
Auto -ID Center
Massachusetts Institute of Technology

77 Massachusetts Avenue
Cambridge, MA 02139

http://auto-id.mit.edu/

MIT-AUTOID -TR-004
ePC: 21.0000001.05004.XXXXXXXXXX

An O(log n) Randomized Resource
Discovery Algorithm

Ching Law, Kai-Yeung Siu

November 2000

MIT-AUTOID-TR-004

An O(log n) Randomized Resource Discovery Algorithm ∗

Ching Law and Kai-Yeung Siu
Massachusetts Institute of Technology

{ching,siu}@list.mit.edu

Abstract

The problem of a distributed network of computers
discovering one another by making network connec-
tions is called the resource discovery problem. In
this paper, we present the first randomized algorithm,
called ‘Absorption’, that can solve the resource dis-
covery problem in O(log n) running time with high
probability and with O(n2) expected pointer com-
plexity. In particular, the expected running time of
our Absorption algorithm is at most 4 log4/3 n + 1
steps on any strongly-connected network. We also
describe a variation of the algorithm, which runs in
O(log2 n) expected time but has O(n) expected mes-
sage complexity.

Keywords: Distributed Algorithms, Resource Dis-
covery

1 Introduction

The resource discovery problem of networked ma-
chines seeking and learning about each others is in-
troduced by Harchol-Balter, Leighton, and Lewin in
[1]. In a distributed network, if machine u knows the
address of machines v, machine u can connect ma-
chine v and inform it of other machines known to
u. A resource discovery algorithm specifies how the
machines should communicate with each other, with
the goal that each machine will be aware of all other
machines.

There are three performance measures for a re-
source discovery algorithm:
∗A preliminary version of this work appeared in Brief An-

nouncements of the 14th International Symposium on Dis-
tributed Computing, October 4-6, 2000, Toledo, Spain.

This work was supported in part by the MIT Auto-ID Cen-
ter. Please forward any future correspondence to K.-Y. Siu at
siu@list.mit.edu.

1. time complexity – number of time steps taken;

2. message complexity – number of messages sent
(called connection communication complexity in
[1]) ; and

3. pointer complexity – number of pointers (ma-
chine addresses) passed (called pointer commu-
nication complexity in [1]).

Prior algorithms for resource discovery include the
Flooding algorithm, the Swamping algorithm, and
the Random Pointer Jump algorithm (all described
in the paper by Harchol-Balter et al [1]). However, it
was shown in [1] that these algorithms do not perform
well in certain network topology.

Their paper [1] introduced the Name-Dropper al-
gorithm: During each round, each machine picks
a neighbor randomly and passes the neighbor all
its known pointers. It was shown that the ma-
chines can learn about one another in O(log2 n) time,
O(n log2 n) message complexity, and O(n2 log2 n)
pointer complexity, all with high probability.

Kutten and Peleg [3] recently proposed a determin-
istic resource discovery algorithm with O(log n log∗ n)
time complexity1, O(n log n log∗ n) message complex-
ity, and O(n2 log2 n) pointer complexity.

In this paper, we introduce a new randomized algo-
rithm, called Absorption, which assumes a strongly-
connected graph. Our algorithm runs in O(log n)
time with high probability and achieves O(n2) ex-
pected pointer complexity. A variant with O(log2 n)
expected running time achieves O(n) expected mes-
sage complexity. Moreover, we present the first exact
analysis of the expected performance of resource dis-
covery algorithms.

1log∗ n is the minimum number of times that the logarithm
function is applied to n such that the resulting value is less
than or equal to 1.

In Section 2, we describe a graph-theoretic model
for the resource discovery problem. We introduce the
Absorption algorithm in Section 3 and analyze its per-
formance in Section 4. Section 5 discusses two vari-
ants of the algorithm. We conclude with remarks on
future work in Section 6. Because of space limitation,
the proofs are omitted in this extended abstract.

2 Resource Discovery

In this section, we discuss how we can model the re-
source discovery problem by studying distributed al-
gorithms that evolve a connected directed graph into
a complete graph. We will also give simple lower
bounds on the three performance measures defined
in Section 1.

A network can be modeled by a directed graph
(V,E), such that each machine is a node in V . If
machine u knows about machine v, then there is an
edge (u, v) ∈ E.

For any node u, we let Γ (u) be the known set of
u, i.e. the set of machines known to u:

(u, v) ∈ E iff v ∈ Γ (u) .

We always have u ∈ Γ (u). A message is a set of
nodes. A node u can send messages to any node in
set Γ (u). When a node u receives a message M from
v, u’s known set is updated to Γ (u)∪M . In this case,
we also say node u passes a set M of pointers to node
v.

The goal of a resource discovery algorithm is to
evolve a given connected graph into a complete graph
(in other words, every node knows all other nodes:
Γ (u) = V for all u ∈ V). The algorithm needs to be
distributed in the sense that each node runs the al-
gorithm without knowledge of the global state. How-
ever, we assume that a global clock is available such
that the distributed algorithm in each node can run
in discrete steps.

Remark 1. Any resource discovery algorithm on a
strongly-connected graph requires at least log2(n− 1)
time steps, n messages, and n(n− 2) pointers passed
in the worst case.

3 The Absorption Algorithm

We now describe the algorithm Absorption. It as-
sumes a strongly-connected graph as input and con-
sists of 2 stages.

In stage 1, a graph of n nodes is partitioned into
clusters. Each cluster has one leader. All members
of each cluster know their leader. For any node v,
let l (v) denote the leader of v. Therefore, we have
l (v) ∈ Γ (v) for any node v.

For any leader u, C (u) is the set of nodes that have
u as their leader:

C (u) = {w | l (w) = u} .

We will show in Lemma 1 that a leader’s known set
is the superset of the union of its members’ known
sets.

In the beginning of stage 1, there are n clusters
such that every node is the leader of its single-node
cluster. Each round of stage 1 consists of the follow-
ing four procedures.

1. Each leader u becomes active with probability
1/2. If leader u is active, it randomly chooses
a node v ∈ Γ (u) \ C (u) and then passes the set
Γ (u) to v. Lemma 2 will show that such a node
v always exists unless u is the only leader. We
call these messages seek messages.

2. Each node v that was contacted by some leader
u in the previous procedure now passes the seek
message to its leader l (v). (If node v itself is a
leader, then it does nothing.)

3. For each leader u, if u was active in procedure 1
or had not received a seek message in procedure
2, then it remains idle in this procedure.

For each leader u that was inactive in procedure
1 and had received k > 0 messages in procedure
2, we will construct a bigger cluster led by u.
Let v1, . . . , vk be the leaders that had contacted
some members of C (u) in procedure 1. Leader
u informs leaders v1, . . . , vk that they will retire
and have u as their new leader. We call these
messages retire messages.

The new cluster is a merge of the original clus-
ter of u and the clusters of these retiring leaders
v1, . . . , vk. After the merge, C (u) is updated to
contain all members of this new cluster:

C′ (u) = C (u) ∪
k⋃
i=1

C (vi) ,

and Γ (u) will absorb the pointers received from
v1, . . . , vk:

Γ′ (u) = Γ (u) ∪
k⋃
i=1

Γ (vi) .

4. Each retiring leader v informs its members in
C (v) of the new leader specified in the received
retire message. If C (u) = Γ (u), then terminates
and go to stage 2; otherwise, go to procedure 1.

It can be shown (see Lemma 2) that eventually (with
probability 1) C (u) = Γ (u) for some u.

Stage 2: the ultimate leader left in stage 1, who
knows about all other nodes in the network, can now
broadcast the pointers to the entire network in one
time step.

Note that in the first procedure of stage 1, each
node independently decides to be active or inactive.
This is similar to the pointer-jumping techniques used
in parallel algorithms [2].

The Absorption algorithm assumes a strongly-
connected graph. On a weakly-connected graph, we
can run the Name-Dropper algorithm [1] for O(log n)
time steps to obtain a strongly-connected graph with
high probability.

4 Performance Analysis

This section analyzes Absorption’s asymptotic com-
plexity as well as the upper bounds of its expected
performance.

First, we need to extend our notation of Γ for a set
of nodes:

Γ (W) =
⋃
w∈W

Γ (w) .

The next lemma states that the known set of a leader
is superset of the known sets of the members of its
cluster.

Lemma 1. During stage 1 of the Absorption algo-
rithm, we have

Γ (C (u)) = Γ (u)

for any leader u.

Moreover, any leader knows about at least one
node not among its own cluster.

Lemma 2. During stage 1 of the Absorption algo-
rithm, unless there is only one leader left,

Γ (u)− C (u) 6= ∅

for any leader u.

Using Lemma 2, we can show that the expected
number of leaders in the graph is reduced by a con-
stant factor in each round of stage 1.

Lemma 3. In each round of stage 1 of the Absorp-
tion algorithm, each leader is retired with probability
1/4.

Now we are ready to state our major results.

Theorem 1. The Absorption algorithm terminates
in O(log n) rounds with probability greater than 1 −

1
nO(1)

Corollary 1. With high probability, the message
complexity of the Absorption algorithm is O(n log n)
and the pointer complexity of the Absorption algo-
rithm is O(n2 log n).

Next, we derive the upper bounds on the constants
of the asymptotic bounds.

Theorem 2. Running the Absorption algorithm on
a strongly-connected graph, the expected time steps is
4 log4/3 n + 1; the expected total number of messages
is at most n log4/3 n+ 6n− 2; and the expected total
number of pointers passed is at most 5n2+n log4/3 n−
5n.

If the given graph is weakly-connected, we can
first run the Name-Dropper algorithm for O(log n)
rounds. According to [1], the Name-Dropper algo-
rithm makes O(n) connections per round, and passes
O(n2) pointers per round in high probability.

Table 1 compares the performance of Absorption
with Name-Dropper and Kutten-Peleg. We can see
that Absorption has better asymptotic bounds for
all of the three complexity measures. We note that
both Absorption and Name-Dropper are randomized
algorithms, but Kutten-Peleg is a deterministic algo-
rithm.

5 Variants

In this section we discuss two variants of the Absorp-
tion algorithm.

5.1 O(n2) Pointers on Weakly-Connected
Graphs

We can see from Table 1 that, on a weakly-connected
graph, the subroutine of evolving the graph to be

Time Messages Pointers

Name-Dropper [1] O(log2 n) O(n log2 n) O(n2 log2 n)

Kutten-Peleg [3] O(logn log∗ n) O(n logn log∗ n) O(n2 log2 n)
Absorption (strong) O(logn) O(n logn) h:O(n2 logn), e:O(n2)
Absorption (weak) O(logn) O(n logn) O(n2 logn)

Table 1: Performance of Name-Dropper, Kutten-Peleg, and Absorption in terms of the three complexity measures. The
bounds on row “Absorption (strong)” assume a strongly-connected graph. The bounds on row “Absorption (weak)”
assume a weakly-connected graph and Name-Dropper is run for O(log n) rounds before the start of Absorption. The
pointer complexity of Absorption is O(n2 log n) with high probability, and O(n2) in expectation.

strongly-connected is the bottleneck of the Absorp-
tion algorithm’s pointer complexity. We describe a
method to improve the pointer complexity at the
cost of higher message complexity. Instead of Name-
Dropper, we can use the following simple algorithm
to obtain a strongly-connected graph.

Double-Link: In one time step, each node u sends
a message about itself to each node in its known set.

Algorithm Double-Link takes 1 time step, sends at
most n(n− 1) messages, and passes at most n(n− 1)
pointers. On a weakly-connected graph, if Double-
Link (instead of Name-Dropper) is executed before
Absorption, the overall pointer complexity is im-
proved to O(n2) in expectation. However, the mes-
sage complexity would degrade to O(n2) with high
probability.

5.2 O(n) Messages on Strongly-Connected
Graphs

We describe a variant of the Absorption algorithm
that reduces the expected message complexity of the
Absorption algorithm to O(n), at the cost of higher
time complexity. We call this variant “Absorption-
M”, for optimizing the message complexity.

We now describe the changes to the original Ab-
sorption algorithm. First, we remove procedure 4 of
stage 1. Instead of notifying all the members, a re-
tiring leader will just forward future seek messages to
its new leader. Therefore, during procedure 2, a re-
tired leader u will forward the seek messages received
from its members to u’s leader. The side effect of
this modification is that procedure 2 can no longer
be finished in a single time step. In fact, during the
ith round of stage 1, procedure 2 needs i − 1 time
steps for the chain of retired leaders to forward the
seek messages to the current leaders.

Theorem 3. The expected time complexity of
Absorption-M is O(log2 n). The expected message
complexity of Absorption-M is O(n). The expected
pointer complexity of Absorption-M is O(n2).

6 Concluding Remarks

In this paper, we describe and analyze the Absorp-
tion algorithm and its variant Absorption-M. We have
proved stronger asymptotic bounds on the perfor-
mance measures for Absorption and Absorption-M,
compared to previously known algorithms. The open
question is whether there is a resource discovery al-
gorithm that achieves optimal asymptotic bounds on
all three complexity measures.

In addition, we present the first exact analysis of
expected performance bounds for resource discov-
ery algorithms. We also note that on a strongly-
connected graph, the Absorption algorithm will ter-
minate when all the machines are found, unlike the
Name-Dropper algorithm [1].

The major weakness of the Absorption algorithm
is its reliance on a few machines (the leaders) to dis-
tribute the pointers. However, we note that fault
tolerance can be easily obtained by running indepen-
dent instances of Absorption in parallel. In particu-
lar, any node in a strongly-connected graph has the
opportunity to become the ultimate leader.

Of related interest is the problem of transform-
ing a weakly-connected graph to a strongly-connected
graph, since the performance of Absorption on
weakly-connected graphs is limited by the transfor-
mation algorithm used. We are currently developing
a transformation algorithm which has more balanced
message complexity and pointer complexity.

References
[1] Mor Harchol-Balter, Tom Leighton, and Daniel Lewin. Re-

source discovery in distributed networks. In 18th Annual ACM-
SIGACT/SIGOPS Symposium on Principles of Distributed
Computing, May 1999.

[2] Joseph Jájá. An Introduction to Parallel Algorithms. Addison-
Wesley, Reading, 1992.

[3] Shay Kutten and David Peleg. Deterministic distributed resource
discovery. In Nineteenth Annual ACM SIGACT/SIGOPS Sym-
posium on Principles of Distributed Computing, Portland, Ore-
gon, 16-19 July 2000.

