When Your Sensor Earns Money:
Exchanging Data for Cash with

Bitcoin

Dominic Woérner
Department of Management
Technology and Economics
ETH Zurich, Switzerland
dwoerner@ethz.ch

Thomas von Bomhard
Institute for Technology
Management

University of St. Gallen,
Switzerland
thomas.vonbomhard®@unisg.ch

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

UbiComp’'14 Adjunct, September 13-17 2014, Seattle, WA, USA

ACM 978-1-4503-3047-3/14/09.

http://dx.doi.org/10.1145/2638728.2638786

Abstract

Bitcoin is an emerging technology which allows two
entities to exchange value overt the Internet without
trust. Embracing that those entities could well be
machines we present a system that allows a sensor to offer
its measurement data directly to a world-wide data
market. Thus, we describe a prototypical implementation
of the process of exchanging data for electronic cash
between a sensor and a requester by leveraging the
Bitcoin network and discuss its current limitations.

Author Keywords

Bitcoin; sensors; data market

ACM Classification Keywords
K.4.4 [Electronic Commerce]: digital cash, electronic data
interchange.

Introduction

Bitcoin was introduced in 2008 as a peer-to-peer version
of electronic cash and the first system for electronic
transactions without relying on trust between transacting
parties and without the need for a central authority[2].
This is achieved by ingeniously combining digital
signatures, a peer-to-peer network using proof-of-work to
record a public history of transactions, called the
blockchain, and an incentive scheme alluring early



adopters. Six years later a bitcoin is worth around $500,
there are around 60,000 transactions per day, and
thousands of developers are contributing to the
ecosystem. The latter being possible because Bitcoin is
open source, and because Bitcoin transactions are
inherently programmable due to a built-in scripting
system. Bitcoin can be seen as an API for money and may
allow machines to directly take part in an economy. For
this reason, we expect that Bitcoin has the potential to
stimulate the Internet of Things (I0T). A basic building
block of the IOT is the deployment of sensors. However,
most of the sensors deployed today are living in private
sensor networks only used for single applications. This
contrasts the vision of a true Internet of Things. Cloud
platforms such as Xively!, Thingspeak?, and Thingful®
allow individuals to share their sensor's data, but there is
little incentive for sensor owners to provide well structured
meta data and reliability. Therefore, there is no way for
third parties to leverage today's sensor deployments
considerably. Bitcoin as a frictionless Internet-native
currency allows in principle for the first time to pay for
individual sensor measurements. Attaching a Bitcoin
address to a sensor could empower the sensor immediately
to take part in a world-wide data market. There is no
need for a bank or PayPal account which involves a legal
entity. With Bitcoin in contrast, creating a private-public
key pair is all that is needed. An example could be a
former private weather station with air quality sensors now
offers its data. A sports app provider like Nike could then
buy this data to suggest its users a pollution-free running
track. In this work, we introduce the concept and a
prototypical implementation of exchanging measurement
data for electronic cash using the Bitcoin blockchain.

Thttp://www.xively.com
2http://www.thingspeak.com
Shttp://www.thingful.io

Therefore, we first explain how Bitcoin transactions work
and how they can be used to transmit measurement data.
Thereafter, we present the system’s building blocks and
their tasks followed by our prototypical implementation.
We conclude with a discussion of limitations and future
work.

Bitcoin Transactions

A Bitcoin transaction consists of inputs and outputs.
Inputs link to outputs of former transaction. Each entails
a script. A script related to an output typically determines
the requirements an input script has to fulfill in order to
redeem that output. In the common case a transaction is
used to transfer ownership of some bitcoins whereby
ownership is defined by possession of a private key that is
able to redeem the particular output.

We clarify this concept with an example. Let's examine
the following output script which is called
Pay-to-PubkeyHash:

OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY
OP_CHECKSIG

The amount corresponding to this output can be
redeemed by concatenating (from left) an input script of
the form:

<sig><pubKey>

which needs to evaluate to true. This is the case if and
only if the public key pubKey hashes to the demanded
pubKeyHash (OP_EQUALVERIFY) and the signature <sig>
was created by the corresponding private key
(OP_CHECKSIG). By interpreting pubKeyHash as a Bitcoin
address, we now understand what is meant by sending
bitcoins to an address. But more interestingly we see that


http://www.xively.com
http://www.thingspeak.com
http://www.thingful.io

due to the scripting capabilities there are much more
sophisticated transaction types possible. An important
example is a multi-signature transaction which demands
the signature of more than one private key. Recently, also
the first implementation of assurance contracts[1], which
can be understood as a trust-less decentralized way of
implementing Kickstarter-like crowd funding with Bitcoin,
was introduced®.

In a first implementation of the data exchange, we aim for
including the data directly into a transaction which will
eventually be included into the blockchain. Notably, a
Bitcoin transaction provides no field to add meta data. A
loophole to add data nevertheless would be to add an
additional output and encode the data in the form of a
public key hash. However, this has the following
drawbacks. First, the amount of data is strictly limited
and second, since every node in the Bitcoin network
thinks this is a valid unspent transaction output it will be
held in its memory forever. We can evade the latter
drawback using the following output script:

OP_RETURN <data>

The OP_RETURN operator assures a Bitcoin node that this
output is unspendable and therefore doesn't need to be
held in memory. Nevertheless, it will be stored on disc as
part of the blockchain. Currently the Bitcoin reference
implementation allows to add 40 Bytes of custom data.

System Overview and Requirements

Our system consists of three parts. A sensor client, a
requester client and a sensor repository. How these parts
interact with each other and with the Bitcoin network is

“http://blog.vinumeris.com/2014/05/17/
lighthouse/

illustrated in Fig. 1.

6. Transaction 7. Receiving
containing dat / Nid data
P; 4. Payment to

5. Payment
S o h S

2. Request
N?egister Sensors,
3. List of

sensors

I\

Figure 1: Process for exchanging data for bitcoin.

Sensor Client

The sensor® client needs to fulfill the following tasks. It
needs to note a data request by receiving bitcoins and it
needs to be able to create and publish a transaction
containing the requested data.

Requester Client

The requester client needs to be able to send bitcoins to
the sensor’s Bitcoin address. Further, it has to note the
subsequent transaction of the sensor containing the
requested data.

Sensor Repository

In addition, we propose a sensor repository where sensors
can be registered in oder that they can be found by
requesters. An entry in the sensor repository should
contain at least the Bitcoin address, which data it offers,
the price, and additional meta data like location, tags, etc.

5In this work we understand as a sensor a complete system en-
tailing a sensing unit and a computing unit with Internet connectivity.
However, they may not be in a single device.


http://blog.vinumeris.com/2014/05/17/lighthouse/
http://blog.vinumeris.com/2014/05/17/lighthouse/

Prototype Implementation

Sensor Client

In order to note a payment and therefore a data request,
we implemented a websocket client which registers with a
websocket API. The websocket server relays transactions
containing the sensor’s Bitcoin address. Subsequently the
transaction is parsed for the requester’s Bitcoin address.
In the general case, there might be multiple inputs with
different addresses. However, in this first implementation
we assume that the requester uses only a single bitcoin
address for spending. Thereafter, a transaction with a
Pay-to-PubkeyHash output containing the requester’s
Bitcoin address and a unspendable output containing the
current measurement data is created and published to the
Bitcoin network®.

Requester Client

The requester client retrieves sensors from the sensor
repository. The user then selects the desired sensor and a
payment is made to the sensor’s Bitcoin address. Another
websocket client waits for the transaction from the sensor
entailing the data. On arrival, the data is decoded and
presented to the user.

Sensor Repository

The sensor repository is implemented as a database with a
RESTful HTTP API and a web front end. Both can be
used to register a sensor or to search for a sensor. An
example for a sensor search would be to search for a
keyword and a location. The response then entails a list
of sensors meeting those criteria.

SIn practice there is another Pay-to-PubkeyHash output contain-
ing the sensor’s Bitcoin address to absorb the change since all inputs
have to be spent completely.

Discussion

We presented a basic concept and its prototypical
implementation for the exchange of data for electronic
cash between a sensor and a requester. The vision thereby
is to build a decentralized Sensing-as-a-Service
infrastructure where a sensor can directly offer its
measurements to a world-wide data market. Our first
concept aiming for demonstrating the most simple process
using the Bitcoin network has certainly limitations. First,
the purchased data is publicly available in the blockchain
which would stimulate free riding. This could be addressed
by encrypting the data with the requester’s public key
whereon the requester client decrypts the data using its
private key. Second, in order to provide the measurement
data immediately we accept zero confirmation payments
which a requester may be able to exploit by an attempt to
double spend. Third, there are obvious scaling issues. On
the one hand the blockchain would be bloated with
transactions and exchanged data would be stored forever
on every full Bitcoin node. On the other hand a sensor
would have a large number of tiny unspent transaction
outputs which are expensive to spend. However,
cryptocurrencies, the concept of programmable money
and blockchain technologies are still in their infancy.
Developments like micro-payment channels, side chains or
tree chains to name only a few promise to ease the issues
with long confirmation times and scalability. Thus, we
expect that it is only a matter of time until machines not
only exchange data but also money. This opens up a
whole new dimension for ubiquitous computing.

References

[1] Bitcoin Wiki. Contracts, 2014. [Online; accessed
26-May-2014].

[2] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system, 2008. [Online; accessed 26-May-2014].



	Introduction
	Bitcoin Transactions
	System Overview and Requirements
	Sensor Client
	Requester Client
	Sensor Repository

	Prototype Implementation
	Sensor Client
	Requester Client
	Sensor Repository

	Discussion
	References

