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RFID technology allows the collecting of fine-grained real-time information on physical processes in the
supply chain that often cannot be monitored using conventional approaches. However, because of the phe-
nomenon of false-positive reads, RFID data streams resemble noisy analog measurements rather than the
desired recordings of activities within a business process. The present study investigates the use of data
mining techniques for filtering and aggregating raw RFID data. We consider classifiers based on logistic re-
gression, decision trees, and artificial neural networks using attributes derived from low-level reader data.
In addition, we present a custom-made algorithm for generating decision rules using artificial attributes and
an iterative training procedure. We evaluate the classifiers using a massive set of data on pallet movements
collected under real-world conditions at one of the largest retailers worldwide. The results clearly indicate
high classification performance of the classification models, with the rule-based classifier outperforming all
others. Moreover, we show that utilizing the full spectrum of data generated by the reader hardware leads to
superior performance compared with the approaches based on timestamp and antenna information proposed
in prior research.
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1. INTRODUCTION

Radio-frequency identification (RFID) is a technology for the automatic identification
by radio of physical objects such as industrial containers, pallets, or sales units. The
identification event relies on transponders (“tags”) that are located in or on the re-
spective objects that can be addressed without physical contact over the so-called air
interface by an antenna on a reader device. In the past few years, the application of
RFID technology in supply chain management has attracted the interest of several
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industries worldwide [Sarac et al. 2010]. Due to standardization activities, cost
erosion, and miniaturization of microelectronic components, the availability of low-
cost RFID hardware today allows for its use beyond traditional niche applications
[Thiesse et al. 2009b; Want 2004]. The technological characteristics of RFID open op-
portunities for collecting fine-grained, real-time information on physical processes in
the supply chain that often cannot be monitored using conventional approaches. The
hope among many of its proponents is that RFID will become the technological enabler
of an unprecedented level of supply chain visibility [Lee and Ozer 2007]. The manifold
benefits expected from RFID include labor and time savings, increased service lev-
els, faster reactions to supply chain disruptions, product security, and novel consumer
services [Angeles 2005; Asif and Mandviwalla 2005; Bose and Pal 2005].

Several valuable models have been developed in IS and operations management
that both explain how RFID can generate business value in organizations and sup-
port practitioners designing RFID-based systems and processes [Liao et al. 2011; Ngai
et al. 2008]. However, as we argue in the following, most of these prior studies have ig-
nored the fundamentally different data quality levels associated with RFID compared
to the classical bar code. In contrast to the latter, RFID as a fully automatic identifi-
cation technology collects data from any object equipped with an RFID tag within the
fuzzy boundaries of the RF field. Because reader devices have no means to distinguish
between objects of interest and others located in range by accident, data streams gen-
erated outside lab conditions resemble noisy analog measurements rather than the
desired recordings of business process activities.

Against this backdrop, the present study examines the issue of effective RFID data
filtering in supply chain applications. Our research objective is to design and evalu-
ate models that transform raw RFID data streams generated by reader devices into
meaningful information about the physical activities to be monitored. For this purpose,
we consider different types of data aggregations—so-called attributes—based on raw
RFID data. We use these attributes to generate classification models for the detection of
invalid RFID tag reads. We investigate models ranging from single-attribute decision
stumps to different standard classifiers such as logistic regression, neural networks,
and decision trees. In addition, we present a custom-made algorithm for training clas-
sifiers based on decision rules. The dataset underlying the empirical evaluation was
collected under real-world conditions at a distribution center of METRO Group, one of
the largest retailers worldwide. The results were analyzed with respect to widely ac-
cepted performance criteria and demonstrate the effectiveness of the proposed solution.

The remainder of the article is organized as follows. The next section includes infor-
mation on the practical background to our work and the issues associated with using
RFID technology. Section 3 reviews the related work in the academic literature and
identifies the research gap addressed by the study. In Section 4, we develop the concep-
tual foundation of RFID data filtering based on different classification approaches and
a set of RFID-specific attributes. In Section 5, we present the results from the empirical
evaluation. The article closes with a summary and outlook for further research.

2. CASE BACKGROUND

2.1. RFID in Distribution Center Operations

The ultimate purpose for RFID in the supply chain is the automatic identification and
tracking of goods as they move from the supplier to the customer [Bose and Pal 2005;
Hardgrave and Miller 2008]. RFID differentiates itself from the bar code through its
capability for bulk identification, identification without a line of sight, the unambiguous
identification of each individual object, storage of data about the object, and robustness
against environmental influences and destruction [Finkenzeller 2010; Shepard 2005].

ACM Transactions on Management Information System, Vol. 5, No. 4, Article 25, Publication date: October 2014.



Classification Models for RFID-Based Real-Time Detection of Process Events 25:3

RFID Reader
RFID gate control unit
Light signal

Motion sensor

Mounting unit
Transponders

Printer

@OEOOCEEE

|

.
.
.
.
.

/

Fig. 1. RFID portal architecture.

The commonality of all RFID transponder types lies in a unique ID number that allows
for identification not only of the product type but also at the item level. This allows, in
principle, the seamless tracking of physical goods flows, thus making it much easier,
for example, to detect the causes of shrinkage, monitor the performance of logistical
operations, or trace the origin of contaminated food lots. To collect the required data, it
is necessary to deploy RFID readers at specific key locations in the supply chain (e.g.,
where the goods are handed over from one party to another). Today, the fully automatic
collection of RFID data is usually implemented at RFID portals that are available
from various technology providers as turnkey hardware components. RFID portals are
equipped with at least one reader device that controls one or more antennae to detect
any RFID-equipped object moving through the portal.

In the following, we consider the example of METRO Group, an early adopter of
RFID technology. The company deployed a solution for automatically identifying RFID-
tagged pallets in its distribution center in Unna, Germany. The objective of the project
was to track the pallets loaded onto truck trailers that are driven to METRO “Cash &
Carry” stores. The underlying economic rationale was to minimize the number of faulty
deliveries because the effort to reship those pallets is substantial and costly. Missing
pallets also lead to additional economic loss in stores, for example, due to stock-outs.
An additional advantage of using RFID technology was evident in the time savings
and error reductions compared with the traditional paper-based process. To implement
the RFID-supported process, METRO Group uses approximately 1,000,000 passive,
preassembled tags annually. All 87 dock doors for outgoing goods are equipped with
RFID portals, so every pallet loaded onto a trailer must pass a portal, where it is
automatically detected. The main components of an RFID portal include the RFID
reader itself, four antennae, a motion sensor to trigger the reader, and a light signal
(Figure 1).

An exemplary installation of an RFID portal for the outgoing goods process in the
distribution center (DC) is depicted in Figure 2. In this setting, tagged pallets or other
logistical units (e.g., furniture and other large stacked objects that carry their own tags)
designated for a specific customer are temporarily stored in a staging area, waiting to
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Fig. 2. Identification of outgoing pallets at the METRO DC.

be loaded onto a truck. Several trailers are located outside the dock doors, and each is
monitored by an RFID portal. Warehouse people continuously pick one or more pallets
from the staging area and transport them to the corresponding trailer. When a pallet
passes through the RF field of a portal, the RFID transponder sends its unique ID to
the reader device. Thus, the DC operator is provided with detailed information on the
time, location, and completeness of his shipments.

The RFID-supported process can be described as follows. To begin, a warehouse
person is handed a loading protocol. It contains information on the designated store in
terms of a unique numerical identifier and the portal number where the corresponding
trailer is waiting. Using a computer in the shipment office, the warehouse person
informs the RFID software application that he or she is about to load pallets onto the
trailer. At this point, two different workflows are commonly performed:

(1) The warehouse person retrieves a pallet from the staging area, returns to the dock
door, and immediately loads it to an appropriate spot in the trailer.

(2) The warehouse person retrieves a pallet from the staging area but places it near
the dock door instead of loading it onto the trailer. This is repeated until enough
pallets are buffered there and the warehouse person decides to load them onto the
trailer.

When the warehouse person approaches the RFID gate, the motion sensor recognizes
him or her, and the RFID reader starts scanning for transponders. The data collection
phase is called a gathering cycle and takes 5 seconds. As soon as the cycle is completed,
the collected pallet ID codes are sent to the warehouse management system, and the
warehouse person gets immediate visual feedback from the signal light:

(1) If the detected pallet was brought to the correct truck, the light flashes green. The
loading was valid, and the warehouse person may continue with the next pallet.

(2) If the detected pallet was not designated for that particular store, the light flashes
yellow. The warehouse person consequently unloads the pallet and continues with
another.

(3) In any other case (e.g., if a tag is unknown to the warehouse management system),
the signal flashes red.

After all pallets have been loaded onto the trailer, the warehouse person returns to
the shipment office, where he or she informs the RFID software application that the
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loading process has been completed. The corresponding invoice is issued to the store,
and a transportation request is sent to a shipper.

2.2. Characteristics of Low-Level RFID Data

Although the automatic detection of goods using RFID seems trivial at first glance,
technical constraints limit the quality of the collected data. These constraints are rooted
in the basic principles of RF communications, which directly influence the readability
of the RFID tags. In particular, the absorption and reflection of radio waves may lead
to unexpected read events and, ultimately, to false-negative and false-positive RFID
tag reads [Jones and Chung 2008]:

—A false-negative RFID tag read describes any RFID tags that are in range as “invisi-
ble” to the reader device. This phenomenon corresponds to a pallet that was moved
through the RFID portal and loaded onto the truck without being detected. The pos-
sible reasons for this event are manifold. For example, the types of products on the
pallet have a significant influence on the readability of RFID tags because water
and any other liquids (e.g., shampoo) can absorb radio waves, thus severely reducing
the read range [Singh et al. 2009]. Other reasons include dysfunctional tags or tags
shielding each other. To overcome this problem, multiple antennae are often installed
to increase the likelihood of reading a tag. However, this solution may lead to another
problem, namely, the mutual elimination of radio waves due to interference effects
[Penttila et al. 2006].

—In contrast, false-positive RFID tag reads can have two different causes. On the one
hand, the phenomenon is similar to false negatives because the physical conditions
may influence the readability of the RFID tags. Metal foils and metal ink in goods
or packages, the truck itself, or any other metallic object in range of the antennae
may significantly extend their read range. As a consequence, tags assumed to be
clearly out of range can be unexpectedly read by the reader. On the other hand, false
positives can also be due to tags that are clearly present within the configured read
range but are read involuntarily.

The latter issue of false-positive RFID tag reads can be illustrated by the previously
described scenario of an RFID-enabled outgoing goods process. In the example de-
picted in Figure 2, a pallet M is about to be loaded into one of the two trailers. Two
further pallets (B; and Bs) have been temporarily placed in the loading area by the
warehouse person. Moreover, pallets L; and Ly have already been loaded. Because the
portal antennae are not directed and have a read range of several meters, they detect
not only M but also any other pallet in range. The reader device cannot distinguish
between moving pallets and those that are located in the RF field only by accident.
As a consequence, the warehouse management system might conclude that B; and Bs
have also been shipped to the customer. In the worst case, pallets in both the trailers
and the nearby staging area might be detected due to electromagnetic reflections. If
all detected pallets were reported to the warehouse management system as shipped,
incorrect invoices would be issued and stores would be billed for goods that they neither
ordered nor received. Until this problem is solved, the reliable and productive use of
RFID technology in distribution center processes is not feasible.

In the following, we refer to pallets loaded onto a trailer during a gathering cycle (i.e.,
the true positives) as moved pallets, whereas all others that have been read by accident
(i.e., the false positives) are called static pallets. Based solely on the knowledge of
which RFID tags have been read during a gathering cycle, it is impossible to determine
which of them was attached to a pallet loaded onto the truck. The question that we
consequently consider is to what extent the analysis of low-level RFID data—so-called
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Fig. 3. Exemplary gathering cycles and tag events.

tag events—may allow for developing a solution to the false-positive read problem. Each
tag event is characterized by the following types of information:

—RSSI. The Received Signal Strength Indication (RSSI) denotes the power of the tag’s
radio signal measured in dBm, which can intuitively be interpreted as how “loudly”
the tag was heard by the antennae. By nature, the RSSI value increases when a tag
is closer to the antennae and decreases when it is farther away.

—SinceStart. The second piece of information is the timestamp of the tag event relative
to the beginning of the gathering cycle, measured in milliseconds.

—Antenna. The third piece of information tells us which of the antennae actually
detected the tag. The RFID gates under consideration are typically equipped with
four antennae, but other configurations are possible with up to eight antennas.

Figure 3(a) depicts an example of tag events that occur during a gathering cycle. The
data include RSSI and SinceStart values; antenna data were omitted for clarity. The
example highlights the difficulties associated with low-level RFID data and the need for
automatic classification mechanisms. In this case, two pallets were present in the RF
field, with one pallet being moved through the gate and another one located nearby. The
RSSI values of a moving tag show a different behavior over time compared with those of
a static tag. The moved pallet is first detected with increasing signal strengths, reaching
a maximum when the tag actually enters the gate, approximately 1.5 seconds after the
start of the gathering cycle. After leaving the gate, the signal strength decreases again.
In contrast, the RSSI values of the static pallet remain approximately constant because
its location does not change.

Unfortunately, though this example poses an illustrative case of RFID-based pallet
identification, completely different event patterns may also occur. Figures 3(b), 3(c),
and 3(d) show gathering cycles in which neither the recorded timestamps nor the
signal strength measurements allow for an intuitive interpretation of the monitored
real-world activities. It is evident from these examples that the identification of the one
pallet of interest among the gathered data poses a nontrivial task. However, without
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Table I. Overview of Prior Research

Study Approach Raw Data Used Evaluation
Brusey et al. [2003] Sliding window -Timestamp Lab trial (no results
reported)

Bai et al. [2006] Sliding window -Timestamp Simulation

Jiang et al. [2006] Sliding window, multiple -Timestamp Lab trial
tags/readers -Antenna

Tu and Piramuthu [2008] Sliding window with -Timestamp Simulation
multiple tags/readers -Antenna

an effective filtering procedure, the value of RFID data to any form of process control
remains limited.

3. PRIOR RESEARCH

The various issues surrounding the processing of RFID data have been the subject of a
steadily growing body of academic literature. The fundamental idea of drawing benefits
from RFID beyond those of automation has been discussed in various prior works
[Loebbecke and Palmer 2006; Sellitto et al. 2007; Tajima 2007]. In recent years, some
initial studies have discussed the value of RFID data analytics against the background
of real-world implementations. Delen et al. [2007] identified a number of performance
metrics that can be computed from RFID data and discussed how these measures can
improve logistical performance at a micro-supply-chain level of operations between a
distribution center and a store. Baars and Sun [2009] discussed options for modeling
and utilizing multidimensional datasets for analytical applications using two case
studies from the retail and automotive industries. Thiesse et al. [2009a] examined the
benefits of performance indicators and management reports generated from RFID data
in the context of a large implementation project in a department store. In contrast to
these works, however, research on the underlying procedures for data cleansing and
information extraction from large RFID datasets is still sparse.

An overview of solutions to the problem of false positives proposed in prior studies
is given in Table I. The approaches in the literature can roughly be divided into two
groups. First, some authors proposed the use of a sliding-window approach. In these
studies, a smoothing procedure is applied to the RFID data stream using the number
of tag detections in a predefined time interval. The underlying assumption is that false
positives may be distinguished from true positives by the smaller number of reads.

—Brusey et al. [2003] analyzed false-positive RFID tag reads in the context of a first-in,
first-out product queue. In this setting, RFID-tagged men’s shaving items, such as
razors and deodorant, are stacked on top of each other. Items are added only at the
top of the stack and are removed from the bottom. An RFID reader scans the next
lowermost item to be removed by a robotic arm. The challenge is that not only is the
lowermost item scanned but also various items on top of it are scanned. These are
considered false-positive reads and need to be removed from the output. The detection
of false positives uses the fact that only a single item (i.e., the lowermost) needs to
be identified. Consequently, the item that has been read most often is classified as
the item at the bottom. The procedure is illustrated by an example from a lab trial,
but no empirical results are reported.

—Similarly, Bai et al. [2006] proposed algorithms for RFID data filtering, including
noise removal and duplicate elimination. They argued that in practice, readings
are often performed in multiple cycles to achieve a higher recognition rate. This
method significantly reduces false-negative reads but unfortunately also leads to an
increased rate of false-positive reads. The authors present a false-positive elimination
algorithm based on a sliding-window approach. If the number of readings is greater
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than a given threshold, the tag is classified as a true positive. In addition, they
complement their heuristic by additional procedures for preserving the order of tag
reads and removing duplicates. The algorithms are evaluated using a set of simulated
tag reads.

A second group of authors proposed the use of the sliding-window approach in combi-
nation with multiple tags or readers. In these settings, a reading is classified as a true
positive if more than one reader detects the tag or if one reader detects more than one
tag belonging to the same object.

—dJiang et al. [2006] considered false-positive reads in terms of object interaction. The
authors used the poll command of the reader device to transmit N polls per second.
The number of answers per tag was then used to identify the specific interaction with
a physical object. However, the authors found that the response rate changes not
only when interacting with an object but also if additional tags (i.e., false positives)
are in range. They proposed to manage this type of issue by using additional tags
per object and multiple readers. If, for example, an object has two tags attached to
different sides, a rotation of the object is recognized by an increased response rate
of the first tag and a decreased response rate of the second. The authors provided
some aggregated performance data from tests in the laboratory but no details on the
underlying experimental design.

—Tu and Piramuthu [2008] analyzed the so-called true and false reads in terms of
the presence and absence of RFID-tagged objects. In their theoretical scenario, two
readers are used simultaneously, and two tags are expected to be present at the same
time. A first algorithm is used as a base case to compare the results of two others. If
both readers identify a tag as being present, it is assumed to be actually present. In
a case where only one or neither of the readers detects the tag, it is assumed that the
tag is absent. The second algorithm is similar to the first. If both readers agree that
a tag is present, it is assumed to be present; if neither reads the tag, it is assumed
to be absent. However, if only one of the readers detects the tag, a sliding-window
approach is used. The third algorithm uses information about a second tag that is
expected to be read at the same time (i.e., each object is equipped with two RFID
tags). In the case where only one reader detects the tag of interest, information from
the other tag is used to reach a decision. If both readers agree that the second tag is
present, the first one is assumed to be present as well. In the case where the readers
disagree about the presence of both tags, a sliding-window approach is used, as in
the second algorithm. The three algorithms are evaluated in a simulation study, but
no details are given on the experimental design.

These earlier studies suffer from various weaknesses, which we intend to address as
follows:

—Usage of RFID data. All of the studies mentioned previously use a sliding-window
approach based on tag reads and the corresponding timestamps. However, RFID data
generated by reader devices are richer than is suggested in the literature. We consider
additional low-level reader data in the form of signal strength information. The use
of signal strength measurements has been proposed repeatedly in the context of
real-time location systems (e.g., Joho et al. 2009), but no prior study has investigated
its value for RFID data stream cleansing.

—Hardware cost. Some authors propose using additional readers or tags. However,
the concept of increasing the number of readers or tags appears rather impractical
considering the high costs of RFID hardware components. In contrast to this “brute
force” approach, we do not rely on additional hardware but instead apply sophisti-
cated data mining techniques to solve the false-positive read problem.
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(a) Standard Portal (b) Satellite Portal (c) Transition Portal
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Fig. 4. Alternative RFID portal configurations (dotted lines denote antenna directions).

—Real-world evaluation. None of the earlier studies is based on real-world data; in-
stead, they use computer simulations or trials under lab conditions. Assumptions
regarding RFID hardware behavior and the generalizability of the results are thus
questionable, given the complex physical characteristics of RF communications (e.g.,
the phenomenon of electromagnetic reflections). We avoid this shortcoming through
a massive dataset obtained over a longer period of time in a production environment.

4. CONCEPTUAL APPROACH
4.1. Terms and Definitions

Removing false-positive tag reads poses a binary classification task, where tag detec-
tions are assigned to one of two possible classes: (1) “moved” (i.e., true positive) and
(2) “static” (i.e., false positive). In this section, we develop the conceptual foundations
for the construction of such RFID data classification models. Our starting point is the
architecture and the mode of operation of RFID portals. The use of the term “RFID
portal” in this context refers to the three portal types depicted in Figure 4.

These portal types contribute to the ability to generalize our results and allow us to
evaluate the impact of different hardware configurations on classification performance:

—The most commonly used type of RFID portal in logistics is the standard portal,
which is available off the shelf from various hardware manufacturers and system
integrators. Here, a single reader device has four main antennae attached to it, two
at each side of the portal, on top of each other and face to face with the other two.
The portal is equipped with a motion sensor, which triggers a gathering cycle. The
entire data collection of a pallet loading occurs during this cycle. At some point the
warehouse person leaves, which is also recognized by the motion sensor.

—Satellite portals are an advanced version of the standard portals that use an addi-
tional RFID reader with four more antennae. Two of these antennae (5 and 6) are
directed toward the truck trailer and the other two (7 and 8) are directed toward
the staging area. Accordingly, the additional antennae are denoted “truck antennae”
and “DC antennae,” respectively. The four remaining antennae (1-4) correspond to
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the main antennae used in the standard portals. This configuration is based on the
assumption that a tag that has moved through the portal is expected to be inside
the trailer rather than inside the distribution center. Consequently, all tag reads
detected by the DC after the end of the actual loading process should be considered
false positives.

—Similarly, Transition Portals use two different readers, but they do not have any
main antennae. The four antennae of the first reader (1-4) are directed toward the
DC, and the four antennae of the second reader (5-8) are directed toward the trailer.
In this configuration, a tag that moves through the portal is expected to be seen first
by the DC antennae and then by the truck antennae.

Each RFID tag can be identified by its unambiguous Electronic Product Code (EPC).
Usually, a specific transponder in range is read more than only once per cycle. Each of
these responses is called a tag event that is uniquely characterized by the combination
of a session ID, a gathering cycle ID, the EPC, and a timestamp. For each tag event, the
reader also records the signal strength of the tag response and the antenna that read
the tag. Each tag event ¢ can hence be represented as a three-tuple of signal strength,
timestamp, and antenna:

t = (RSSI, SinceStart, Antenna).

The set of tag events associated to a specific RFID tag during a gathering cycle
is called a tag occurrence. If a tag has been detected n times, the corresponding tag
occurrence T (the entirety of these tag events) can be represented as follows:

T={t,...,t,)={(RSSI, SinceStart,, Antenna,), ..., (RSSI,, SinceStart,, Antenna,)}.

An overview of the resulting conceptual model of low-level RFID data is given in
Figure 5. Not all of the data elements can potentially be used as input data for a
classification model because they are not specific to the individual tags. However, some
elements are specific to each tag event (RSSI, SinceStart, Antenna) and can help
distinguish between moved and static objects.

4.2. Approaches for RFID Data Classification

To build classification models, meaningful attributes must be derived from the RFID
data. In this context, “meaningful” denotes the contribution that the value of a

ACM Transactions on Management Information System, Vol. 5, No. 4, Article 25, Publication date: October 2014.



Classification Models for RFID-Based Real-Time Detection of Process Events 25:11

EPC SOURCE _SUBSRC TIME SINCESTART ANT RSSI
Tagl Portalb56 MAIN 12:37:00,961 66000 3 =59
Tag2 Portalb6 MAIN 12:37:01,004 109000 2 -63
Tagl Portalb6 MAIN 12:37:01,017 122000 3 =59
Tagl Portalb6 MAIN 12:37:01,072 177000 3 -58
Tagl Portalb56 MAIN 12:37:01,126 231000 3 -6l
Tag2 Portalb56 MAIN 12:37:01,186 291000 2 =59
Tagl Portalb56 MAIN 12:37:01,197 302000 3 -58
Tag2 Portalb56 MAIN 12:37:01,243 348000 2 -60
Tagl Portalb56 MAIN 12:37:01,254 359000 3 -58
Tagl Portalb56 MAIN 12:p7A1,306 411000 3 =59

EPC RssiMax RssiMin RssiMean Cnt SinceStartMax ...
Tagl -48 -63 -55.4 21 1781000
Tag?2 -56 -64 -59.4 23 3084000

Fig. 6. Calculating tag-occurrence-level attributes from tag events.

particular attribute makes to the correct classification of moved and static pallets.
For this purpose, we consider the development of attributes on the levels of both tag
events and tag occurrences.

On the tag occurrence level, attributes are calculated and generated by applying
various aggregation functions that correspond to specific characteristics of the data.
Examples of such characteristics include the maximum, minimum, and mean RSSI
values, as well as the timestamp of the first or the last recognition of a tag during a
gathering cycle. Figure 6 shows examples of how a sequence of low-level reader data
is transformed into attribute values. The idea is to identify false-positive RFID tag
reads based solely on these attributes. However, the difficulty of this approach lies
in determining which attributes are meaningful enough that a significant difference
can be observed. It is hence necessary to determine which attributes are useful under
certain conditions and what values are typical for moved and static tags.

On the tag event level, the development of attributes follows a different logic. Because
tag events collected during a gathering cycle are temporally ordered, they can be
interpreted as a discrete time series of RSSI values (Figure 7). The idea behind this
approach is to examine whether the time series of a particular tag is more similar to a
moved tag or a static tag. In the latter case, it is considered a false positive. The first
challenge is to determine what a typical moved or static time series actually looks like.
The latter requires a reference time series, which must be derived from the sample
data.

A second challenge is to agree on a similarity measure. We consider Dynamic Time
Warping (DTW) to address this problem by using local scaling to determine the dis-
tance between two time series [Sakoe and Chiba 1978]. Originally, this approach was
introduced as a technique for speech recognition to cope with different speaking speeds.
Because we are facing a similar issue with physical processes occurring at different
speeds, DTW seems an appropriate choice. Simply put, DTW can cope with the tempo-
rary acceleration or deceleration of the warehouse person as he or she moves a pallet
through the portal. The same holds for the problem of differing radio signal strengths
(i.e., the “loudness” of a tag signal).
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EPC SOURCE _ SUBSRC TIME SINCESTART ANT RSST
Tagl Portalb56 MAIN 12:37:00,961 66000 3 =59
Tag2 Portalb6 MAIN 12:37:01,004 109000 2 -63
Tagl Portalb6 MAIN 12:37:01,017 122000 3 =59
Tagl Portalb6 MAIN 12:37:01,072 177000 3 -58
Tagl Portalb56 MAIN 12:37:01,126 231000 3 =61
Tag2 Portalb56 MAIN 12:37:01,186 291000 2 =59
Tagl Portal56 MAIN 12:37:01,197 302000 3 -58
Tag2 Portalb6 MAIN 12:37:01,243 348000 2 =60
Tagl Portal56 MAIN 12:37:01,254 359000 3 -58
Tagl Portalb6 MAIN 12:37:01,306 411000 3 =59

N £ AN

Strength Strength
” m ” M\‘/’—‘

-65
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Time Time
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Fig. 7. Time-series analyses based on sequences of tag event.

In general, a reference series R for a tag class C must satisfy the following two
conditions:

(1) R is as similar as possible to all time series in C.
(2) R is as dissimilar as possible to all time series not in C.

From all available samples, an average time series can be calculated and returned
as the reference. This approach leads directly to the question of how the average of
a set of time-series is defined. Let T' = (¢,...,¢%) and U = (uq, ..., u,) be two time
series. Then, the average time series V of T and U can be calculated by averaging the

respective data points:
th+u th + Uy
V= e .

More generally, if there are £ different time series = {71, ..., T}, an average data point
v; s calculated as

k

However, this technique requires that all time series have the same length because
only in this case can an average value be computed. To address this issue, another
approach is presented here to interpolate a time series while keeping the temporal
order of the individual tag events. The entire gathering cycle is divided into % time
intervals of equal length ¢. Consequently, the reference series R has a length of £ data
points. If M = (my, ..., m,) is a time series with corresponding timestamps (¢1, ..., t,),
then the kth data point of R is the average of all data points of M that lie within the
interval I = [Af-(k); At-(k+1)]. In a case where no tag event occurred within a specific
interval, the two preceding and two succeeding tag events are averaged and used as

v =
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Fig. 8. Reference time series for standard portals.

an interpolation. If there are no preceding or succeeding tag events, the first or last tag
event is used, respectively.

Given the variety of conceivable loading processes, it is evident that more than one
reference time series exists for moved or static tags. In fact, further subclasses can
be found within each of the two tag classes. To improve the classification of moved
and static tags, these subclasses must be identified and their respective reference
time series generated. For this purpose, we consider cluster analysis using k-Means
[MacQueen 1967] and k-Medoid partitioning [Kaufman and Rousseeuw 1990]. An ex-
ample of a reference series generated in this way from RFID data collected by standard
portals is given in Figure 8. These reference series reflect the actual behaviors of moved
and static tags, as expected.

The similarity between the reference series and a given time series is calculated
using a similarity query. For this purpose, we consider the k-nearest neighbor query.
Under this approach, the £ nearest neighbors—which correspond to the references that
are closest to the query tag—are retrieved. For £ = 1, only the closest (i.e., the most
similar) reference is returned. The £-NN query is formally defined as

k—NN@#)={R<MUS||R|=kAVre Rue(MUS\r:d¢,r) <dt, w},
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Table Il. Domain Attributes Based on the RSSI Information

Attribute Description

RSSIyin The minimum signal strength measured during a gathering cycle. Because moved tags
are expected to be located slightly closer to the antennae at the beginning of the pallet
loading, a higher minimum RSSI value should be observed relative to the static pallets.

RSSIpax The maximum signal strength measured during a gathering cycle. Because moved
pallets pass through the portal and move closer to the antennae at this time, they are
expected to have a higher maximum RSSI value.

RSSIpir The difference between the highest and lowest signal strengths that is measured during
a gathering cycle. The value range is a dispersion measure of the RSSI values. Because
moved pallets continuously change their distance to the antennae, they are expected to
have a higher dispersion and thus a higher RSSIp;s attribute value than are static tags.

RSSIyean The average signal strength that was measured during a gathering cycle. Because
moved pallets spend more time closer to the antennae while they pass through the
portal, it is expected that they have a higher average RSSI value relative to static
pallets.

RSSIsipev The standard deviation of the RSSI values. Similar to RSSIp;sr, this is a dispersion
measure; therefore, a higher attribute value is expected for moved pallets than for
static pallets.

RSSI¢ev The coefficient of variation of the RSSI values, which is defined as the ratio between the
standard deviation and the average RSSI value. The mathematical expression can be
converted to a form that solely depends on the RSSIyjean attribute. Because this
attribute is expected to take on higher values for moved pallets, the coefficient of
variation is expected to be lower for moved pallets than for static pallets.

where M and S correspond to the set of typical moved and static references, ¢ is the
tag of interest, and d is a distance function (e.g., DTW). This query type can be used
to determine whether the 2 most similar references correspond to moved or static time
series. If the ranking is ambiguous (i.e., if there are several references with similar
distance but different class types), a majority vote determines the class type of the
query tag. Choosing k£ = 1 returns only the nearest neighbor; consequently, the query
tag is classified as the corresponding class.

4.3. Attribute Development

Using the two approaches described in the previous subsection, we propose the use of
the following types of attributes for the classification task: (1) domain attributes, (2)
logical attributes, and (3) time-series attributes.

4.3.1. Domain Attributes. Domain attributes are based on the experience and knowledge
of the people working in the environment under consideration. For example, one obvious
difference between moved and static pallets that can be derived from the business
process is that the former get closer to the RFID antennae than do the latter. Based
on this information and the characteristics of the RSSI data, one might conclude that
the maximum RSSI value measured during a gathering cycle is a valuable attribute to
distinguish between the moved and static pallets because the former are expected to
show a higher attribute value than are the latter.

Consequently, the first types of domain attributes that we consider are the RSSI-
based attributes (Table II). The calculation of RSSI attributes is based on the unordered
set of the corresponding RSSI values. Underlying the definition of these attributes is
the observation that many static pallets are farther away from antennae than are the
moved pallets. Because the received signal strength depends on the distance between
the sender and receiver, it is expected that the RSSI attributes successfully reflect this
insight and therefore play a major role in the ability to distinguish between moved and
static tags.
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Table Ill. Domain Attributes Based on the SinceStart Information

Attribute Description

Readpipst The time since the beginning of the gathering cycle until the tag is first read. Moved
pallets are typically read starting at the very beginning of the cycle, while certain false
positives are detected only after a few seconds.

ReadLast The time since the beginning of the gathering cycle until the tag is last read. At the end
of a cycle, basically any type of pallet may be read due to electromagnetic reflections.
Consequently, the timestamps of the last tag read are not expected to differ
substantially. However, this attribute might be helpful in combination with another one.
ReadDiff The time that has passed between the first and the last detection of the tag. Because
moved pallets are often read at both the beginning and the end of a gathering cycle, this
attribute is expected to take on higher values for moved tags than for static tags.

Table IV. Domain Attributes Based on the Antenna Information

Attribute Description

CountX The number of tag events that were recorded by each of the antennae, where X is the
identifier of the corresponding antenna. Because many static tags remain close to
specific antennae, it is expected that these antennae detect these static tags more often
than they detect the moved tags.

AntCount The number of antennae that were able to detect the tag. Because many static tags are
close to a particular antenna, it is expected that moved pallets are read by more
antennae than are static tags.

CountMain The total number of reads the tag gave to all of the antennae combined. Because moved
tags pass through the portal and are thus very close to the antennae, it is expected that
they are read more often in total than static tags are.

A second group of domain attributes can be generated from the SinceStart infor-
mation associated with every tag event (Table III). The calculation of the SinceStart
attributes is based on the unordered set of the corresponding SinceStart values. The
purpose behind these attributes is the observation that certain static pallets are de-
tected only occasionally by specific antennae. For example, some false-positive reads
are the result of unexpected reflections that only occur randomly. In contrast to moved
pallets, these are usually not detected over the entire duration of a gathering cycle.

Furthermore, the information from the antennae that received a tag’s response sig-
nal might be useful for classification purposes. The calculation of antenna attributes
is based on the unordered set of the corresponding antenna values (Table IV). The
motivation for defining these attributes is the same that leads to the definition of the
SinceStart attributes, namely, the fact that certain static pallets are detected only oc-
casionally. Hence, it can be expected that a moved tag would be detected more often
and by more antennae than would a static tag.

4.3.2. Logical Attributes. Because satellite and transition portals are equipped with dif-
ferent antenna types (i.e., main antennae, truck antennae, DC antennae), it is also
possible to analyze the order in which a tag was read by these antennae. For example,
it can be expected that a pallet being loaded into the trailer would first be read by the
DC antennae and later by the truck antennae. Following this rationale, a number of
so-called logical attributes can be defined, as shown in Table V.

4.3.3. Time-Series Attributes. In contrast to the previously proposed attributes based on
tag occurrences, it is also possible to define attributes using the similarity of a sequence
of tag events to a set of reference time series. This allows for combining the tag-event-
level with the tag-occurrence-level classification and for integrating the results from
time-series analysis of RFID data into our classification models. A list of the time-series
attributes used in this study is given in Table VI.

ACM Transactions on Management Information System, Vol. 5, No. 4, Article 25, Publication date: October 2014.



25:16

T. Keller et al.

Table V. Logical Attributes

Attribute Description

Wheregeaq This attribute is an integer representation of the antennae that have read
the tag.

Seengrst This attribute examines the Readp;s; attribute values to determine whether a
tag was seen first by the main or truck antennae.

Seeny ast This attribute examines the Ready,,s; attribute values to determine whether a
tag was last seen by the DC, main, or truck antennae.

Seeny,onger This attribute examines the Readp;g attribute values to determine which reader

read the tag over the longest period of time.

Firstypain Lastmruck

This attribute determines whether a tag was first read by the main antennae and

last read by the truck antennae. It is likely that such a tag moved through the
portal.

This attribute determines whether a tag was first read by the truck antennae
and last read by the main antennae. It is unlikely that this would happen, but if
it does, it is presumably a static tag.

This attribute determines whether the first and last detection of a tag occurred at
the main antennae. It is unlikely that this would happen, but if it does, such a
tag is presumably a static tag located somewhere in the DC.

This attribute determines whether the first and last detection of a tag occurred at
the truck antennae. If this is the case, it is likely that the tag was already inside
the container during the entire gathering cycle and is hence static.

This attribute determines whether a tag was read only by the main antennae in
the beginning and later only by the truck antennae. Because this may be
considered the optimal case for a loaded pallet, it is expected that tags for which
this condition holds have been moved through the portal.

This attribute determines whether a tag was read only by the truck antennae in
the beginning and later only by the main antennae. It is unlikely that this would
happen, but if it does, it is presumably a static tag.

Firstrruck Lastyain

Firstyrain Lastyain

FirStTruckLaStTruck

Disjointyain, Truck

Disjointryyck Main

4.4. Classifier Development

The construction of a classification model follows a generic train and test procedure, as
depicted in Figure 9. To form a judgment on how well a classifier will actually perform
on unseen data, it is necessary to determine its overall performance. Testing the model
on the data with which it was built is misleading, and collecting new data every time
to verify its quality is not a feasible option. Therefore, a dataset is divided into two
disjoint subsets referred to as the Training Set and the Test Set. For our three standard
classifiers, the classification model is built on the training set and is then independently
tested against the data in the test set.

Several different classification model types might be used to decide whether a
pallet has been moved through an RFID portal. Within the scope of the present study,
we consider (1) decision stumps, (2) three different standard classifiers, and (3) a
custom-made classifier using artificial attributes and an iterative procedure for the
generation of decision rules.

4.4.1. Decision Stumps. The simplest type of classification model relies on only one
attribute and a threshold value. These so-called decision stumps correspond to the
heuristics proposed in prior studies. For example, a decision stump using the Count-
Main attribute (i.e., the total number of tag reads per cycle) is equivalent to a sliding-
window approach, where a true positive is characterized by a minimum number of
reads. Similarly, a decision stump using the AntCount attribute (i.e., the number of
antennae that detected a tag) is equivalent to the idea of using more than one reader
to distinguish true and false positives. For this reason, we use decision stumps as the
benchmark against which all other approaches are compared.
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Table VI. Time-Series Attributes

Attribute

Description

Dw, Ds

The distance between the tag and the reference time series of all moved and static tags,
respectively. By nature, moved tags should have a shorter distance to this time series
than do static tags and vice versa.

Dwci, Dsci

In cases where i subclasses have been identified for the moved tags and j subclasses for
the static tags, this attribute corresponds to the distance to the respective cluster
reference time series. By nature, moved tags should have a shorter distance to the
moved reference time series, and static tags should have a shorter distance to the static
reference time series.

Dy, Min,
Ds Min

The minimum of the distances to all available moved and static reference time series,
respectively. By nature, moved tags should have a shorter minimum distance to the
moved reference time series, and static tags should have a shorter minimum distance to
the static reference time series.

Dy Maxs
Dg Max

The maximum of the distances to all available moved and static reference time series,
respectively. By nature, moved tags should have a shorter maximum distance to the
moved reference time series, and static tags should have a shorter maximum distance
to the static reference time series.

DM,Mean 5
DS,Mean

The average of the distances to all available moved and static reference time series,
respectively. By nature, moved tags should have a shorter average distance to the
moved reference time series, and static tags should have a shorter average distance to
the static reference time series.

Duwstpevs
Ds stpev

The standard deviation of the distances to all available moved and static reference time
series, respectively. By nature, moved tags should have a smaller standard deviation of
the distances to the moved reference time series. The same applies to static tags.

Dw,cov,
Dscov

The coefficient of variation of the distances to all available moved and static reference
time series, respectively. By nature, moved tags should have a lower CoV value with
respect to the distances to the moved reference time series. The same applies to static
tags.

NN

The class of the nearest neighbor (i.e., the class of the reference series to which the
distance is minimal) of the tag. By nature, the nearest neighbor of a moved tag should
be a moved reference series, and the nearest neighbor of a static tag should be a static
reference series.

FN

The class of the furthest neighbor (i.e., the class of the reference series to which the
distance is maximal) of the tag. By nature, the furthest neighbor of a moved tag should
be a static reference series, and the furthest neighbor of a static tag should be a moved
reference series.

AgreerN NN

Indicates whether NN and FN agree, that is, whether the nearest neighbor and the
furthest neighbor correspond to different tag classes. If the nearest and furthest
neighbor correspond to the same tag class, then a decision is not possible. In any other
case, the class of the nearest neighbor is returned. Note that only for the corresponding
object classes (i.e., moved and static) can the class precision be calculated.

4.4.2. Standard Classifiers. A second group of models makes use of different combina-
tions of attributes. Based on the recommendations for classifier selection made by
Kiang [2003], our analysis considers three types of standard classifiers: (1) logistic
regression, (2) neural networks, and (3) decision trees.

—Logistic regression is a straightforward extension of conventional linear regression
that allows for binary dependent variables and hence suits a two-class classification
problem. It employs the linear predictor function g = By + >, fi X; as the argument
of a nonlinear logistic function. Maximum likelihood optimization estimates the co-
efficients g; for given training data. The output of the resulting logistic regression
function is interpreted as the probability of event occurrence given a predictor vari-
able vector X [Christensen 1997]. This value corresponds to the classifier score; for
classification purposes, a simple threshold applied to it yields the predicted class

labels.
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Fig. 9. Classifier development and evaluation.

—For a second classifier, we consider a neural network in the form of a multilayer
perceptron with a single hidden layer and a sigmoid activation function [Rogers
et al. 1999; Wilson and Sharda 1994]. Depending on the specific sigmoid used, this
type of neural network corresponds to a “stacking” of logistic regression operators.
In each node, the weighted sum of continuous node outputs from the previous layer
(or the predictor variables) is the argument of the activation function, where the
coefficients B; correspond to the weights of the edges connecting nodes between
layers [Dreiseitl and Ohno-Machado 2002]. The comparison of neural networks with
logistic regression is common, and previous work has shown that the more complex
model structure of neural networks often outperforms the latter in classification
tasks [Chiang et al. 2006; Kim 2006; Swiderski et al. 2012].

—Decision trees as the third classifier separate cases in a sample according to simple
one-dimensional thresholds applied to predictor variables [Cohen 1995]. The result-
ing tree structures allow the user to reconstruct decisions made by the classification
model, which seems useful against the background of the dynamic advancements in
the area of RFID technology. Moreover, they are very tolerant of missing values and
irrelevant attributes and can handle both categorical and numerical data.

4.4.3 Rule-Based Classifier. In addition, we consider a classifier based on decision rules.
While the mere use of decision rules as an alternative to decision trees is not unusual,
we employ an advanced procedure for classifier development that differs in two respects
from the previously described standard classifiers:

—On the one hand, we use an iterative training algorithm that repeatedly generates
decision trees, analyzes the classification results for each rule (i.e., each path from
root to leaf), and discards rules that do not show acceptable classification rates. The
procedure is then repeated for the remaining data subsets that are not covered by
one of the selected rules. As a result of these iterations, we obtain a classification
algorithm containing a set of rules that cover the entire sample.

—On the other hand, we wish to investigate to what extent the classification perfor-
mance may benefit from the use of so-called artificial attributes. Artificial attributes
are generated from the domain attributes using unary or binary mathematical op-
erations. These attributes are then used in the training phase in addition to the
other attribute types. Artificial attributes are a common approach to improving the
performance of decision trees [Kamath 2009].

Our rationale behind the rule-based approach with the previous two enhancements
is to generate classifiers that are as comprehensive as decision trees but offer a better
classification performance. The individual steps in training a rule-based classifier are
as follows (Figure 10):
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Fig. 10. Generation of decision rules.

(1) Data Building. We start by separating the available data into training and test
sets. If this is not the first iteration, all pallets that have already been covered by
a rule are removed from the dataset.

(2) Artificial Attribute Generation. In the second step, artificial attributes are gener-
ated for the dataset built in the previous step. Because this sample changes after
each iteration, previously created artificial attributes may no longer be suitable
for the new data. Accordingly, new artificial attributes are created that allow for a
better classification of the current subsample data.

(3) Rule Generation. Using all domain and artificial attributes, a decision tree is gen-
erated. Each leaf can be interpreted as a rule composed of a sequence of attribute
tests.

(4) Rule Evaluation. To evaluate the rules, two common quality measures in data
mining, Confidence and Support, are used. Let R be a classification rule and N be
the total number of observed sample pallets used to build the classification model.
The Confidence and Support of the rule are defined as follows:

Number of Tags classified correctly by R
Number of Tags classified by R
Number of T ags classified correctly by R

N .

Confidence(R) : =

Support(R) : =

The Support of a rule describes its generality. If we use 10,000 samples and the rule
covers 1,000 of them with 950 classified correctly, the Support value is 950/10,000 =
9.5%, and the Confidence value is 950/1, 000 = 95%. Confidence tells us about the
classification quality of a rule, meaning that the rule would correctly classify 95%
of all tags covered by this rule. When building a classification model, we try to
maximize Confidence while keeping the Support of all rules over 5%. Below this
threshold, we run the risk of overfitting if a rule cannot generalize. Eventually,
every rule with a Confidence over 99% and a Support over 5% is marked as “useful”
and becomes part of the classifier.

(5) Abort Criterion. Generating new rules and creating new artificial attributes are
repeated until one of the following two criteria is fulfilled:

(a) All pallets in our dataset are covered by a rule. In this case, no new rules can
be created. The rule generation procedure described previously ensures that
exactly one rule covers any pallet detected in the future.

(b) During the last evaluation round, no rule has been marked as “useful.” This
happens if the remaining pallets in our dataset cannot be separated for any
reason. In this case, a new rule is created that classifies all remaining pallets
based on a majority decision. If most pallets are static, then all pallets are
classified as “static”; otherwise, all are classified as “moved.”

If at least one rule is useful and pallets remain to be classified, the procedure

returns to the data-building step. Here, tags covered by one of the new rules are

removed from the original dataset, and the iteration restarts.
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(6) Classifier Compilation. All rules marked as “useful” in the rule evaluation step

pose the main component of the classifier. Making a decision on an arbitrary pallet

T that was detected during a gathering cycle is now simple, as follows:

(a) Calculate all domain and artificial attributes used in any rule.

(b) Find the rule that covers T. The corresponding rule is the one where all attribute
tests can be answered with “yes.” Let R be the rule that covers T.

(c) Return the classification result (i.e., “static” or “moved”) characterizing T as
defined by R.

5. EMPIRICAL EVALUATION
5.1. Data Collection

The construction of a classification model requires a massive set of sample data for
which the class labels are already known. In the context of the present study, low-
level RFID reader data must be available, and it must be known whether specific reads
belong to moved or static pallets. The dataset that we used for this purpose was collected
over the course of 30 weeks at one of METRO Group’s distribution centers. The center
sees between 3,500 and 8,000 pallet movements a day, and all 87 shipment dock doors
have been equipped with RFID portals to automatically register any outgoing pallets.

To obtain the required dataset, METRO employees were assigned to accompany the
warehouse people and monitor the loading of pallets from the distribution center into
containers. Their task was to track which of the pallets that the reader had recognized
during the loading process had actually been moved through the outgoing goods RFID
portal, as well as those pallets that were present in the reading field of the portal
antenna only by accident.

In total, 92,857 pallets were monitored, corresponding to a total of 2,664,621 indi-
vidual tag detections. Among these, 74,432 were classified as “static”—that is, 80.2% of
pallet identifications were false positives—and the remaining 18,425 were classified as
“moved.” It can be assumed that this dataset is large enough to cover any possible pro-
cess variants, allows for greater insights than any computer simulation or laboratory
experiment, and thus provides an appropriate foundation for evaluating the proposed
classification models. All of the pallets loaded onto trucks during the data collection
period were also identified by the RFID system, which indicates an excellent detection
rate. However, the figures clearly indicate that this result comes at the cost of a very
high number of undesired false positives.

To ensure the high quality of the data used for the classification model building and
testing, any data that could negatively affect the quality of the model were filtered out
in advance to ensure a smooth dataset. Two different types of monitored data were
identified as problematic. First, RFID transponder types may differ in impedance and
sensitivity. For this reason, we concentrated only on the RFID readings of “Monza 3”
tags, which accounted for 83,816 of the 92,857 monitored pallets. Second, some issues
in the monitoring of pallet movements were identified, indicating that an employee
possibly made a mistake by assigning the wrong class to a pallet. In some cases, it
was definitely known that a specific pallet has been shipped, for example, because one
of the destination stores confirmed its arrival; however, the recorded data state that
it was always marked as “static.” In other cases, tags were marked multiple times as
“moved” in different gathering cycles. As a consequence, 1,206 tags were removed from
the sample in cases of likely employee mistakes, leaving 82,610 tags for the actual
classification study.

The descriptive statistics given in Figures 11 and 12 provide an overview of the
number of tag events and tag occurrences in our dataset. First, we see that the number
of different tags detected in a gathering cycle may vary between one and 18 (Figure 11).
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Fig. 12. Number of tag events per tag and cycle.

In approximately 85% of all cycles, between one and five tags are read. The number of
true positives per cycle is not necessarily one because not only pallets but also large
stacks of large objects were loaded into trucks from time to time. That is, more than one
tag occurrence per cycle does not necessarily indicate the presence of false positives.
Second, Figure 12 indicates that the number of events per tag in a cycle shows high
variance. While the median is located at 16 tag events, this number may increase to
400 in some rare cases (the x-axis has been limited to 50 events per cycle).

The sample dataset can be separated into three major groups. These groups cor-
respond to the three different RFID portal types installed at the distribution center.
The data collected by the satellite and transition portals can be further divided into
several subsets, depending on the involved antenna types. As depicted in Table VII,
some datasets show very high fractions of false positives. For example, the figures show
that for the satellite portals, some pallets were detected by the DC antennae and the
truck antennae, but not the main antennae (“Case 3”). Within this specific dataset
(SAT_DC_TRUCK), 100% of the pallet identifications were false positives. This ex-
ample indicates that it is, to some extent, possible to achieve a first filtering of false
positives based solely on the antenna information generated by the reader hardware
without any deeper analysis of the data.

However, the figures also show that the hardware configuration alone is not
sufficient to cleanse the complete dataset from false positives. For example, in the
case of the transition portals, pallets that were identified by both types of antennae
(TRA_BOTH) were false positives in 64.81% of all cases, whereas the remaining pallets
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Table VII. Data Sets
Portal Type Involved Antennae Data Set False Positives
Standard portals Main antennae STD_COMPLETE 75.47%
Satellite portals (all cases) Union of cases 1-7 | SAT COMPLETE 86.66%
Case 1 Main, Truck, DC SAT ALL 96.54%
Case 2 DC, Main SAT _DC_MAIN 98.49%
Case 3 DC, Truck SAT DC_TRUCK 100.00%
Case 4 DC SAT DC_ONLY 100.00%
Case 5 Main, Truck SAT MAIN_TRUCK 59.70%
Case 6 Main SAT _MAIN_ONLY 79.67%
Case 7 Truck SAT TRUCK_ONLY 99.79%
Transition portals (all cases) | Union of cases 1-3 | TRA_COMPLETE 90.19%
Case 1 DC TRA_DC_ONLY 99.52%
Case 2 Truck TRA_TRUCK_ONLY 99.29%
Case 3 DC, Truck TRA_BOTH 64.81%
Table VIII. Descriptive Statistics on the Critical Datasets

Data Set Moved Tags | Static Tags | Total Tags | False Positives

STD_COMPLETE 13,245 40,743 53,988 75.47%

SAT _MAIN_ONLY 656 2,571 3,227 79.67%

SAT _MAIN_TRUCK 1,282 1,899 3,181 59.70%

TRA_BOTH 1,299 2,392 3,691 64.81%

were identified correctly. The same issue can be observed for the other two types of
portals (STD_COMPLETE, SAT_MAIN_ONLY, SAT_MAIN_TRUCK), which supports
our argument that a more sophisticated filtering procedure on the software level is
needed to ensure high data quality. In the following, we evaluate the performance of
three classifiers using the different RFID-based attributes outlined in the previous
section. We concentrate on the four critical subsets of our data, which show a balanced
distribution of false and true positives (Table VIII).

5.2. Classification Performance

The performance of a classifier is usually summarized in the form of a so-called con-
fusion matrix. In the case of our classification problem with two classes, the confusion
matrix consists of the following four elements:

—True Positives (TP) denotes the number of moved pallets that were correctly classified
as “moved.”

—PFulse Positives (FP) denotes the number of static pallets that were wrongly classified
as “moved.”

—True Negatives (TN) denotes the number of static pallets that were correctly classified

as “static.”
—False Negatives (FN) denotes the number of moved pallets that were wrongly classi-
fied as “static.”

From these results, a number of performance metrics can be calculated, with the
accuracy being the most important. The accuracy of a classification model is defined as
the number of correct classifications relative to the total size of the dataset:

TP+ TN
TP+ FP+ TN +FN

However, the accuracy statistic might not necessarily be the most appropriate measure
because it weights false positives and false negatives equally. In fact, the economic

Accuracy =
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Table IX. Performance Measures for Decision Stumps
(A = Accuracy, P = Precision, R = Recall)

Type Attribute A P R
RSSI RSSIMin 75.47% - 0%
RSSIMax 95.83% | 92.99% | 89.78%
RSSIDiff 93.87% | 91.86% | 82.32%
RSSIMean | 92.39% | 84.02% | 85.21%
RSSIStDev | 94.62% | 92.40% | 85.06%
RSSICoV 95.23% | 91.87% | 88.37%

SinceStart | ReadFirst 75.47% — 0%
ReadLast 75.47% — 0%
ReadDiff 75.47% - 0%

Antenna Countl 78.84% | 54.99% | 75.73%
Count2 77.17% | 52.67% | 68.31%
Count3 75.47% - 0%
Count4 75.47% - 0%
AntCount 82.94% | 70.57% | 52.25%
CountMain | 75.47% — 0%

consequence of a false positive detection may be completely different from a false neg-
ative. If a static pallet is wrongly classified as “moved,” the warehouse management
system assumes that it has been loaded into the trailer and sends incomplete ship-
ments to the respective store. In the worst case, stock-outs and lost sales may be the
consequence. In contrast, false negatives lead to surplus inventory in the store. While
both cases are evidently undesirable, the latter may be considered less critical from a
practitioner’s perspective than the former. Performance measures that make the two
issues quantifiable are (1) precision and (2) recall:

Precision = e
- TP+ FP

TP
Recall = 7p 7N

Precision sets the focus on the moved pallets and denotes the corresponding fraction
of correctly classified pallets. Hence, this statistic indicates the risk of incomplete
shipments. Recall, in turn, considers only those pallets that were classified as “moved”
and denotes the corresponding fraction of correct classifications. This statistic indicates
the risk of shipping pallets that were not ordered by the respective store.

5.3. Results

Our performance evaluation started with the decision stumps, each of which was
based on only one of the previously described domain attributes. We considered the
STD_COMPLETE dataset because it poses the base case with a standard hardware
configuration. To minimize the impact of a potential bias in the data, we applied 10-fold
cross-validation. The corresponding results in Table IX allow for drawing a number of
important conclusions.

We see that even a single-attribute classifier may achieve a rather high accuracy
of up to 95.83%. With the exception of the RSSIyy, attribute, all RSSI-based decision
stumps achieve results greater than 90%. This outcome supports our initial assumption
regarding the value of the signal strength information. We also see that the other
decision stumps using timestamp and antenna information achieve much worse results,
with AntCount showing the highest accuracy (82.94%). Most classifiers based on the
SinceStart and Antenna attributes were unable to distinguish between true and false
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positives at all. In fact, all tag occurrences were classified as “static,” and the accuracy
equaled the total fraction of false positives in the sample. In these cases, the precision
measure cannot be calculated, and the recall measure equals 0%. The classifier based
on the CountMain attribute corresponds to the use of the sliding-window approach
proposed in prior studies. Similarly, the AntCount attribute corresponds to the idea
of using more than one reader. The results for both classifiers support our argument
that the two approaches found in the literature may not be able to achieve satisfactory
performances under real-world conditions.

In a second step, we compared these results to the three standard classifiers. For this
purpose, we considered seven groups of attributes, which again allows us to compare the
value of the different information types associated with a tag event to the classification
task:

—RSSI, SinceStart, and Antenna: Domain attributes

—Logical: Logical attributes based on the antenna information

—Tag Occurrence: The combination of RSSI, SinceStart, Antenna, and Logical

—TimeSeries: Attributes based on the similarity of the tag event sequence and a ref-
erence time series

—All: The combination of Tag Occurrence and TimeSeries

The three types of classifiers were separately trained using each of the four datasets. For
each combination of classifier and dataset, the train and test procedure was conducted
for the seven groups of attributes with the exception of the logical attributes, which
are only applicable for SAT MAIN_TRUCK and TRA_BOTH. Again, we applied 10-
fold cross validation. As a result, we generated 78 confusion matrices. We report the
results for all combinations of classifier, dataset, and attribute group in Table X. The
measures indicate that the best classification performance depends on the use of RSSI-
and time-series-based attributes. In contrast, the sole use of SinceStart, Antenna, and
Logical attributes does not allow for the same level of accuracy. This finding indicates
that the full spectrum of information generated by the reader hardware must be used
to achieve high classification performance.

We also see that the results show a slight margin for the neural network classifier,
followed by decision trees. This performance difference may be expected, given the
varying complexity of the three classifiers, and is consistent with the performances
reported in several other data mining studies. Moreover, we see that the classifiers
achieved the best results for the dataset generated by the satellite portal, which can
be attributed to the fact that this portal type with eight antennae provided the richest
information. In contrast, the worst performance can be observed for the transit portals,
which were not equipped with any main antennae.

We next evaluated the performance of our rule-based classifier using artificial at-
tributes. The results given in Table XI show that the custom-made model outperformed
even the best-performing standard classifier. For the standard and satellite portals, we
found that a combination of tag-occurrence- and tag-event-level data led to the best
performance. For the transition portals, the classification model based only on tag-
occurrence data achieved the best results. We thus conclude that the combination of an
iterative algorithm for the generation of decision rules with artificial attributes leads to
a substantial overall improvement in the achievable classification performance. Though
the difference between 95.83% accuracy in the case of the RSSIy,x decision stump for
the STD_COMPLETE subset and 98.00% in the case of the rule-based classifier may
seem small, it should be noted that this improvement corresponds to a relative error
reduction of more than 52%.

Any classification model must show reliable performance over time because a signifi-
cant variation in classification performance is unacceptable in production use. For this
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Table X. Comparison of Standard Classifiers (A = Accuracy, P = Precision, R = Recall)

(A = Accuracy, P = Precision, R = Recall)

Logistic Regression Neural Network Decision Tree

A P R A P R A P R
m | RSSI 95.91% | 95.04% | 87.90% | 96.43% | 92.86% | 92.56% | 95.80% | 91.21% | 91.73%
E SinceStart 75.47% | 0.00% | 0.00% | 75.62% | 53.93% | 4.25% | 75.47% | 0.00% | 0.00%
E Antenna 78.04% | 79.73% | 14.04% | 86.49% | 77.21% | 63.76% | 84.54% | 69.76% | 65.25%

% Logical - - - - - - - - -
O | Tag Occurrence | 95.81% | 95.51% | 87.02% | 97.32% | 95.02% | 93.99% | 96.54% | 93.85% | 91.91%
E Time-Series 95.55% | 91.19% | 90.59% | 96.27% | 93.10% | 91.58% | 95.59% | 91.81% | 90.05%
92 AN 96.38% | 94.85% | 90.14% | 97.06% | 94.69% | 93.25% | 96.65% | 94.59% | 91.57%
E RSSI 97.55% | 94.18% | 93.75% | 97.64% | 95.03% | 93.29% | 97.21% | 93.27% | 92.99%
Z | SinceStart 79.67% | 0.00% | 0.00% | 79.39% | 47.87% | 15.40% | 79.58% | 20.00% | 0.15%
g Antenna 87.60% | 67.68% | 74.70% | 89.80% | 81.02% | 65.09% | 89.90% | 83.95% | 62.20%

— | Logical — — — — — — — — —
g Tag Occurrence | 97.95% | 95.11% | 94.82% | 98.14% | 95.57% | 95.27% | 97.33% | 95.24% | 91.46%
% Time-Series 97.40% | 94.00% | 93.14% | 97.27% | 94.10% | 92.38% | 96.87% | 93.56% | 90.85%
0 1Al 97.43% | 96.74% | 90.40% | 97.77% | 94.11% | 94.97% | 97.03% | 92.42% | 92.99%
% RSSI 95.57% | 96.80% | 92.04% | 95.72% | 94.42% | 95.01% | 94.22% | 90.43% | 95.79%
E SinceStart 73.03% | 72.70% | 52.96% | 86.92% | 83.31% | 84.48% | 80.89% | 71.28% | 88.07%
& | Antenna 85.00% | 78.89% | 85.73% | 90.10% | 87.63% | 87.83% | 88.02% | 84.57% | 85.96%
Z | Logical 80.57% | 78.87% | 70.75% | 80.73% | 73.61% | 81.36% | 80.26% | 69.79% | 89.94%
g Tag Occurrence | 97.01% | 97.67% | 94.85% | 97.58% | 96.60% | 97.43% | 96.76% | 95.38% | 96.65%
o | Time-Series 91.13% | 84.01% | 96.33% | 93.21% | 91.77% | 91.34% | 93.93% | 92.71% | 92.20%
% All 97.14% | 97.22% | 95.63% | 97.67% | 96.75% | 97.50% | 96.98% | 95.83% | 96.72%
RSSI 89.81% | 83.91% | 87.91% | 91.63% | 88.19% | 87.99% | 88.27% | 80.67% | 87.68%
| SinceStart 67.57% | 52.27% | 90.38% | 84.69% | 80.33% | 74.83% | 76.65% | 65.08% | 72.59%
S Antenna 77.40% | 70.13% | 62.36% | 85.61% | 79.45% | 79.75% | 77.73% | 81.18% | 47.81%
A | Logical 69.38% | 53.82% | 91.69% | 81.77% | 73.60% | 75.13% | 78.52% | 65.17% | 83.68%
é Tag Occurrence | 91.33% | 83.97% | 93.15% | 93.12% | 89.92% | 90.61% | 92.68% | 89.67% | 89.53%
& MTime-Series 88.30% | 80.34% | 88.38% | 88.73% | 84.15% | 83.76% | 88.59% | 82.81% | 85.30%
All 92.22% | 85.79% | 93.38% | 92.79% | 89.70% | 89.84% | 92.20% | 88.09% | 89.99%

Table XI. Performance Measures for the Rule-Based Classifier

A P

R

STD_COMPLETE

Tag Occurrence 97.57% 95.38% 94.66%

Time-Series 97.17% 93.76% 94.78%

All

98.00% 94.54% 97.49%

SAT_MAIN_ONLY

Tag Occurrence 98.82% 95.71% 98.63%

Time-Series 98.98% 96.70% 98.32%

All

99.10% 97.14% 98.48%

SAT_MAIN_TRUCK

Tag Occurrence 97.77% 95.36% 99.30%

Time-Series 97.45% 96.23% 97.50%

All

97.71% 98.01% 96.26%

TRA_BOTH

Tag Occurrence 96.15% 95.30% 93.69%

Time-Series 95.04% 91.52% 94.69%

All

93.96% 89.10% 94.38%
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reason, the best algorithms (i.e., the combined approach for the standard and satellite
portals and the tag-occurrence approach for the transition portals) were again applied
to the collected data. The performance results depicted in Figure 13 were averaged over
individual days so the occasional performance outliers could be more easily identified.
In addition, the number of pallets monitored on each particular day is also included.
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The data collection periods for the three portal types differ in the length and number
of collected RFID reads. It can be seen that implementing the approaches presented
here on the different portal types led in each case to reliable and robust classification
performance over time. In only a few cases did the performance show a notable drop of
more than 2 to 3 percentage points. However, in almost all of the cases, the sample size
collected on these days was very small, so they may be considered outliers. In total,
the average classification accuracy per day achieved by the classification models was
97.30% for the standard portals, 99.06% for the satellite portals, and 98.62% for the
transition portals.

6. SUMMARY AND CONCLUSIONS

Interest in the applications of RFID in the supply chain has been growing steadily over
the past 10 years. Today, several examples of RFID applications can be found in retail
and other industries. The data generated by the underlying hardware infrastructures
pose an unprecedented opportunity to gain insights into the reality of a company’s
physical operations on a fine-grained level of detail. However, the noisy nature of RFID
data streams hinders their immediate processing in transactional or analytical infor-
mation systems. As the present study has shown, the phenomenon of false-positive
reads poses a nontrivial challenge for the necessary RFID data cleansing, but virtu-
ally no satisfactory procedures for dealing with this issue have been presented in the
literature.

To fill this research gap, we investigated concepts of RFID filtering based on the
foundation of data mining techniques. We developed several attributes on the level of
tag occurrences and individual tag events, which allow for the construction of different
types of classification models. These were then used to extract information on physical
events from large amounts of RFID data. For evaluation purposes, we considered the
example of RFID-equipped logistical assets using a large sample of low-level RFID
data gathered under real-world conditions. Though a first filtering of the data was
already possible depending on the antenna configuration, some critical subsamples
clearly highlighted the need for more complex filtering procedures.

For this purpose, we evaluated three different standard classifiers. Their results
yielded high classification performances compared with single-attribute classifiers (i.e.,
decision stumps), thus supporting our assumption that the utilization of the full spec-
trum of data generated by the reader hardware leads to superior performance. In
particular, we could show that the approaches proposed in prior research based on
timestamp and antenna information do not allow for acceptable levels of classification
accuracy. In addition, we presented a procedure for generating decision rules that goes
beyond the concepts of the standard classifier in the use of artificial attributes and
an iterative training procedure. The rule-based classifier achieved better accuracies
than did any other model, which highlights the performance potential of custom-made
classifiers. A further advantage may be seen in the easy interpretability of decision
rules compared to other advanced classification models (e.g., neural networks).

To fill this research gap, we investigated concepts of RFID filtering based on the
foundation of data mining techniques. We developed several attributes on the level
of tag occurrences and individual tag events, which allow for the construction of dif-
ferent types of classification models. These were then used to extract information on
physical events from large amounts of RFID data. For evaluation purposes, we con-
sidered the example of RFID-equipped logistical assets using a large sample of low-
level RFID data gathered under real-world conditions. Though a first filtering of the
data was already possible depending on the antenna configuration, some critical sub-
samples clearly highlighted the need for more complex filtering procedures. For this
purpose, we evaluated three different standard classifiers. Their results yielded high
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classification performances compared with single-attribute classifiers (i.e., decision
stumps), thus supporting our assumption that the utilization of the full spectrum of
data generated by the reader hardware leads to superior performance. In particular,
we could show that the approaches proposed in prior research based on timestamp
and antenna information do not allow for acceptable levels of classification accuracy.
In addition, we presented a procedure for generating decision rules that goes beyond
the concepts of the standard classifier in the use of artificial attributes and an iterative
training procedure. The rule-based classifier achieved better accuracies than did any
other model, which highlights the performance potential of custom-made classifiers. A
further advantage may be seen in the easy interpretability of decision rules compared
to other advanced classification models (e.g., neural networks).

In light of our findings, we see opportunities for future research in various directions.
First, new fields of application should be investigated to support the transferability
of our approach. Though we considered a scenario with nonoverlapping gathering
cycles, our concepts may also be transferred with no modifications to the processing of
continuous data streams. Examples include RFID-based self-checkouts, the detection of
misplacements on the sales floor, and production lot tracking in complex manufacturing
systems. Second, our results might be extended to use the ancillary conditions typical
for some specific application settings. The picking process in high-rack storage areas
poses an example, where it can be assumed that all logistical units detected must
be false positives except for one. Third, the concepts presented here might become a
promising foundation for research on the mining of other forms of sensor data beyond
RFID. The long-term emergence of a so-called Internet of Things will successively lead
to the deployment of many other sensor technologies that organizations might want
to leverage. Last but not least, more research will be required to develop a better
understanding of the value provided by these novel sources of information to the firm,
for example, in operations, marketing, or innovation management.
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