
Auto -ID Center
Massachusetts Institute of Technology

77 Massachusetts Avenue
Cambridge, MA 02139

http://auto-id.mit.edu/

MIT-AUTOID -WH-003
ePC: 21.0000001.06003.XXXXXXXXXX

The Physical Markup Language

David L. Brock

February 2001

Abstract – The Physical Markup Language (PML) is
intended to be a common “language” for describing
physical objects, processes and environments. Much
as the Hypertext Markup Language (HTML) has
standardized the way in which information is
presented on the Internet, PML is designed to
standardize descriptions of physical objects for use by
both humans and machines. The primary objective of
PML is to serve as a common base for software
applications, data storage and analytic tools for
industry and commerce. This paper presents some
fundamental issues in the design of the language, as
well as assumptions underlying its development and
implementation.

I. INTRODUCTION

The Physical Markup Language (PML) is intended to
be a general, standard means for describing the physical
world. When we consider that human language performs
a similar function, it is clear we must carefully consider
the goals and objectives of PML for any hope of
successful adoption.

The objective of PML is a simple, general language
for describing physical objects for use in remote
monitoring and control of the physical environment.
Applications include inventory management, automatic
transaction, supply chain tracking, machine control and
inter-object communication.

Given the objectives of PML, the language should
encourage the rapid development of software tools and
applications. Therefore, PML should be as simple as
possible (at least in its initial implementation), yet as
comprehensive as needed to provide general utility.

As opposed to the many standards and languages,
which have been successfully developed in specific
application domains, the intention of PML is to provide
broad definitions, describing those characteristics
common to all physical objects. The assumption is that
applications built on this language can be applied across a
broad range of industries and businesses.

In the following sections, we will present fundamental
assumptions in the development of the Physical Markup
Language and discuss design approaches intended to
achieve the objectives for the language.

II. BACKGROUND

The intelligent infrastructure, which we envision,
automatically and seamlessly links physical objects to
each other, people and information through the global
Internet [1]. This intelligent infrastructure has four major
components: electronic tags, Electronic Product Code
(ePC), Physical Markup Language (PML) and Object
Naming Service (ONS).

Electronic tags refer to a family of technologies that
transfer data wirelessly between tagged objects and
electronic readers. Radio Frequency Identification
(RFID) tags, often used in “smart cards,” have small radio
antennas, which transmit data over a short range [2]. The
Motorola BiStatix™ tags, an Electromagnetic
Identification (EMID) technology, uses capacitive
coupling to transmit information [3]. Electronic tags,
when coupled to a reader network, allow continuous
tracking and identification of physical resources. In order
to access and identify tagged objects, a unique naming
system was developed.

The Electronic Product Code (ePC) was conceived as
a means to identify physical objects [4]. The ePC code
was created to enumerate all objects and to accommodate
current and future naming methods. The ePC code was
intended to be universally and globally accepted as a
means to link physical objects to the computer network,
and to serve as an efficient information reference.

The Object Naming Service (ONS) is the “glue,”
which links the Electronic Product Code (ePC) with its
associated data file [5]. More specifically, the ONS is an
automated networking service, which, when given an ePC
number, returns a host addresses on which the
corresponding data file is located. The ONS, currently
under development, is based on the standard Domain
Naming Service (DNS). When complete, the ONS will
be efficient and scaleable, designed to handle the trillions
of transactions that are expected.

Finally, the Physical Markup Language (PML) is
intended to be the standard in which networked
information about physical objects is written. In one
sense, all the complexity of describing and classifying
objects has moved away from the object label and into the
PML file. The formation of this language — together

The Physical Markup Language
A Universal Language for Physical Objects

David L. Brock
Auto-ID Center

Massachusetts Institute of Technology
Cambridge, MA USA 02139

with the associated software tools and applications — is
one of the most difficult aspects of this “Internet of
Things.”

III. APPROACH

The effective design of the Physical Markup Language
must balance a myriad of competing design issues and
constraints. Since we have essentially eliminated most of
the information and structure on the tagged object, all the
complexity of description has moved to the networked
database. Issues such as syntax, data types, complexity,
extensibility, security, application domains, units of
measure and more, must be weighted to effective achieve
the objectives set out for the language.

In the following sections, we will consider a variety of
design issues, key assumptions and other considerations
in the formation of the PML. This in not an exhaustive
list, but a starting point in the language design.

We must remember numerous languages and standards
have developed in the past, yet few see wide spread
adoption. We wish to avoid the pitfalls of the past, and
develop a standard, which is simple, convenient and
effective.

A. Generality

The objective the Physical Markup Language is to be a
universal standard for describing physical objects,
processes and environments. Clearly given the broad
scope of this objective, the language cannot be overly
detailed or specific. In the classic choice between depth
and breath, the proposed PML will lean toward a more
general standard, rather than industry specific
implementations.

There are number of reasons for this decision. First, a
broad language will address the largest number of
industries. Second, software developed for the language
will have the greatest potential market. The quality and
capability of the code will likely be superior to any
specific implementation. This is analogous to Web
browsers, such as AOL’s Netscape™ or Microsoft’s
Internet Explorer™, both of which are generally superior
to similar applications targeted for specific industries.
The more generic software also tends to be more robust
and less expensive than focused applications.

Third, physical objects and systems do indeed have
common, underlying characteristics. Since most physical
objects of interest to industry and commerce are those
designed and built by humans, they tend to have shared
features, such as shape, symmetry, materials and function,
as well as business processes, ownership and transaction.

Furthermore, many industries, such as healthcare,
manufacturing, defense, logistics, transportation, disposal
and many others, describe similar characteristics in
different ways. By offering a unifying language, these
characteristics can be shared and translated across
industry groups, multiplying the amount of available
information. Automated, industry specific translators
may be written allowing the shared information to be
presented in familiar ways.

Finally, a broad descriptive language will encourage a
greater degree of industry cooperation and facilitate
information sharing for mutual benefit. Often data, such
as between a retailer and supplier, is not available simply
because of lack of standards.

B. Simplicity

Many standards are not adopted because of their
inherent complexity and steep learning curves involved in
acquisition and implementation. Although the Standard
General Markup Language (SGML) has existed for many
years, it has not seen wide spread adoption in part
because of its size and complexity [6, 7].

Its derivative, the Hypertext Markup Language
(HTML), has, of course, seen phenomenal growth, in part
because of its simplicity and because of the tools and
viewers available for the standard [8]. The Extensible
Markup Language (XML), also based on the Standard
General Markup Language, has seen increasing growth as
a tool for tagging data content [9]. The XML is a simple
subset of the larger SGML and is readily accessible to the
casual programmer.

Thus complex standards and languages – even though
powerful and effective – have slow learning curves and
limited audiences than smaller, simple languages.
Therefore, even though the initial PML may be limited in
scope, we propose a relatively simple language easily
understood and adopted by a larger population.

C. Adoption pathway

Rather than a monolithic, immutable standard, we will
assume the Physical Markup Language will proceed
through a number of iterations. In fact, rather than a
deficiency, this process can be advantageous. While a
simple standard is being learned and adopted,
modifications and extensions can be developed. In this
way familiarity with the language can proceed along with
its capability. In fact, this process may be necessary,
since a complex language would not be learned and a
simple language would not be sufficient.

Although the HyperText Markup Language (HTML)
was a simple language and easily understood, it was, in
its initial version, quite limited in scope and in power.
Multiple versions and extensions followed once the
significance and utility of the language were understood.
Extensions, such as Cascading Style Sheets (CSS),
Dynamic HTML, Flash Media and so on, were added to
the basic capability.

In the same way, we intend the initial PML
specification to be limited in depth and power. By
design, we will incrementally introduce extensions to
increase its scope and functionality.

D. Comprehensive data types

We may consider the Physical Markup Language to
have different ‘types’ of data – static, temporal, dynamic
and algorithmic. These types will not be defined
explicitly in the specification, but are useful distinctions
when discussing the language.

Static data is information, which essentially remains
constant through the life of the object, such as material
composition, geometry and physical properties.

Temporal data is that information which changes
discreetly and intermittently throughout an object’s life.
These may include configuration or location. For
example, the location of an object on a shelf or whether a
part is attached to an assembly, are examples of this type
of data. These data must be associated with a time and
duration to record the temporal configuration of the
environment.

Dynamic data is information that varies continuously.
The temperature of a shipment of fruit or the EKG from a
heart monitor are examples of dynamic data. Unlike most
database systems these data must be cached and
transmitted intermittently to limit the network bandwidth
and to provide only the most relevant and necessary
information.

Finally, algorithmic data includes simulation models,
system processes and software associate with a physical
object. Not all physical properties can be described by a
simple number. For example, the expiration data on a
perishable item may be a complex calculation involving
temperature history, humidity and ambient light.
Cooking instructions could be another example. Heating
profiles depend on personal preference, food type and
quantity, atmospheric pressure, ambient temperature and
oven type.

These designations – static, temporal, dynamic and
algorithmic – are simple different views of the same data.
A static description such as the shape of a glass would be
temporal if it hit the floor. The variation of viewpoint

just depends of time scale and complexity of description.
Therefore, we will allow time variation on all data
descriptions.

E. Abstract nomenclature

Clearly if we hope for a broad application of this
language, we cannot expect familiar names for all
physical properties. For example, “harvest time” for
produce or “assembly time” for an automobile, may be
replaced by a more generic “configuration” plus
“timestamp.” Generally, we will use abstract names to
describe a wider range of physical systems and processes,
rather than industry specific descriptions.

Why use abstract notation? The answer is – when we
consider the primary objective of the language – to
provide a convenient, high-level description for software
and application development. More generic terms allow
more powerful, general-purpose software to analysis
similar configurations independent of industry specific
nomenclature.

F. Robust operation

Unlike most Web pages, PML files will be much more
dynamic and have a greater degree of connection to other
network files and data streams. Object position, physical
state and material descriptions will likely be in multiple
data files scattered over the network. General physical
properties, such as material and chemical information,
will likely be stored in common repositories. Material
Safety Data Sheets (MSDS) are good examples of this
type of data.

The PML language, together with associated tools and
applications, will have to operate robustly with
incomplete and intermittent information. Its operation
may be similar to streaming image systems do today.

G. Facilitate data archives

Although Web pages change frequently, PML data
files will change even more rapidly. History files and
efficient archiving will therefore be critical important.
The temperature history of a perishable item,
administration of drug or stress on structure must be
carefully recorded and maintained.

The PML data format will have to provide simple and
convenient methods for associating time with data and for
denoting periodic and continuous data.

H. Standard units of measure

For much of recorded history, physical states of matter
have been compared to known references. From cubits to
nanometers from stones to dekagrams, multiples of
common standards provide the means of communicating
physical properties. A difficulty arises when different
countries, groups, organizations and people use different
and competing standards.

Our desire for the Physical Markup Language to be a
global standard must be weighed against the utility and
convenience for the user. In particular we must decide on
a method for recording data and units, and converting it
from one system to another as necessary.

Fundamental physical properties of matter – length,
mass, time, force, velocity, density, magnetic field,
luminosity and temperature – must be described precisely
to be communicated effectively. Many physical
properties are not independent. Speed, for example, is the
ratio of length to time. Certain quantities must be
selected as fundamental, while others derived.

Fortunately, these issues have been resolved by
standards bodies, such as the International Bureau of
Weights and Measures (Le Système International
d’Unités – SI) in conjunction with others such as the
Nation Institute of Standards and Technology in the
United States. The seven quantities selected as the basis
of the International System of Units, abbreviated SI, were
selected, and are shown in Table 1. Furthermore, all
other units can be described by multiples or ratios of
these units. Pressure, for example, is given by m-1 · kg · s -2.
Finally, names for common combinations, such as
Pascals for the pressure given above, are provided under
the SI system.

Base Name Symbol
Length meter m
Mass kilogram kg
Time second s
Current Ampere A
Temperature Kelvin K
Amount Mole mol
Intensity Candela cd

Table 1. The seven SI base units assure mutual
independent, unambiguous measurement [10].

 Although the above discussion is fine for scientific
precision of weights and measures, we have the practical
problem describing physical properties in the multiple
common systems people use today. Considering the
options, we may allow PML to use any standard

–International System, British or other. We may also
allow any designation of unit, such as “kilograms,” “kgs”
or “Kg.” This makes the creation of PML files easy,
since any standard of measure written in any language
and with any abbreviation may be used. The software
tools that must process these data files, however, must be
complex, since they must recognize and translate any
arbitrary designations.

On the other hand, if we rigidly dictate a particular
standard in a single language, we have difficulty in
readability and usage. Each PML application must
translate units into their common, local standards. In the
whole, translating from a known standard to another is
easier then converting from an unknown, arbitrary
language.

From this reason, it seems likely PML will adopt a
single system for weights and measures, with particular
designations, and rely on the software tools to provide
common translations. Furthermore, common translation
software can be accessed and shared from the network.
This creates smaller, more easily understood data files,
which are precise and accessible. Further, we will rely
on the years of effort by the many standards bodies to
prescribe these systems.

I. Fundamental and derived data

Many schemes used to store information include
redundant and derived data. As much as possible, the
PML language should not provide any data that can be
calculated or inferred from other data. Unit conversion
for example may be computed by a client application,
remote server, or perhaps by a dedicated
conversion/computation system.

J. Standard Syntax

Rather than reinvent a new syntax for the Physical
Markup Language, we propose to use the extensible
Markup Language (XML). Although different syntactic
representations could be used, XML has been well
defined and in general use as a simple method for
embedded meta-data in flexible database structures.

Furthermore, the extensions, such as the XML Query
specification, provide a uniform and simple method for
accessing data through Simple Query Language (SQL)
notation [11]. In addition, general utilities, tools and
validation software exist to parse, modify and access
XML files.

The Physical Markup Language (PML) will therefore
be – at least initially – an XML scheme, described in any
of the common schema languages, such as the Document

Type Declaration (DTD), Resource Description
Framework (RDF) and others [9, 12].

K. Global language

As with current trends in standards development and
network languages, we will attempt to craft PML as a
global standard and avoid national terms and descriptions.
We will rely on existing standards bodies, such as the
Uniform Code Council (UCC), the European Article
Number (EAN) Association, the American National
Standards Institute (ANSI) and the International
Standards Organization (ISO), as well as commercial
consortium and industry groups, to aid in the definition of
the language.

L. Facilitate application development

One of the primary purposes of the Physical Markup
Language is to facilitate the development of software
applications. Therefore, we must design PML with
consideration for the needs and requirements of
application programmer.

Almost all the issues discussed so far relate to this
objective. Widely adopted, simple languages encourage
application development and ease the programming task.
Extensions and enhancements to an established language
will be paralleled by modifications to existing code.
Simple, unambiguous nomenclature reduces the
complexity of the PML parser and uniform units for
weights and measures ease the burden of software
translators. Finally, common, globally accepted syntax,
such as XML, together with software libraries, such as the
JAVA DOM and SAX packages, provide useful tools for
the software developer [13].

The design of the Physical Markup Language will
accommodate the application developer and provide the
systems and tools to facilitate their efforts. As future
versions of the PML become available, we will streamline
the semantics to speed software upgrades and new
applications.

IV. DESIGN
A. Overview

In the following subsections, we will consider
characteristics common to physical objects, for the
purposes of forming a basis for the Physical Markup
Language. The physical features considered are by no
means exhaustive, but serves as simply starting point for
the general design of the language.

B. Hierarchy

Physical objects often display some degree of
regularity and organization. A fundamental type of
organizational structure is hierarchy – the composition of
parts and subparts. We think of machines having
assemblies, systems, subsystems and parts, as illustrated
schematically in Figure 1. These hierarchical descriptions
apply not only to assemblies, but also to aggregates and
collections. A tea set, for example, may be comprised of
cups, saucers and spoons, yet have no physical
connection.

 Even natural objects have hierarchical structure. The
tree being the classic example – having a root, trunk,
branches and leaves. This characteristic of natural and
man-made objects to exhibit a hierarchical structure
should be included in any language of the physical world

Assembly

Systems

Subsystems

Parts

Figure 1. Physical objects – both natural and man-made –
often display a hierarchical structure.

Beyond simple containment, the relationship between
a parent and child object is often critical in describing the
physical system. These relationships exist not only up
and down the hierarchical tree, but also across sibling
elements. A mechanical joint is a good example.
Kinematic pairs, including revolute, prismatic and ball-in-
socket joints, are often used to describe the coupling
between elements in a mechanical system. A bolt,
illustrated abstractly in Figure 2, shows how this may be
done.

Figure 2. A bolt assembly, which consists of a bolt, washer
and nut, may be thought of as a hierarchy with well defined
relations between elements.

Elements in the supply chain can also be thought of
as an assembly. The transport vehicle, pallet, container
and item form elements in a linked hierarchy, as shown in
Figure 3. In this case, we explicitly define the pallet and
pallet assembly as separate elements. A pallet, for
example, would be considered a discrete item for a pallet
logistics company, but a shipping unit for a transport
company. It is important when developing the Physical
Markup Language to provide unambiguous descriptions
for all possible users.

Package

Item 1,, Item 100

Pallet

EPC 01.0003F2.00105D.0000039844

EPC 01.000501.0008BF.0000005025

EPC 01.000501.0008BF.0000005026

EPC 01.000501.0008BF.0000005027

EPC 01.0037F2.001508.000319F827

Pallet shipment

EPC 01.000501.00017C.0000001139

Package

EPC 01.000501.00017C.000000113A

Package

EPC 01.000501.00017C.000000113B

EPC 01.000501.001384.0000013EC

EPC 01.000501.001384.000001450

Figure 3. Elements in a shipment form a hierarchy composed
of a transport vehicle, pallets, containers and items

It is important to note, these hierarchies change over
time. Links are continually forming and breaking.
Consider a shipment loaded from a truck into a
warehouse. The virtual link describing this assembly
disassociate from the truck and reform with the
warehouse. The transition in structure may trigger
events, such as a change of ownership or responsibility,
or perhaps a financial transaction such as a payment or
refund.

The transport vehicle, pallets, packages and items, in
the previous example, form a hierarchy of four levels.
Suppose, however, we had considered the entire shipping
fleet, or, conversely, included the contents of every
shipped item.

Clearly different levels of detail are needed for
different users and applications. The level of detail
depends on the observer of the data. The concept of
viewer dependent description will underlie the
presentation of PML information.

C. Classification and Categorization

Perhaps one of the greatest challenges in describing
physical objects is classification and categorization.
Within the Physical Markup Language, we must include
data structures and formats that provide efficient methods
for classifying objects. There are, of course, many
previously developed standards and languages that
provide this capability.

In object oriented programming languages, such as
C++, JAVA and ADA, as well as modeling tools, such as
the Uniform Modeling Language (UML), there is an
emphasis on building efficient class hierarchies [17].

A classic example is “the apples and oranges.” In this
example, an ‘apple’ and ‘orange’ are a type-of ‘fruit’, and
a ‘fruit’ is a type-of ‘food,’ as illustrated in Figure 4.

Figure 4. Classification and generalization are important
functions for any language describing the physical world.

There are, however, many different ways to classify
objects – and this is the real problem. We might say an
‘apple’ and a ‘stop sign’ are a type-of ‘round red shape’,
which are a type-of ‘red object’. This would be critical,
for example, if you suffered from red-green color
deficiency. This is not a singular example. There are,
perhaps, as many ways to classify the physical world as
there are people to observe it.

The important point here is that classification depends
on a particular viewpoint. The Physical Markup
Language will have to accommodate multiple
classification schemes for identical physical attributes.

This classification list will help the application
software organize, filter and present particular
characteristics of the physical world. Different views of
the same data can be presented to different individuals at
different times. A distributor may view the data in terms
of shipment size, a retailer in terms of product movement,
a consumer by price and a recycler by toxicity.

In addition to classification within a particular PML
file, object descriptions may subscribe to shared
categorization schemes. In other words, common themes,
such as material type, product class, storage system and
recycling method, may be shared globally by the object
description files.

D. Component description

At some point the description of the physical world
must include the idea of a “part.” In other words, an
irreducible element composed of essentially homoge-
neous material. We may consider parts to be the “nuts-
and-bolts” of an system, which may be literally nuts and
bolts, the liquid in a container or the gas in a cylinder.

Descriptions of solid objects are well represented in
computer languages, for example the Virtual Reality
Modeling Language (VRML), the ParaSolidsTM modeling
core and many others [14-16]. Generally, these include
Boolean solid geometry, polyhedral models and smooth
surfaces.

Perhaps less well represented in current languages are
descriptive tools for flexible planar objects, such as paper,
film and clothing. Although the exact geometry of the
material is often unimportant, the planar pattern and
overall configuration are useful to describe. The planar
shape may be described by two-dimensional geometry
and thickness; however, the overall configuration of the
sheet is more difficult to describe. Folding patterns,
wrinkle and knotting, for example, may be useful for a
laundry. The language for these objects must evolve
needs of the application.

Flexible linear objects are common, yet are not well
represented in formal languages. These include thread,
cord, rope, wire, conduit and cable. As with planar
objects, the cross-sectional geometry of linear objects is
relatively easy to describe. The linear geometry, however,
is more difficult to represent. Exact geometry may be
needed for some objects, such as piping, but unnecessary
for others, such as cables and rope.

For geometric representation, PML will use establish,
well-described languages, and extend these as needed for
particular applications.

E. Ascribed Information

In addition to intrinsic information about an object, the
Physical Markup Language must accommodate data
ascribed to an object. This type of information includes
names, titles, ownership, responsibility, cost and value.
To a large degree, PML will use the extensive work
already developed in this domain, particularly from
electronic commerce initiatives, such as ebXML and
UDDI [17, 18]. As much as possible, we will cooperate
with these organizations to provide consistent and
seamless integration with existing standards and
languages.

F. Process and models

The physical world is characterized not only by the
static arrangement of objects, but also by changes in these
objects over time. The concept of process, that is the
continuous change in the environment over time, is
central to the concept of work. In addition, the
anticipation changes or the projection of possible
outcomes is planning. Although not in the initial
implementations, the Physical Markup Language must
eventually include descriptions process plans, schedules
and timelines.

V. CONCLUSION

This paper proposes the concept of a united language
for describing physical objects. We have presented some
general guidelines, key assumptions and fundamental
components of the language. From the initial
specification through subsequent versions, we must
evaluate breath and complexity relative to user benefit
and industrial application. Clearly the successful
standard is one that is used widely and applied
effectively.

VI. REFERENCES

1. “The Networked Physical World - Proposal for Engineering
the Next Generation of Computing, Commerce and
Automatic-Identification,”
http://auto-id.mit.edu/pdf/MIT-.AUTOID-WH-001.pdf

2. Radio Frequency Identification (RFID) summary from the
AIM Global Network (http://www.aimglobal.org).
 http://www.aimglobal.org/technologies/rfid/

3. Motorola BiStatix Technology
http://www.motorola.com/GSS/SSTG/smartcard/3_0_bst_home.htm
http://www.motorola.com/GSS/SSTG/smartcard/white_papers/BiSta

tix_Whitepaper.pdf

4. Brock, D. L, “The Electronic Product Code – A Naming
Scheme for Physical Objects,” Auto-ID White Paper, WH-
002
http://auto-id.mit.edu/pdf/MIT-AUTOID-WH-002.pdf.

5. The Object Naming Service (ONS) summary from the MIT
Auto-ID Laboratory
http://auto-id.mit.edu/research/naming.html.

6. SGML Overview and references.
http://www.oasis-open.org/cover.

1. St. Laurent, Simon, “XML™: A Primer, 2nd Edition,” MIS
Press, New York, 1999.

8. The HyperText Markup Language (HTML) Specification
World Wide Web Consortium
http://www.w3.org/Markup.

9. The Extensible Markup Language (XML) Specification
World Wide Web Consortium
http://www.w3.org/XML.

10. The International System of Units (SI) from the National
Institute of Standards and Technology (NIST)
http://www.nist.gov
http://www.nist.gov/cuu/Units/units.html.

11. The Extensible Markup Language (XML) Query
Specification
World Wide Web Consortium
http://www.w3.org/XML/Query/

12. The Resource Description Framework (RDF) Specification
World Wide Web Consortium
http://www.w3.org/RDF.

13. The Document Object Model (DOM) and the Simple API
for XML (SAX)
World Wide Web Consortium
http://www.w3.org/XML/DOM.
http://www.w3.org/XML/SAX/

14. The Virtual Reality Modeling Language (VRML)
http://www.web3d.org/technicalinfo/specifications/vrml97/in
dex.htm

from the Web3D Consortium
http://www.web3d.org/.

15. UGS Corporation, ParasolidTM modeler
http://www.ugs.com/products/parasolid/.

16. Foley, van Dam, Feiner, and Hughes, Computer Graphics:
Principles and Practice, Addison Wesley, Reading, MA,
1990.

17. Unified Modeling Language Resource Center
http://www.rational.com/uml/.

18. ebXML electronic commerce language
http://www.ebxml.org.

19. Universal Description, Discovery, and Integration (UDDI)
http://www.uddi.org.

