40 35 87.50% 

10 13 13 100.00% 

11 7 7 100.00% 

12 2 2 100.00% 

13 4 4 100.00% 

14 1 1 100.00% 

Total 11,466 10868 94.78% 

 

Classification with additional Process Knowledge 

In many scenarios it is known in advance how many tags of interest have to be identified, for example, in 
processes such as removing pallets from a high-rack storage area where the warehouse management 
system knows that exactly one pallet is retrieved every time or in a hospital scenario where we know for 
sure that only one patient is being moved into the operating room for surgery. This knowledge can be used 
to improve the detection of moved RFID tags even further. The classification approach is also straight-
forward. After the completion of a gathering cycle, we construct the time series for every detected tag as 
described above and calculate the distances to the reference series. We then rank the RFID tags based on 
their distances and return to the warehouse management system only the one with the least distance as 
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the moved tag. This is a special case of the approach presented in (Keller et al. 2014) where multiple 
attributes were used to build a feature vector and calculate similarity. Here the feature vector consists of 
only one attribute (the distance one of the reference series). The results for the different cases are shown 
in Table 5. It can be seen that with our approach we are able to detect 97.81% (error rate: 2.19%) of all 
moved RFID tags correctly as moved, which clearly outperforms the first approach and also the results 
from (Keller et al. 2014). 

Results and Summary  

The use of RFID technology is a key technology in many IS implementation projects where the 
identification of physical objects is required. Practitioners and researchers often rely on the assumption 
that the technology works reliably right from the start. However, the issue of false-positive RFID tag 
reads, that is, tags that have been detected by the RFID reader only by accident, leads to unexpected 
inaccuracies in the RFID data stream. In the example data set used in the present study, more than half of 
the detected RFID tags are false positives, which equals an error rate of 63.4%. It is evident that with such 
low data quality levels, the practical value of RFID technology seems questionable. 
 

Table 5 - Detection Results of Moved RFID Tags with additional Process Knowledge 

Case Number of moved 
RFID Tags 

Correctly classified 
as moved [n] 

Correctly classified 
as moved [%] 

1 2812 2812 100.00% 

2 3193 3140 98.34% 

3 2515 2455 97.61% 

4 1472 1417 96.26% 

5 765 735 96.08% 

6 366 341 93.17% 

7 178 168 94.38% 

8 98 88 89.80% 

9 40 35 87.50% 

10 13 12 92.31% 

11 7 6 85.71% 

12 2 2 100.00% 

13 4 3 75.00% 

14 1 1 100.00% 

Total 11,466 11,215 97.81% 

 

As a remedy to this issue, we presented a novel approach based on low-level reader data and time-series 
analysis. Furthermore, it is often known in advance how many tags are expected to be read during a 
predefined time period. This information can be used to improve our approach even further. A summary 
of our practical evaluation is shown in Table 6. The results show that, using our approach with time-series 
analysis, we were able to reduce the error rate from 63.41% to 5.22%. The use of additional process 
knowledge in terms of the number of expected moved tags leads to an even better error rate of only 2.19%.  
In light of our findings, we see opportunities for future research in various directions. First, new fields of 
application should be investigated to support the transferability of our approach. Though we considered a 
scenario with non-overlapping gathering cycles, our concepts may also be transferred with no 
modifications to the processing of continuous data streams. Examples include RFID-based self-checkouts, 
the detection of misplacements on the sales floor, and production lot tracking in complex manufacturing 
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systems. Second, the concepts presented here might become a promising foundation for research on the 
mining of other forms of sensor data beyond RFID. The long-term emergence of a so-called ‘Internet of 
Things’ will successively lead to the deployment of many other sensor technologies that organizations 
might want to leverage. Third, more research will be required to develop a better understanding of the 
value provided by these novel sources of information to the firm, for example, in operations, marketing, or 
innovation management. 
 

Table 6 - Results 

Approach Classification Accuracy of  
Moved RFID Tags 

Error Rate 

No-Approach (Base-Line) 36.59% 63.41% 

Dynamic Time Warping 94.78% 5.22% 

Dynamic Time Warping and Process Knowledge 97.81% 2.19% 
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