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Abstract—In many homes, residents keep their heat-
ing system always turned on although they are out or
only occupy certain rooms, and thereby large amounts
of energy are wasted. With our work, we aim to build
an individual-room heating system that automatically
detects occupancy, predicts a schedule based on that,
and controls the heaters accordingly. First, we present
our technical prototype for individual-room heating
control. Second, we show that binary occupancy can
be estimated using room climate sensors. We collected
room climate data and occupancy data for three rooms
over several days. We identified the relevant features
and applied a Hidden Markov Model in a supervised
and unsupervised way. We achieve a F1-score up to
85% for both variants in rooms which are occupied for
longer periods. Third, we describe how a well-known
occupancy prediction approach should be integrated
into our heating control for optimal performance.

Keywords—individual room heating, occupancy detec-
tion, hidden markov model, heating control

I. Introduction
In Germany, more than 70% of energy consumed in

residential buildings is due to space heating [1]. This
distinguishes space heating as a major lever for energy-
efficiency measures. Besides weather, thermal properties
of the building, and the heating system itself, it is user
behavior that determines the energy consumption of resi-
dential space heating. In this context user behavior can
be summarized as follows: (1) setpoint preferences, (2)
ventilation behavior and (3) usage of temperature setbacks
in unoccupied rooms. Usually, adaptation of user behavior
towards energy efficiency involves loss of convenience. For
example, using temperature setbacks typically implies that
residents have to remember to lower the temperature
setpoint as they leave. Further, residents will face a cold
room as they return.

In the 70s and 80s, programmable thermostats were
developed to overcome the aforementioned issue. However,
poor usability and the fact that they don’t adapt to peo-
ple’s varying schedules led to misuse and their potential
was never fully realized [2].

The ubiquity of smartphones triggered a new gener-
ation of Internet-connected thermostats which can be
programmed remotely. This doesn’t fix the problem that

you have to remember to adapt the setpoints completely
but it allows you to do it from wherever you are. Further-
more, big (touch-) screens and familiar user interfaces of
smartphones make programming a schedule much easier.

Finally, intelligent thermostats promise to make pro-
gramming schedules entirely obsolete. However, purely
reactive systems which change schedules on arrival or
departure analogous to automatic lighting are impractical
because heating systems are slow in response. This is
particularly true for hydronic heating systems which are
standard in Germany. Therefore, the idea is to somehow
predict the occupancy of a home or even individual rooms
to control the heating accordingly. Already back in 1997,
Mozer et al. [3] showed that even a highly nondeter-
ministic schedule contains sufficient statistical regularity
to be exploited by a predictive controller. But it took
almost 15 years before scholars implemented protoypes
and performed small scale field tests. Besides in-house
occupancy detection based on motion sensors, door sensors
etc. [4]–[6], also the geo-location feature of smartphones
has been exploited for heating control [7]–[9]. In addi-
tion, implementations of both approaches are available as
commercial products. The most prominent representative
is NEST which is advertised as the learning thermostat
and uses a passive infrared (PIR) motion detector to infer
occupancy. The European counterpart tado relies on the
geo-location feature and chooses a setpoint based on the
residents current distance to their home and the time their
home needs to heat up.

Thus far, little attention has been paid on individual-
room solutions. Of the former, only [6] considered an
individual-room HVAC system, but with reactive controls.
In general, individual room-heating solutions allow for
fine-grained controls which can be expected to provide fur-
ther increase in energy-savings and convenience in contrast
to a thermal thermostat. In order to provide individual-
room heating controls every room has to be equipped
with sensors and actuators. While a typical thermostat
only carries a temperature sensor, we propose to measure
the room climate along several dimensions. On the one
hand this allows to give the residents detailed feedback
about their room climate and allows to support efficient
ventilation behavior. And on the other hand we will show



that these room climate measurement data can contribute
to determine the occupancy of individual rooms.

In this work, we present a prototypical system for
individual-room heating control based on room climate
sensors, controllable radiator valves and a smartphone
app. The focus will be set to the most important smart
feature: automatic occupancy-based heating. Our work is
structured in the following way: First, we describe our
prototypical system in Section II. Second, in Section III,
we present a novel study which investigates occupancy
detection using room climate sensor data by means of a
Hidden Markov Model. Thereafter, the forthcoming im-
plementation of an state-of-the-art occupancy prediction
approach into our individual-room heating is explained in
Section IV. We discuss limitations and advantages of our
approach in Section V. We summarize our main findings
and recommend for future work in Section VI.

II. System Overview
In the following, we briefly describe the components of

our individual-room heating control system which is also
illustrated in Figure 1a. For more details on the design
and implementation from an information systems point of
view, we refer to our work in [10].

A. Room Climate Sensors
We use off-the-shelf wireless Netatmo room climate

sensors. The base station has the ability to measure tem-
perature, relative humidity, barometric pressure, acoustics
and CO2 and is connected by wifi. Each base station
can be extended by three additional room climate sensor
units which lack the acoustics sensor. The communication
between the base station and the additional sensor units
is facilitated by a 868 Mhz radio. The sampling rate is
fixed at 5 min and the measurement data is automatically
sent to the Netatmo cloud where we can access it by an
authenticated API. Consequently, we fetch the data and
store it in our own database.

B. Backend
The Backend consists of a central server with a Post-

greSQL database, a node.js application and a messaging
broker. Furthermore, there are embedded Linux computers
running an open source home automation software and
another node.js application in every home. Those col-
lect data from the controllable radiator valves and send
control signals. The logic is implemented on the central
server. Data and control signals are exchanged between the
central server and the home controllers using a pub/sub
architecture. Communication between the central server
and the iPhone app is provided by an RESTful HTTP
API.

C. Frontend
The main user interface of the system is an iPhone app

which is shown in in Figure 1b. The user is able to get
information about the current room climate as well as its

history. Further, the user is able to control the heating by
choosing temperature setpoints and by defining a schedule
for each room individually. In addition the app makes
use of the iPhone’s geo-location capabilities in order to
keep track of the user’s distance to its home. There are
additional features like status messages, displaying the
expected heat-up time, feedback on air quality and optimal
ventilation times considering current indoor and outdoor
measurements.

D. Controllable Radiator Valves (CRV)
Controllable radiator valves are motorized valve heads

with a radio module that allows for remote control. They
can be installed in minutes by replacing the standard
thermostatic valve heads at the wall-mounted radiators
typically found in German homes.

III. Occupancy Detection Using Room Climate
Sensors

A. Previous Work
Humans exhale moisture and CO2 and also generate

heat to some extent, which raises the interesting research
question how good occupancy can be detected using room
climate sensors. There are several approaches and evalua-
tions [11]–[13] on solving occupancy detection using room
climate but it was only investigated in office scenarios.
Such a setting differs distinctively from the residential
setting. While those offices were equipped with ventilation
systems, a typical dwelling in central and northern Europe
is ventilated manually by opening windows. Therefore, we
did a first evaluation on occupancy detection using room
climate sensors in residential buildings, which is described
in [14]. We showed there that occupancy detection in that
setting can be solved with accuracies well above 75%.
We used the same occupancy data as in this work, but
we only applied the HMM method in a supervised way.
However, in a real-world setting, it is very unlikely that
there will be such training data. In this work, we show
a first approach to solve occupancy detection using an
unsupervised method and compare it to the supervised
method.

B. Data Acquisition
In order to collect occupancy ground truth we installed

a camera in one of the apartments where our prototype is
running. The camera was set up in the hallway monitoring
the doors to three rooms. The apartment was a shared
flat with two residents and three rooms: Their private
rooms and the shared bathroom. We collected 15 days
(14 in the case of bedroom 2) of continuous footage from
01/30/2014 until 02/13/2014. To avoid manually watching
the entire video we used the open source computer vision
library OpenCV [15] to extract sequences with movements.
We then watched the snippets and labeled the events
manually.



(a) System (b) App

Fig. 1. System overview and iPhone app
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Fig. 2. Ranking in terms of relative information gain (RIG) for
different features based on room climate sensor measurements. The
entropy estimates are calculated by distributing the measurements
to 30 equally spaced bins.

C. Methodology
1) Feature Selection: Given our room climate sensor

measurement data we have to decide which features are
useful to predict occupancy. The intuition is that the
presence of people will affect room climate parameters.
Living beings generate heat and exhale moisture and CO2.
We can therefore expect some coherence between these
measures and occupancy. Intuitively, it seems legitimate to
favor different features in each room, especially if rooms
are used for different purposes and have different usage
patterns. Therefore, we try to identify the features con-
taining the most distinguishing power for each single room.
In order to put the intuition on a more formal ground
we consider the information theoretic notion of relative
mutual information, also called relative information gain.
It is defined by RIG(x) = [H(y) − H(y|x)]/H(y) where
H denotes the information theoretic entropy, x would be

a feature, and y the random occupancy variable to be
predicted. A more detailed discussion in a similar context
can be found in [16]. To calculate the entropy of the
room occupancy, as well as the entropy of the features
under consideration we need the corresponding proba-
bility distributions P (y) and P (y|x). Since the feature
distributions are not known apriori, we apply histogram-
based entropy estimation. We use a total of 30 equally
spaced bins while we discard two percent of the measure-
ments at the boundaries of the distribution to increase
robustness against outliers. These parameters have been
evaluated by experimentation, although they are found to
have marginal influence on the outcome of the entropy
estimation.

The RIG of several features can be seen in Fig. 2.
We note that features based on the CO2 measurements
lead to high RIG. However, there are obviously differences
between the rooms. While the moving average of the first
derivative of CO2 scores highest in bedroom 1, it is rather
low in bedroom 2. Moreover, the second derivative of
CO2 is irrelevant for both bedrooms, but relevant for the
bathroom. For this reason, we rank the features according
to their importance for each room individually. This will
allow our predictive model to be tailored to each specific
room and exploit the characteristics of the room climate
to a greater extent.

The features we have chosen for each room are as
follows:
Bathroom First derivative of CO2, Second derivative of

CO2, Moving average of first derivative of CO2
Bedroom 1 CO2 concentration, First derivative of CO2

concentration
Bedroom 2 CO2 concentration, Moving average of CO2

concentration
During the evaluation of feature candidates we did not

only consulted the RIG in Fig. 2 but we also computed the
RIG for groups of multiple features. Moreover, we took the
pairwise correlation of different features into account. Fig.



2 only shows the informativeness of single features. Simply
selecting the most informative features from Fig. 2 would
not necessarily lead to the highest predictive power. Other
feature combinations might complement each other in an
even better way and reveal even more information about
the occupancy of a room. Still, the RIG for single features
is a very good guidance in feature evaluation.

2) Hidden Markov Model: A Hidden Markov Model
(HMM) is a statistical model in which the dynamics are
described by a discrete first-order Markov process with un-
observable (hidden) states. The hidden states are assumed
to generate a set of observable features X at every time
step t. A HMM is specified by the transition probabilities
P (Qt+1 = q|Qt = qt) between subsequent hidden states
qt+1 and qt, by the emission distribution P (X = x|Q = q)
characterizing the features X, and by the initial state
probabilities P (Q0 = q0). We identify the hidden states
to be either unoccupied or occupied, e.g. q ∈ {S0, S1}. The
sequence q0, q1, ..., qT represents the binary occupancy of
a room from time 0 to time T . If qt = S1 the room was
occupied at time t and if qt = S0 the room was unoccupied,
respectively. The observable features included in X are
those selected in Sec. III-C1. They are processed in the
form of one multidimensional vector xt for every time step
t. Each vector allocates one element per feature. The state-
dependent emission distributions governing X are modeled
by multivariate normal distributions.

3) Model Training and Validation: In general, the oc-
cupancy detection problem can be defined as a supervised
learning problem or as an unsupervised learning problem.
This is inherently different as in the first case the learning
algorithm is allowed to use labeled data during the training
phase which means the underlying occupancy sequence
of the training data is given. In the unsupervised case
the actual occupancy has to be estimated. The algorithm
merely knows that there are two different hidden states
producing the observable features.

To guarantee a sound training and validation phase
we divide our data set into a training and a validation
set. For the supervised approach we estimate the model
parameters in a maximum likelihood fashion based on
the training set. Then we compute the most probable
sequence of occupancy states for both, the training and the
validation set by applying the Viterbi algorithm [17], [18].
The performance on the training set provides information
about how well the model fits the data in general whereas
the performance on the validation set measures the actual
classification capabilities on unseen data.

For the unsupervised HMM approach we use an expec-
tation maximization algorithm [19] to estimate both, the
model parameters and the hidden state sequence from the
training data at the same time. Since the unsupervised
training method does not know which of the two states
represents an occupied or unoccupied room, we have to
learn the mapping with the help of a heuristic after the
prediction phase and apply it to the model’s outcome

accordingly. Similar to the supervised case we also eval-
uate the performance of the unsupervised approach on
the validation data set, whereby the algorithm tries to
predict room occupancy with the parameters learnt during
training.

D. Results
1) Performance Metrics for Binary Occupancy Esti-

mation: In order to evaluate the performance of the
binary occupancy estimation the following metrics are con-
sidered: accuracy ( T P +T N

T P +F P +T N+F N ), precision ( T P
T P +F P ),

sensitivity ( T P
T P +F N ), specificity ( T N

F P +T N ) and F1 score
( 2T P

2T P +F P +F N ). Hereby, TP is the number of true posi-
tives, TN the number of true negatives, FP the number
of false positives and FN the number of false negatives.
Positive (negative) refers to the occupied (vacant) state.
In all cases a higher performance metric means that the
model is able to make a better prediction.

The motivation for this diversity of performance metrics
is twofold. First, one might like to weigh wrong predictions
differently. False negatives might be more severe than false
positives as the user finds a cold room when it actually
should be heated up. By reporting several performance
metrics this distinguishability can be provided. Secondly,
if a room is occupied or unoccupied most of the time the
proportion of the two occupancy states is uneven. Even
a trivial approach which simply always predicts either
state can achieve spuriously good accuracies in such cases.
Studying different performance metrics is crucial here, too.

2) Performance evaluation: In Fig. 3 we present the
performance metrics that our supervised and unsuper-
vised approach are able to achieve. For both bedrooms
the supervised and the unsupervised approach reveal a
remarkable distinguishing power. On unseen data from
the validation set they both are able to reach a F1-score
of over 85 % for bedroom 1. In the case of bedroom 2
the performance is diminished slightly but still achieves
a considerable level of more than 63 %. We believe that
for bedroom 2 our model was not able to grasp the
relationship between occupancy and observable features
in its entirety. This is due to the fact that the resident of
bedroom 2 was not present in his room very often during
our measurement phase and because he usually opened
the window during night. CO2 concentration is affected
by this extraneous influence and complicates occupancy
prediction.

Surprisingly, the unsupervised approach outperforms
the supervised counterpart on the training data. On the
one hand, the unsupervised approach indeed learns the un-
derlying occupancy pattern very accurately which results
in a robust prediction. But, on the other hand, we think
that another validation is necessary when we have more
data at hand for averaging out the performance figures.

For the bathroom we note that occupancy prediction is
not viable in this form. The erratic usage pattern as well as
the very short visits do not allow a meaningful inference on
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Fig. 3. Performance of our supervised and unsupervised HMM
approach.

occupancy using our proposed model alone. On top of that,
our sensors exhibit a time interval of five minutes between
successive measurements. This makes it nearly impossible
for the model to register such brief visits. Unfortunately
though, they are the most prominent feature in the usage
of a typical bathroom.

IV. Occupancy Prediction and Heating Control
Besides detecting whether or not a room is currently

occupied, the system needs to be able to predict when a
room will be (un)-occupied for the next hours and set the
CRVs of the room accordingly.

A. Previous Work
There is vast amount of research on occupancy pre-

diction algorithms for smart heating [4], [7]–[9], [20].
In 2013, Kleiminger et. al [21] presented a comparative
performance analysis of state-of-the-art approaches based
on a common dataset. It turns out that the ”Presence
Probabilities” approach by Krumm et al. [20] shows the
best performance with 85% accuracy. Besides a few opti-
mizations, the basic idea of that approach is to compute
probabilistic schedule in which each 30-minute time slot of
a day is given by the probability for the household to be
unoccupied which is the ratio of the number of unoccupied
occupancy states by the total number of occupancy states.

In addition to that, they combine their approach with
an optimized version of the well-known ”GPS-Controlled
Thermostat” approach of Gupta et al. [7] which predict
the arrival of residents based on the distance (or travel-
to-home time) of them to their home. They use that
information to reduce the thermostat setback temperature
accordingly. Krumm et al. integrate that idea to their prob-
abilistic schedule by always predicting unoccupied (even if
the schedule suggests occupied) if a resident is outside a
certain drive-time zone. They can show that this combined
approach leads to a slight performance improvement which
makes sense since it benefits from the advantages of the

both algorithms. Finally, since this approach shows the
best performance compared to other approaches, we will
use and adapt it to our individual-room heating system.
B. Forthcoming Implementation

For each room, a probabilistic occupancy schedule is
estimated using the room’s past occupancy states, which
were generated by our occupancy detection approach (as
described in Section III). The heating controller checks
constantly the schedule and adjusts the CRV for a given
point in time as follows:
If it is occupied, the CRV holds the comfort temperature.
If it is unoccupied, the controller computes (1) the length
of time to the next occupied interval I, denoted by tnext,
(2) the necessary time to heat-up to comfort temperature,
denoted by theatup, and (3) the travel-to-home time of
the resident, denoted by ttraveltohome. Then the controller
decides as follows: if tnext > theatup, the CRV is put to
the setback temperature for saving energy. Otherwise, it
checks if ttraveltohome > theatup. In that case, the CRV
is put to the setback temperature and interval I of the
schedule is set to unoccupied for that day. In the other
case, the CRV is set to comfort temperature to preheat
the home.

In summary, we apply Krumm et al. combined approach
except that we only overrule the probabilistic schedule if
a resident’s travel time is higher than the heat-up time.

Our system estimates the heat-up time based on the
average time of past heat-up procedures. Although this
is a simple approximation, it reflects to some extent the
specific building/room physics, the heating/radiator char-
acteristics and the latest outdoor temperatures. Since our
iPhone app sends significant location changes of a resident
to the server, an estimate of the current travel-to-home-
time can be easily calculated.

V. Discussion
A. Occupancy Detection

The results of our occupancy detection, as illustrated in
Figure 3, indicate that an unsupervised HMM approach
can be as good as the supervised HMM approach. For
our aims of designing (and evaluating) a smart individual-
room heating solution in practice, this is a great outcome.
However, as already discussed in III-D, this needs further
investigation using more data to improve reliability. Fur-
thermore, with more data at hand, it would be interesting
to evaluate the performance of applying a supervised
HMM model, that was trained on a specific room type
before, on a new room of similar type. This would help to
overcome the training problem of the supervised approach
in real-world settings.
B. Occupancy Prediction and Heating Control

By choosing one of the best occupancy prediction ap-
proaches, we expect also an high accuracy in our forth-
coming evaluation. Moreover, since we will use the com-
bined approach as described in Section IV-B, we expect



higher energy savings without loss of comfort compared
to systems that only use one method. The ”Presence
Probabilities” method helps to save more energy when
residents are out-of-home but very close. In comparison
to an approach that only regulates the heating based on
the travel-to-home-time, because it will not decrease the
temperature setpoint. On the contrary, this approach saves
more energy in cases when residents do not come home as
usual (and are not close to their home). In that case, an
approach based only on ”Presence Probabilities” heats up
to comfort temperature according to the normal schedule.
Consequently, the combined approach should have a better
performance. However, in the case when a resident comes
home irregular to the normal pattern it will still fail
and there is no good solution for that. Nevertheless, the
residents could take care of that, if they are provided
with an intuitive control of the predicted schedule on their
smartphone app.

VI. Conclusion and Future Work

In this work, we showed how an occupancy-based
individual-room heating system using room climate sen-
sors can be implemented for practical evaluation. More
precisely, we presented: (1) the prototypical system for
individual-room heating control, (2) an evaluation of how
good one can infer occupancy from room climate data
by using Hidden Markov Models in a supervised and
unsupervised way, (3) a detailed explanation why and how
a well-known occupancy prediction approach should be in-
tegrated into the heating control for optimal performance.

Our evaluation on occupancy detection has shown that
a good performance (F1-Scores of about 85 % and 63 %) is
achievable for rooms with longer occupancy periods. That
is even the case, if an unsupervised HMM is applied. For
rooms like the bathroom with short occupancy periods our
solution can not be recommended.

Although the room climate sensor based approach has
certain limitations, it is still beneficial for the purpose
of occupancy-based heating. Most of the issues might
be solved by considering additional measurements like
motion or acoustics. Conversely, smart heating approaches
based on motion detection could benefit from additional
climate sensor-based occupancy estimation. Furthermore,
since residents are interested in their room climate, such
sensors become more widespread in homes anyway. For
these reasons, we think that such a smart individual-room
heating has great potential for saving energy, but this has
to be evaluated by field experiment in future work.
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