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Abstract
This thesis presents HiQ, a hierarchical, online learning algorithm that finds dynamic
solutions to the Reader Collision Problem in RFID systems. When the transmissions from
one reader interfere with the operation of another reader, a reader collision occurs.˚ The
objective of the Reader Collision Problem is to minimize the reader collisions
experienced by RFID readers while using the minimum number of frequencies and using
the minimum total time for all readers to communicate successfully.  HiQ attempts to
minimize reader collisions by learning the collision patterns of the readers and by
effectively assigning˚frequencies over time to ensure neighboring readers do not
experience collisions from one another.  HiQ is arranged hierarchically with distributed,
local control.˚ The algorithm is based on a type of reinforcement learning called Q-
learning, which is used to determine frequency and time assignments.  Through repeated
interaction with the system, Q-learning attempts to discover an optimum frequency
assignment over time.
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Chapter 1

Introduction

In this thesis, I present HiQ, a dynamic on-line algorithm for solving the Reader Collision

Problem (RCP) in Radio Frequency Identification (RFID) systems.  First, I motivate the

Reader Collision Problem by examining high-density RFID reader applications.  Second,

I review the fundamentals of RFID systems are reviewed with emphasis on their

characteristics that negatively impact their performance in high-density RFID reader

applications.  Finally, I provide an overview of HiQ, and review its performance.

1.1 Reader Collision Problem and Q - l earn ing
Overview

The Reader Collision Problem is the fundamental problem of effectively allocating radio

frequencies to readers over time such that their interference with one another is

minimized.  An RFID reader may interfere with the operation of another reader in an

RFID system when it communicates.  The interference between two operating readers is

called a reader collision.  Reader collisions prevent the readers from properly

communicating with RFID tags.  It is important that the number of reader collisions is

minimized.  Otherwise, the information on the RFID tags cannot be read, and the data is

useless.
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The Reader Collision Problem looks at minimizing the number of reader

collisions in an RFID system though efficient allocation of frequency and time resources.

Because of the limited number of resources available in they system, the allocations must

be done in an intelligent manner to maximize reader performance.

HiQ utilizes a hierarchical control structure and reinforcement learning [2] based

upon Q-learning [19] to provide an on-line adaptive solution to the RCP.  Q-learning tries

to solve the Reader Collision Problem through interaction with a network of readers.  The

Q-learning process tries to learn the optimum resource assignment scheme by exploring

different assignments and evaluating the performance of these assignments.  Through

repeated interaction with the environment, Q-learning builds a history of the performance

of past assignments.  Based on this history, Q-learning effectively finds a solution to the

Reader Collision Problem.

1.2 Introduction to RFID Systems

The two fundamental components in an RFID system are: Radio Frequency (RF) tags and

networked RF tag readers.  RF tags are typically implemented with low-functionality

integrated circuits connected to antennae.  The tags store information ranging from

simple data types such as static identification numbers, to richer data types like sensory

data and product information.  The readers are able to communicate with the tags

wirelessly and access this data.  For example, a shelf full of shaving razors at a

supermarket can all be tagged and readers can be placed along the shelves to read the

tags.  Each of the razors is uniquely identifiable and their status on the shelf (present or
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not) can be determined by the readers.  Communication between readers and tags is only

initiated by readers.

To respond to a reader, a tag needs enough power to communicate with the

reader.  A tag can power up in two ways.  One way a tag can do this is to use its own

power supply.  Tags with their own, on-tag power supplies are called active tags.  The

second way a tag can power up is to harvest the energy from the signal generated by the

reader when it initiates communication with the tag.  Tags which use this type of

powering up do not have their own, on-tag power supplies and are called passive tags.

Because of the difference in power levels, active tags have greater communication range

than passive tags.

The readers are able to communicate with tags within their respective

interrogation zone.  An interrogation zone is the finite region around the reader where it

can communicate with a tag.  Due to the nature of radio frequencies, it is almost

impossible to create perfectly interlocking interrogation zones.  The zones do not form

nice squares or rectangles that can be tiled neatly like a bathroom floor, so there is

typically zone redundancy within a reader network that covers a large volume.  This

redundancy creates potential communication problems between the readers, and is the

basis of the Reader Collision Problem.

To interact with tags in its interrogation zone, a reader must secure a radio

frequency for communication and a time for communication.  Typically there are a

limited number of distinct frequencies available for use within a reader network.  When

two readers with overlapping interrogation zones communicate using the same frequency
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at the same time, each may experience difficulty in communicating with tags in their

interrogation zones due to interfering signals transmitted by the other.

Additionally, readers without overlapping interrogation zones can experience

frequency interference.  This is because the communication range for a reader signal is

much greater than the interrogation zone for a passive tag.  Thus, the signal from a tag

responding to a reader may be lost due to stronger signals from neighboring readers.

Limited frequency resources require frequency reuse between readers.  If these

readers are located within the safe reuse distance, it will result in problems from

frequency interference.  When two readers attempt to communicate using the same

frequency, each may interfere with the other s operation.  This frequency interference

between two readers is one type of reader collision, called a frequency collision.

A second type of reader collision, called a tag collision, may occur due to the

communication timings of readers with overlapping interrogation zones.  When two

readers communicate at the same time, they can experience a tag collision.  In a tag

collision, two readers attempt to read the same tag at the same time.  As a result, both

readers may be unable to successfully communicate with the tag.  Even if two readers are

using different frequencies to communicate with tags in their interrogation zones, there is

still a possibility of a tag collision if they are communicating simultaneously.

The consequences of reader collisions are detrimental to the operation of RFID

systems.  When a reader experiences a frequency collision, it will be unable to

communicate with any tags in its interrogation zone.  When a reader experiences a tag

collision, it may receive erroneous information in communicating with some tags or it

may not be able to communicate with the tags at all.  The problems resulting from reader



15

collisions make it imperative that readers minimize the number of collisions they

experience.

1.3 Motivation Behind the Reader Collision Problem

RFID systems are used in a variety of applications to uniquely identify physical objects.

One of the areas where RFID systems are significantly impacting the overall performance

of an application is in supply chain management.  At each level of the supply chain —

from factories and distribution centers to retail stores —  RFID systems can uniquely

identify objects and access information about them as they move through the supply

chain.  From an entire shipment of Coca-Cola to a single razor blade, physical objects can

be identified and connected in a Networked Physical World [7].  By leveraging the

Internet, shipments can be tracked and inventory can be counted automatically and in real

time.  Accurate knowledge of object identity and location over time enables supply chain

management systems to create an efficient and effective supply chain.

Minimizing the number and frequency of reader collisions is absolutely essential

for RFID systems to function properly.  In many systems, such as real-time inventory

detection and automated product receiving in supply chain management, the area in

which tagged objects can be located is quite large.  For all of these objects to be read

correctly and in a timely manner, readers must be able to detect the tagged objects

regardless of their location.  To read all tags in a large area such as a warehouse or a

supermarket, many readers must be used.  This is due to the limits in reader-to-tag

communication.  Reader-to-tag communication is typically less than ten meters.
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 Because of these read range limitations, many readers must be placed throughout

the area, which creates a highly dense network of readers.  When readers are placed in

close proximity to other readers, there is the potential for reader collisions.  The range of

these potential collisions is greater than the range of the interrogation zones of the readers

because reader-to-reader interference may be on the order of a few tens of meters.  To

guarantee that tags in the network are successfully read, the collision rate for readers that

are reading must be minimized.

1.4 Defining the Reader Collision Problem

The Reader Collision Problem is the task of assigning radio frequencies to RFID tag

readers such that the interference between readers is minimized.  The Reader Collision

Problem is related to the well-studied Frequency Assignment Problem (FAP) [12]

experienced in systems such as cellular telephone systems.  Fundamentally, the Reader

Collision Problem looks to efficiently assign radio frequency spectrum to a set of radio

frequency transmitters (i.e., RFID readers) over time.  The optimization metric for the

assignment varies depending on the requirements of the application(s) that use the reader

collected data.  For the Reader Collision Problem, we look to minimize the number of

frequencies needed to keep frequency interference at an acceptable level while

simultaneously minimizing the amount of time required for all readers to communicate

with tags in their respective interrogation zones such that tag interference is kept at an

acceptable level.  This is very similar to the task of frequency assignment in cellular

telephone systems.  However, there are more constraints on reader systems due to the

minimal functionality of the RF tags.
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The Reader Collision Problem can be modeled as a graph coloring problem.  The

readers are modeled by the vertices of the graph.  The edges of each graph represent the

interference constraints between two readers.  The real world interpretation of two

vertices that are connected by an edge is two readers that can interfere with each other if

operated at the same time.  In other words, two connected vertices can collide.

Furthermore, there are two types of edges corresponding to the two types of interference

that may be experienced by a reader.

Finding the optimum solution to the Reader Collision Problem is similar to

finding optimum solution to a T-coloring problem [4].  In a T-coloring problem, each

vertex has an associated set of colors.  A vertex can be colored from its set, just as

frequencies and time slots can be assigned to readers.  The goal of these problems is to

find the optimum color assignment — the one using the minimum number of colors — such

that no two vertices connected by an edge are assigned the same color.

In the model of the Reader Collision Problem, each color represents a different

resource.  The number of resources is not restricted to the number of fixed frequencies

available in the system.  Using a method called Time Division Multiple Access (TDMA),

multiplicatively adds to the number of resources available in a reader network.  TDMA

divides each frequency into multiple time slots.

The use of TDMA is both desirable and sometimes necessary.  Even if each

reader has been assigned a different frequency than all of its neighbors, tag collisions

may still occur.  TDMA guarantees that readers which are communicating during

different time slots will not experience tag collisions.  With limited resources, two
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readers which are using the same frequency can read without collisions if they read using

different timeslots.

The goal of an RCP algorithm is to limit the number and frequency of both

frequency collisions and tag collisions.  By minimizing these collisions, a reader network

is able to successfully read more data, more often.

1.5 Solving the Reader Collision Problem

An effective RFID system must be designed such that the number and frequency of

reader collisions is minimized.  To achieve optimum reader performance, an algorithm

must be used to allocate the limited frequency resources over time.

There are three general algorithmic approaches to solving the Reader Collision

Problem.  One approach is centralized, using a central controller to allocate frequencies

and time slots within a reader network.  The second approach, the distributed control

approach, is performed locally without global knowledge.  The third approach is a

combination, or hybrid, of centralized and distributed where some decisions are made by

a centralized controller while the allocation of frequencies over time is performed at a

more local level without global knowledge.

This thesis presents the design of a versatile hybrid algorithm for solving the

Reader Collision Problem using a type of reinforcement learning called Q-learning [19].

The algorithm is designed with a hierarchical network structure and can have either

centralized or distributed control, depending on the implementation.  The centralized

implementation requires more processing power and storage and may not be possible in

some applications.
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1.6 Thesis Contributions and Overview

This thesis presents the framework, implementation and performance of HiQ, an

algorithm based on Q-learning that effectively solves the Reader Collision Problem.  By

using Q-learning in a hierarchically distributed manner, the algorithm effectively

allocates time and frequency resources to readers without global knowledge of reader

constraints.  Additionally, I have implemented and simulated the HiQ algorithm and

evaluated its performance on reader networks that vary in size, topology and number of

available resources.  To overcome locally optimal resource assignments, the Q-learning

process has been augmented with the use of randomization techniques.  HiQ is effective

in preventing reader collisions, particularly frequency collisions, for reader networks

ranging in size from 9 to 49 readers.  HiQ also allows for very high transmission rates,

enabling readers to successfully communicate greater than 99% in many cases.

In Chapter 2 of this thesis, I review several existing techniques that may be used

to solve the Reader Collision Problem.  In particular, I look at three learning algorithms

used to solve a problem similar to the RCP, called the Frequency Assignment Problem.

Additionally, I examine Colorwave, a distributed algorithm for solving the RCP [16][17].

The relevant results for each algorithm are also summarized.  In Chapter 3, I give an

overview of Q-learning and how it has been applied to the Frequency Assignment

Problem.  The second half of this chapter describes the modifications I have made to use

Q-learning in the RCP.  In Chapter 4, I present the HiQ algorithm.  I describe the

hierarchy and detail the function of each tier in the hierarchy.  This includes the

distribution of control and how resources are allocated.  In Chapter 5, I give my

implementation of HiQ.  In this chapter, I present the intricacies of each component in the
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system, including additional algorithms for fairness and randomization.  In Chapter 6, I

present the results of a set of six experiments that I performed using the implementation

of HiQ.  The results of these simulations measures the performance of HiQ in terms of

frequency and tag collision rates, and the rate at which readers are granted resources to

communicate with.  In Chapter 7, I conclude with final thoughts and a discussion of

future work.
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Chapter 2

Related Work

We review work related to the Reader Collision Problem with special emphasis on the

Frequency Assignment Problem and the Q-learning algorithm.  We examine a Q-learning

algorithm for the Frequency Assignment Problem as well as other learning algorithms.

We finish by reviewing Colorwave a distributed algorithm for solving the Reader

Collision Problem.

2.1 Frequency Assignment Problem

The Frequency Assignment Problem is the task of optimally assigning limited radio

frequencies to communication links in a network. The Frequency Assignment Problem

arises in all systems that use radio frequencies for communication [12].  The constraint

and optimization criterion of the Frequency Assignment Problem depends on the network

and its application.

 There are two main types of algorithms that are used to solve Frequency

Assignment Problems.  The first is fixed frequency, or channel, assignment (FCA).  In

fixed channel assignment, nodes are assigned a static set of channels that does not

change.  The second type of algorithm is dynamic channel assignment (DCA).  Unlike

fixed channel schemes, the set of allocated channels to a node may change over time.

Channels are allocated when needed and there are no fixed assignments.
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While the Reader Collision Problem is closely related to the Frequency

Assignment Problem, there are three key differences between them.  First, the mobile

devices that communicate in many radio systems are high functionality devices, while the

mobile devices in RFID systems (e.g., passive tags) are very low functionality.  Second,

RFID systems can control both frequency and time assignments.  In Frequency

Assignment Problems, this is not the case as only frequency is controlled since the base

stations are always communicating on their allocated frequencies.  Third, constant

communication between readers and tags is not necessary.  This makes RFID networks

more robust to noise; they can tolerate a great deal of noise and still meet their

performance criteria.  More importantly, it provides a level of flexibility not experienced

by systems modeled by the Frequency Assignment Problem.

2.2 Algorithms to Solve the Frequency Assignment
Problem

There have been a great number of algorithms developed for solving the Frequency

Assignment Problem.  The algorithms vary greatly and have many fundamental

differences, depending on the type of Frequency Assignment Problem they are trying to

solve.  Many rely on centralized control for channel assignment, while others boast

distributed control where individual transmitters are responsible for communication.

Some examples of dynamic channel assignment algorithms are neural networks,

simulated annealing and genetic algorithms [9] [5] [10].

In a neural network, a system of artificial neurons is mathematically created.  In

this system, the neurons represent a single cellular base station and a single channel that
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base station can use.  The constraints and optimization criteria of the system are

translated into an energy function, which the neural network tries to minimize.

Calculating this energy function and combining it with weighted input parameters results

in a state for each neuron.  The output of these neurons is based on the internal state of

each neuron and determines whether or not a channel can be used in a base station.  With

this algorithm, a network of 25 base stations with 73 channels each was able to converge

to an optimum assignment [9].

Simulated annealing is a generalization of local search.  The algorithm starts with

an initial solution and begins making random changes to channel assignments in a radio

network.  The algorithm always accepts assignment changes which improve the overall

reward, and accepts changes which do not improve the reward (deteriorations) with some

probability.  The algorithm uses a control variable T to restrict the number of

deteriorations and stops when T reaches its terminal value.  Simulated annealing

algorithms have been shown to be capable of converging to assignment which did not

violate frequency constraints 32%-52% of the time, depending on the complexity of the

network [5].

Genetic algorithms are a form of blind local search.  In a genetic algorithm

approach to channel assignment, a single solution is an assignment scheme for all the

base stations.  The genetic algorithm takes a set of solutions as the population, and begins

the evolutionary process.  First, members of the population are selected based on their

fitness (performance measure).  To avoid converging at local minima (when only the

fittest are selected) the selection is done in a biased random manner: fitter members are

more likely to be chosen than the weaker members.  Through crossover, information is
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exchanged between members of the selected population, resulting in reproduction which

creates new solutions.  During reproduction, genes (base stations) may undergo

additional random changes at a mutation rate.  The process is repeated until a solution is

found where no interference constraints are violated.  This solution gives an assignment

for the set of base stations.  The genetic algorithm approach to the Frequency Assignment

Problem converged in a network of 25 cell [10].

2.3 Q-learning Implementation for the Frequency
Assignment Problem

Q-learning is another learning algorithm that has been applied to the Frequency

Assignment Problem. This algorithm uses an online reinforcement learning to

dynamically allocate frequencies to transmitting cells in a mobile communication

network.  The Q-learning algorithm uses centralized control and global knowledge of

potential interference patterns within a mobile communication system to determine

frequency assignments.

The Q-learning system consists of a learning agent, which interacts with the

environment (the system) to learn  which assignment schemes perform best.  The

algorithm measures the performance of each assignment by measuring the interference

levels within the system.  This data is converted into a performance evaluator — some

scalar reward — and passed to the learning agent for.  The results of this Q-learning

process produce Q-values, which the agent uses to try and learn an optimum assignment

policy.  Through repeated interaction with the environment, the learning agent seeks to

maximize the rewards for the system, thus finding desirable frequency assignments.
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These rewards are based on neighboring cells which may experience frequency

interference.  Without information about these interference patterns, the Q-learning agent

cannot make informed decisions for channel allocation.

The Q-learning algorithm performed as well or better in terms of blocking

probability for different traffic loads than previous fixed channel assignment schemes

like neural networks, genetic algorithms and simulated annealing.  Against one of the

best DCA algorithms, MAXAVAIL [15], the Q-learning algorithm performed

comparably in terms of blocking probability through significantly reduced computational

complexity.  The algorithm achieved blocking levels between 0 and 0.2, depending on the

traffic patterns and distribution.

2.4 Colorwave

The Colorwave algorithm is representative of algorithms that use a distributed system

with no guaranteed method of communicating between neighboring nodes to manage a

TDMA reservation anticollision system among a network of RFID tag readers.  It is the

only previous algorithm designed specifically for the Reader Collision Problem.

In the Colorwave algorithm, the reader network is modeled as an undirected

graph.  Vertices represent individual RFID readers, and edges represent collision

constraints; if two readers connected with an edge transmit at the same time, they will

collide.  The goal of the algorithm is to color, with a distributed algorithm, a reader

network such that each reader node has the smallest possible number of adjacent nodes

with the same color.  This approach allows easy reservation of timeslots; a color is a

periodic reservation for collision-free transmission of data (i.e. reader-tag
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communication).  A reader with a queued request for transmission transmits only in its

color (timeslot).  If the transmission collides with another reader, the transmission request

is discarded.  Furthermore, the reader randomly chooses a new color and reserves this

color, causing all of its neighbors to select a new color.  This theoretically clears the

timeslot for the next time the reader needs to transmit.  This switch and reservation action

is referred to as a ‘‘kick.’’  Colorwave additionally attempts to optimize the graph to the

smallest number of total colors required to achieve a particular percentage of successful

transmissions.  Since the Colorwave algorithm can cause a node to change its own color,

two color variables are maintained at each node: a current color, and the max_colors at

that node.

Each RFID tag reader monitors the percentage of successful transmissions.  Five

inputs to the algorithm determine when a reader changes its local value of max_colors:

two safe  percentages of successful transmission, one for increasing max_colors and one

for decreasing max_colors; two trigger  percentages, where a node will alter max_colors

only if a neighboring reader is doing so as well; and MinTimeInColor, a stabilization

period after a max_colors change during which a node will not alter its max_colors again.
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Chapter 3

Q-learning

We examine the details of Q-learning, looking at the basic framework and the intricacies

of its formulation.  We review an example of a Q-learning algorithm used for solving the

Frequency Assignment Problem.  We conclude with the framework and formulation of a

modified Q-learning to address the Reader Collision Problem.

3.1 Introduction to Q-learning

Q-learning is a form of reinforcement learning [2].  In reinforcement learning, situations

are mapped to actions that try to maximize a scalar reward (or minimize a cost).  Given

an environment with defined situations, a learner can find optimum actions for each

situation through repeated interaction with the environment.  In Q-learning, these

situations are modeled as states in a discrete-time, stochastic dynamical system.  At each

state the learner, or Q-learning agent selects the best course of action from each state

based on Q-values.  Q-values are performance measures which are dynamically

calculated based on the cost/reward system for the previous actions taken by the agent.

It has been shown that Q-learning has been effective for solving dynamic

programming problems [3].  The Q-learning algorithm we propose for solving the Reader

Collision Problem is based on a Q-learning algorithm used for solving the Frequency

Assignment Problem.
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In this chapter the specifics of the Q-learning algorithm, as it applies to RFID

networks, are presented.

3.2 Q-learning FAP Implementation

An algorithm for solving FAP based on Q-learning has been shown to perform well

against traditional FAP algorithms [8].  The algorithm has centralized control, with one

Q-learning agent managing the frequency allocation to each cell in the entire network.

The algorithm performed better than the MAXAVAIL algorithm, regarded as one of the

better dynamic channel assignment algorithms.  The Q-learning algorithm was less

computationally intensive than the MAXAVAIL algorithm.

3.3 Q-learning Algorithm

This section details the Q -learning algorithm.  First, we present the Q -learning

formulation given for the FAP algorithm.  Next, we present the Q-learning algorithm for

the Reader Collision Problem.  This algorithm is modeled after the aforementioned FAP

Q-learning algorithm, with modifications to fit the differing parameters of the Reader

Collision Problem.

3.4 Q-learning FAP Formulation

To begin, the environment is modeled as finite-state, discrete-time, stochastic dynamical

system.  In this environment we let X be the set of possible states, X = {x1, x2, , xn } and

A be the set of possible actions A = {a1, a2, , am }.
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Here s what happens at each time instant:

1. The agent detects the state xt ∈ X

2. Based on the state xt, the agent picks an action at ∈ A to perform

3. The environment transitions to a new state xt+1 = y ∈ X with probability Pxy

(a), and a return (cost) rt is generated.

4. That return rt is passed back to the agent and we return to step 1.

The goal of the Q-learning agent is to find an optimum policy Π*(x) ∈ A for each state x,

which minimizes the cumulative measure of the return rt = r(xt, a) received over time.

Over an infinite time horizon, the total expected discounted return (cost), or value

function for a state x is given by
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Where E is the expectation operator and the discount factor is 0 † γ † 1.  This can be
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Q-learning is ideal for a dynamic channel assignment since the optimum policy can be

found without knowing R(x,a) and 
xyP (a).

For a given policy π, let the Q-value (state-action value) be
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(4)
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This is the expected discounted cost for performing an action a at state x, then following

policy π afterwards.  To obtain the optimum policy, let

∑+==
y
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which gives us
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The value function V* that satisfies Bellman s optimality criterion is found using Q*.  Q*
can be expressed as
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Q-learning recursively tries to find Q*(x,a) based on the state information and costs.  This

requires knowledge of states xt and yt (at time t and t+1 respectively), at (the action taken

at time t) and rt, the cost due to the action taken at time t.  Given this information, we

have a Q-learning rule (equation 4):

),(1 axQt+  =
{ ),(),( axQaxQ tt ∆+α if x = xt and a = at

{ ),( axQt otherwise
(8)

Here α is the learning rate, and

),()]},([min{),( axQbyQraxQ ttt
b

tt −+=∆ γ (9)

It has been shown that if the Q-value of each admissible (x, a) pair is visited infinitely

often, and if the learning rate is decrease to zero in over time, then x→  , Qt( x, a)
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converges to Q*(x, a) with a probability of 1.  The learning rate used in the experiments

is

xstatetovisitstotal+
=

1

1α (10)

where state x is a combination of node and the number of available resources, as defined

previously.

3.5 Q-learning Algorithm for the Reader Collision
Problem

The Q-learning algorithm for the Reader Collision Problem is based on the structures for

the FAP equivalent.  In this section, we present the intricacies of Q-learning algorithm for

the RCP.

3.5.1 State Description

In a network of N nodes and R available resources, the state x at time t is given by

xt = (i, A(i))t
(1
1)

where i ∈ {1, 2, , N } specifies the index and of the node making a resource request and

A(i) ∈ {1, 2, , R } is the number of available resources to node i at time t.

The set of R available resources is different than the set of available frequencies

described in the FAP version.  In addition to frequencies, another available resource in

RFID networks is time slots.  Given a set of F frequencies and L time slots, the total

number of available resources in the network is
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R = F * L
(1
2)

By using TDMA to manage communication times, the total resources available in the

system increase multiplicatively greater with each additional time slot.  It should be noted

that at least one time slot is required for frequencies to be used.  Instead of A(i) ∈ {1, 2,

,  F}, we now have A(i) ∈ {1, 2, ,  F * L}.

To obtain A(i), the number of unique frequency and time slot combinations

available to a node i, several other quantities must be defined.  The first is the frequency

usage status for node q, q = 1, 2, , R, defined as an F x L matrix where

uj,k(q) =
{ 1 if frequency k and time slot j are in use in node q
{ 0 otherwise (13)

and q = 1, 2, , F, and j = 1, 2, , L, and k = 1, 2, , F .  Frequency usage is determined

by whether or not a frequency has already been allocated to another node, regardless of

interference patterns.  Unlike the Frequency Assignment Problem, global knowledge of

the constraints on individual nodes is not assumed and may not be available.

Additionally, we have a resource availability matrix r(q) ∈ {0,1}LF where

rj,k(q) =
{ 0 if frequency k and time slot j available for use in node q
{ 1 otherwise

(14)

and q, j and  k take on the same values as in the usage status matrix.  The resource

availability matrix is used to accommodate multiple Q-learning agents arranged in a

hierarchy.  If a resource has not been allocated, it is not available for use.

We can now find the number of available resources A(i).  This is given by a set

sj,k(q) where

sj,k(q) = { 1 if frequency k and time slot j can be used in node q (15)
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{ 0 otherwise

and

sj,k(q) =  rj,k(q)  ∧∧∧∧  ¬¬¬¬ uj,k(q)

q = 1, 2, ... , R

(1
6)

A resource is considered to be available if and only if it has been allocated and it is not

being used.  Given sj,k(q), A(i) is obtained with the summations
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3.5.2 Actions

The agent performs an action in this environment by assigning a frequency k and time

slot j from A(i) to node i s request.  Here, a is defined as

a = j, k ∈ {1, 2, , R }  and  sj,k(i) = 1 (1
8)

3.5.3 Cost

The return r(x,a) evaluates the cost of the action taken.  In the RFID network, the cost is

not immediately known.  It is based on recorded state over a finite time period.  This is

different from the original algorithm, which had instant costs based on co-channel

interference distances and node separation.

The return is based on the number of requests, request rejections, request grants,

frequency collisions, tag collisions, frequency interferers and tag interferers.  The first

five pieces of information are used to measure the performance of the previous

assignment.  The interferer numbers are used to infer interference patterns in a node.  An

interferer is a node which can detect the communication of another node.  By relaying
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this information, the interfering node gives the learning agent more information to learn

from.

The cost is calculated by the equation

c(x, j, k) = n1(j,k)c1 + n2(j,k)c2 + n3(j,k)c3 + n4(j,k)c4 + n5(j,k)c5 + n6(j,k)c6
(1
9)

In this cost equation, n1(j,k) represents the rate of successful communication, given by

grants
collisionsgrants

kjxn
−=),,(1

(2
0)

Next, n2(j,k) and n3(j,k) are the number of tag interferers and the number of frequency
interferers per collision, respectively as calculated by

collisions

sinterferer tag
kjxn =),,(2

(2
1)

And similarly

collisions

sinterferer frequency 
kjxn =),,(3

(2
2)

The tag and frequency collision rates are n4(j,k) and n5(j,k), calculated by dividing over
the total number of grants

grants
ionstag collis

kjxn =),,(4
(2
3)

and

grants
collisionsfrequency

kjxn =),,(5

(2
4)

Finally, the number of rejections per request, is given by n6(j,k)

requests
rejections

kjxn =),,(6

(2
5)

Each part of the reward of the cost is multiplied by a constant sub-cost based on

their effect on the system.  An ordering relation between c1, c 2, c 3, c 4, c 5, c 6, should be



35

maintained where c 1 < c 2 < c 3 < c 4  < c 5 < c 6.  The sub-cost c1 can and should take on

negative values.  Additionally, c1 and c2 should be a value less than 1, based on the

maximum number of interferers.  Next, c 3, c 4, c 5, and c 6 should take on values greater

than 1.  It is important that the sub-costs relating the number of interferers are small

enough that they do not dominate the other parts of the equation.  This information is

designed to help the Q-learning agent infer more information about the interference

patterns in the system.

The values of each sub-cost used in the simulations was c 1 = -5, c 2 = +0.005, c 3

= +0.020, c 4  = +1, c  5 = +4 and c6 = +5.  The costs reflect the relative performance

degradation of each event.  Rejections and frequency collisions are the worst, with tag

collisions several factors better.

3.5.4 Next State

In the Frequency Assignment Problem, a transition from different states is caused by two

stochastic events, frequency assignments and frequency returns.  That is, the previously

defined state xt transitions to state xt+1 when a frequency is assigned or when it is returned

after use.  For the Reader Collision Problem, only the action of granting a resource

requests causes state transitions.  Even though a resource return may change the number

of available resources, this information is used only when reassigning resources.
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Chapter 4

HiQ Algorithm

In this section, we detail the HiQ algorithm for solving the Reader Collision Problem.

The algorithm combines a hierarchical structure with distributed local control for

allocating frequency and time resources to a network of readers.  This chapter details the

components in each tier of the hierarchy and their function in the system.

4.1 Algorithm Goals

The goals of the HiQ algorithm are twofold.  First, HiQ tries to allocate resources to

maximize the number of readers communicating at one time.  The second goal of HiQ is

to minimize the number of collisions these readers experience when communicating.

4.2 Distributed Control

Rather than using a purely centralized control structure, the HiQ algorithm uses a hybrid

control structure.  The task of assigning resources to nodes is distributed among various

controllers, each with local knowledge of the nodes it communicates with.  This use of

local control allows for greater scalability and fault tolerance because there isn t a single

point of failure, as in a purely centralized system.
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Given a system with a large number of nodes in a network and/or a large number

of available resources, the amount of stored information that is required to carry out the

Q-learning algorithm may prohibit the use of a single, centralized controller.  In large

systems with large sets of resources, the data required for Q-learning can grow to

unmanageable sizes, even with great computing power.  To address this, control in the

system is distributed hierarchically.

4.3 Hierarchy

The HiQ algorithm utilizes a hierarchical control structure with three basic tiers.  At the

lowest tier are RFID readers.  The readers communicate when they have been granted a

frequency and a time slot to do so.  Readers only have knowledge of the frequency and

timeslot they have been allocated.  Readers are not intelligent — they make requests at

some rate, and communicate only when they are provided the resources to do so.  They

are capable of detecting collisions with other readers by communicating with other

readers within its interrogation zone.  This information is also known at the tier above the

readers, the reader-level server (R-server) tier.  The reader tier consists of only a single

level, and the readers communicate directly with only one R-server.

R-servers are responsible for preventing collisions between readers that

communicate with it.  R-servers are able to accomplish this because they have knowledge

of the interference patterns for their readers.  This local constraint knowledge is given

and it allows an individual R-server to assign resources to its readers in such a way that

they do not interfere with each other s communication.  Each R-server is responsible for

at least one reader in a system.  All communication by readers in an R-server s
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jurisdiction is overseen by that R-server.  R-servers have only local knowledge resources

and are only able to allocate frequencies and time slots that it has been allocated.  Like

the reader tier, the R-server tier consists of a single level.

R-servers are allocated frequencies and time slots by the Q-learning servers, or Q-

servers.  An R-server can only allocate frequencies and time slots that have been

allocated to it by a Q-server.  Q-servers comprise the tier above R-servers.  Each R-server

communicates with exactly one Q-server.  Q-servers are the highest tier in the

fundamental hierarchy, and can be arranged hierarchically themselves.  Regardless of

how many Q-server tiers there are, there is always a single root Q-server.  The root Q -

Server has global knowledge of all frequency and time slot resources, and is able to

allocate them all.  By interacting with the servers below, each Q -server allocates

available frequencies and time slots to those servers.  Unlike R-servers, Q-servers have

no knowledge of constraints between individual readers.  This information is inferred

through interaction with the servers at the tier directly below.

4.4 Reader-level Servers

The sole responsibility of a reader-level server (R-server) is to allocate frequencies and

time slot resources to the reader(s) under its jurisdiction.  R-servers are designed to

ensure that resource assignments which cause reader collisions are not made.  R-servers

are allocated their resources from the Q-server tier directly above them in the hierarchy.

In a single Q-server structure, R-servers receive resources directly from the root Q-

servers.
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Within a single R-server s domain, an assignment scheme such that frequency

constraints are violated will never occur.  However, for the purposes of comparison with

the FAP algorithms, tag collisions are allowed because FAP problems have a single time

slot.

When an R-server has one or more resources allocated to it, it will attempt to

grant these resources to the reader(s) below it.  The R-server sequentially processes

requests from its reader(s) for a frequency and a time slot.  When an R-server responds to

a request, it checks its pool of allocated resources to see if there is anything available.  If

there is at least one frequency and timeslot available to the R-server, it will attempt to

grant a frequency and a timeslot to the requesting reader.  If the assignment can be made

without violating any constraints between that reader and the other readers in the R-

server s jurisdiction, a frequency and a time slot are granted.  If no legal assignment can

be made, the request is rejected or blocked and the next request is processed.

To maintain fairness within a network of readers, a priority queue is kept up to

date by the R-server.  This prevents readers that make frequent requests from greedily

getting all the grants, and it changes the order in which requests or processed.

4.5 Q-learning Servers

Q-learning servers (Q -servers) comprise the highest tier of the hierarchy in this

algorithm.  Q-servers allocate resources to the servers directly below them in the

hierarchy.  These are typically R-servers, but can also be other Q-servers.
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4.5.1 Resource Allocation

Q-servers make decisions as to which frequency and time resources to allocate based on

the Q-learning algorithm described in Chapter 3.  Each Q-server maintains a Q-table,

updating entries in the table as the Q-server interacts with the servers below.  The size of

the table is static; it is dependent on the number of nodes the Q-server controls, the total

number of frequencies and the total number of time slots.

Q-servers allocate resources based on the node that requests the resource and the

total number of resources the Q-server has available to allocate.  If the Q -server

determines that there is a resource to be allocated, the node which makes the request is

allocated the optimum resource as determined by the Q-learning mechanism with some

probability.  To avoid local optima which may be caused by purely deterministic

decisions, a Q-server may allocate a random resource to the node, rather than always

assign the optimum resource.

After a Q-server finishes responding to the requests made by the nodes it controls,

it waits for each node to respond with its communication patterns using the allocated

resource.  This is the information that the Q-server uses to calculate costs for the previous

resource assignment, and it includes the number of successful reads, the number of tag

and frequency collisions detected and the total number of frequency and tag interferers

detected.  The calculated costs are fed back into the Q-learning mechanism, and the

allocation process is repeated.
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4.5.2 Q-server Hierarchy

In the previous section, we mentioned that it is possible that a Q-server may control

another Q-server.  This is possible because the Q-server tier can be arranged

hierarchically.  The purpose of this hierarchy is to reduce the complexity of control for

the Q-servers.  In a system with a large number of nodes and/or a large number of

resources, the sheer size of a Q -table can prohibit the algorithm from achieving

satisfactory performance.  By reducing the number of servers that each Q-server is

responsible for, the control complexity is significantly reduced, as well as memory

requirements.

Given a system consisting of one thousand R-servers, the benefits of using

multiply-tiered Q-servers over a single Q-server tier can easily be seen. With one, singly-

rooted Q-server tier, one Q-server is responsible for all one thousand R-servers.  If the

total number of resources is large, the Q-table for this Q-server will significantly degrade

its performance.  However, if another tier of Q-servers is added between the root Q-

server and the R-servers, the memory requirements and control responsibilities for each

Q-server are significantly reduced.  With just ten additional Q-servers responsible for one

hundred R-servers each, the root Q-server s Q-table is reduced by two orders of

magnitude, while the size of the largest Q-table (found in each server in the second tier of

Q-servers) is reduced by one order of magnitude.
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Chapter 5

HiQ Algorithm Implementation

This chapter outlines the implementation of the three major components — Q-learning

servers (Q-servers), reader-level servers (R-servers) and readers — in the HiQ algorithm.

The functions of each component are described in detail, along with additional algorithms

that are used to augment their performance.

5.1 Implementation Overview

In a network of Q-servers, R-servers and readers, there will be exactly one tier of both the

R-servers and the readers.  The R-servers are directly responsible for assigning resources

to the readers while the Q-servers allocate resources to the R-servers to distribute

amongst the readers.

In addition to the functions performed by each component, algorithmic

enhancements at the Q-server and R-server tiers are also described.  First, a fair queuing

algorithm is implemented in all Q-servers and R-servers to prevent components in the tier

below them.  Second, randomization techniques are used in the Q-server to avoid locally

optimum solutions.
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5.2 Resources: Frequencies and Time Slots

In the implementation of HiQ, both time slots and frequencies are used as resources in the

system.  However, they are coupled resources in that both a frequency and a time slot

must be assigned for a reader to communicate.  To ensure that the system behaves

correctly, this fundamental requirement must be met.

The total number of time slots in the system is fixed.  Information about when

readers are allowed to communicate is propagated from the highest Q-server tier down to

the readers.  Regardless of which controller a reader communicates with, the readers

communicate using the same set of time slots.  If two completely detached readers that

received to two different resource grants allocating the same time slot (e.g., time slot 3)

communicate during that time slot, their communication starts and ends at the same time.

This allows the Q-servers to effectively distribute resources.

5.3 Readers

5.3.1 Overview

The readers are the fundamental component in the network.  They are simple devices

whose main purpose is to communicate with tags in their interrogation zones.  The have

the least amount of intelligence in the network and are not designed to resolve collision

issues.  In this algorithm, readers which may experience collisions — those with

overlapping interrogation zones (read regions) — have the ability to communicate with

each other.  This allows readers to figure out whether they are colliding with neighboring

readers.  The number of collisions a reader may experience is stored by the reader.
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To perform a read, a reader needs a frequency and a time slot.  These are granted

to the readers from the next tier up in the hierarchy.  When a reader is granted a

frequency and a time slot, it is allowed to search for tags in their interrogation zone, using

their allocated frequency during that time slot.

5.3.2 Reader Collisions

One of a reader s main responsibilities is to detect collisions.  This includes both

frequency and tag collisions.  In order to do so, readers will communicate with other

readers with overlapping interrogation zones when there is a read occurring.  Let s say

Readers B and C are within the interrogation zone of Reader A (Figure 5-1).  When A is

granted a frequency and a time slot, it begins reading.  During this time, it also pings its

neighbors (B and C) to see if they are reading.  Once Readers B and C receive the ping,

they respond with whether or not they are reading at the time, and if they are, what

frequency they are using.

A B

C

Figure 5-1.  Three reader configuration.
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The original reader (Reader A in this case) is responsible for the collisions

detection processing.  When Reader A receives the ping responses from Readers B and C,

it checks to see if there are collisions, and if so, what type of collisions.  If two readers

are communicating using the same time slot, there will be a tag collision.  If these readers

are also using the same frequency, the reader will also experience a frequency collision.

A tag collision can occur without a frequency collision while frequency collisions always

indicate tag collisions as well.

Sometimes, a communicating reader will collide with multiple readers.  The

reader counts this as a single collision so that collisions are not counted multiple times.  If

all the readers in the three-reader network are reading at the same time using the same

frequency, there should be a total of six collisions — three frequency collisions and three

tag collisions.  If each reader were to count all the collisions it experiences, there would

be twelve collisions, twice as many as the correct number.  In reality, we only want to

know whether or not a reader experienced a tag collision and/or a frequency collision.

Each reader can experience at most one of each.

However, the information about how many other readers a communicating reader

collides with is useful information.  Readers that have a high number of interferers per

collision are more generally constrained.  This information is stored as the number of tag

and frequency interferers and is used in the Q-learning algorithm as outlined in Chapter

3.

When the reader is done communicating, it sends a message back to the reader-

level server with information about any collisions that may have occurred during its read.
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If there are no collisions, then the reader does not send a message back to its reader-level

server.  This saves communication and processing bandwidth because there are fewer

messages to be handled.

While the readers are able to detect collisions, they do not have the intelligence to

avoid collisions.  The tiers above the reader in the hierarchy are responsible for collision

avoidance.  One of the design goals is to keep the readers as simple as possible, reducing

the computational and communication bandwidth used by readers.

5.3.3 Read Rates

There are two possible states that a reader can be in.  A reader is either reading, or it is

not reading.  The rate at which a reader makes requests can vary, creating different traffic

patterns.  A reader which makes requests 100% of the time means that when it is pinged

by an R-server, it will always respond with a request for a frequency and time slot.  When

readers are always making requests, the Reader Collision Problem most closely

resembles the Frequency Assignment Problem, where the nodes communicate every

chance they get.

Alternatively, readers may requests a frequency and a time slot with some

probability p.  This is more indicative of readers in an RFID network.  The distribution

for the probability a reader will communicate can be modeled with both uniform and

exponential distributions.
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5.4 Reader-level Servers

5.4.1 Overview

Directly above the readers are the reader-level servers (R-servers).  R-servers are

responsible for managing reader communication and relaying state information to the Q-

server servers for processing.  R-servers have more intelligence than the readers so they

can better allocate time and frequency resources.  Each R-server is responsible for a set of

readers in the network.  The total number of R-servers in the network as well as the

number of readers that each R-server is responsible for, varies from 1 to n.

5.4.2 Collisions

In contrast to readers, R-servers are responsible for collisions avoidance for the readers

within its control.  An R-server knows the constraints for the readers under its control.

Given the previous example of Readers A, B and C.  Let s say there is one R-server A,

which is responsible for the entire network of three readers.  R-server A knows that in

terms of interrogation zones and possible interference, the three readers are fully

connected, so each can collide with the other.  When the readers make a request to read,

the R-server does not allocate resources to the readers that would result in a frequency

collision.  Additionally, the R-server may avoid tag collisions as well in allocating time

slots, but at the very least, R-servers allocate resources in such a way as to guarantee that

there will be no frequency collisions within its network of readers.

It is important to note that while the R-servers guarantee no collisions within its

network of readers, collisions can still occur!   The only scenario in which no collisions

are guaranteed is with one R-server which is responsible for an entire network, as in the
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previous example.  This is due to border constraint violations that an R-server is not

aware of.  Given the same reader network of three readers A, B and C, let us now have a

network with three R-servers (R-servers 1, 2 and 3), with each R-server responsible for

one reader, Readers A, B and C respectively.  In this case, while each R-server

guarantees no collisions within its network of readers, there will still be collisions if

Readers A, B and C use the same frequencies and read at the same time.  The R-servers

cannot directly avoid this situation.  Fortunately, the Q-learning servers will be able to

solve this problem, as will be discussed in the description of the Q-learning servers.

BA

C

RS-1 RS-2

RS-3

Figure 5-2.  Three reader, three R-server configuration.

5.4.3 Fairness

Due to limited resources in both time and frequency, it is very likely that an R-server will

not be able to service all requests by its readers during a given round.  The problem that
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arises from this is that there will be competition for the limited resources, creating a

possible fairness issue.  It is likely that those readers which make requests most often or

those readers which are closest to the R-server may receive a majority of the resources,

resulting in possible starvation of the readers which do not request as often or are further

away.

To address the problem, a simple fairness algorithm is implemented in the R-

server tier to insure that every reader gets to read during a specified period of time.  Each

R-server maintains a priority queue for the readers within its jurisdiction.  This queue is

first initialized randomly.  As a reader s requests are granted, it moves to the end of the

priority queue.  This by itself would not effectively address the problem.  This is because

in all likelihood, there will be variance in read rates, and potential problems with more

favorable initial queue priority.  For example, let s say that the queue for Readers A, B,

and C is initialized to be {B, C, A}.  If all three readers happen to make read requests

every round, or if they happen to make requests during the same round, the B will always

have priority.  To prevent this from happening, the queue is periodically repopulated

randomly.

Using the same network of three readers, here s a simple example to that

illustrates how the algorithm works.  Assume that R-server 1 is control of all three

readers and it only has one frequency with one time slot to read.  In terms of request

rates, Reader A makes a request every round, Reader B makes a request roughly every 10

rounds, and Reader C makes a request roughly every 15 rounds.  After five rounds, the

priority queue will be {C, B, A).
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In the next round, Reader A is again the only reader making a request.  While C

and B have priority over A, they do not make requests, so the resources are again

allocated to Reader A.  In round 10, Reader B will be given the frequency and the time

slot.  The next round, the priority queue will become {C, B, A}.  In round 16, the queue

is {B, A, C}.

In the next four rounds, there is a significant traffic increase, so all three readers

make requests every round.  In round 20, the queue is randomly repopulated to {C, A,

B}.

While the queue normally proceeds in a deterministic manner, the periodic

randomizations ensure fairness among those with similar traffic loads.

5.5 Q-learning Servers

5.5.1 Overview

Q-learning servers comprise the highest tier in the network hierarchy.  Unlike the reader

and R-server tiers, the Q-server level can also be arranged hierarchically.  The highest tier

of Q-servers is the root tier.  The structure of the network is such that there can be single

to multiple root Q-servers.  Q-servers have the most intelligence and using the Q-learning

algorithm, are designed to optimize time and frequency resources to the tiers directly

below.

5.5.2 Resource Allocation

Each Q-server has global knowledge of the resources available in the network.  This is to

insure that every Q-server assigns the same time slots throughout the system.  This
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simplifies the tracking of when readers are communicating and makes the allocation of

time slots more organized and manageable.

In terms of available resources, only Q-servers at the root Q-server tier can

allocate all the resources.  If there are multiple Q-server tiers, the Q-servers below the

root in the hierarchy must wait to be allocated resources before they can allocate these

same resources to the tiers below them.

To simplify communication in the system, resource allocation is done in rounds.

The length of a round is based on the tier in the hierarchy.  The root Q-server tier has the

longest round, and each tier below it has progressively shorter rounds.  This allows each

tier to accumulate state cost information over time.

At the start of each round, a Q-server pings all the servers below it (Q or R-

servers).  This ping is propagated down to the reader tier, where readers begin making

requests for frequencies and time slots.  Because none of the R-servers above the readers

have resources allocated to them yet, the first round is essentially a throwaway round.

After the initial round, the root Q-server begins allocating resources to the servers

below.  The fairness queuing algorithm used at the R-server tier is employed at the Q-

server tier as well.  When a Q-server receives a request for a resource, it can execute one

of three actions.  It can

1) ADD a resource

2) SWAP resources

3) REMOVE a resource

The Q-server determines which action to take based on predefined thresholds for

frequency and tag collision rates, as well as rejection rates.  Resources are allocated or
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taken away from servers based on whether their performance levels are above or below

the thresholds.  If a server making a request is experiencing a high level of rejections, the

Q-server will most likely add a resource.  If a server is performing well, a Q-server may

remove a resource from that server.  Removes are used to minimize the number of

resources used in the system.  Alternatively, a Q-server may choose to SWAP resources.

If a server is not rejecting many requests and has fluctuating collision levels near the

thresholds, then the Q-server will likely perform resource swaps to optimize the server s

performance.  These three actions are done probabilistically, based on performance.

5.5.3 States

To aid the Q-learning process, all servers (Q-servers and R-servers) keep track of their

states over time.  These states consist of vital information about the performance of the

tier below in the hierarchy.  Some of the information contained in these states is used to

determine the cost of an action taken by the Q-learning agent.  For scalability, this

recorded information is the same for both R-server and Q-servers, the only thing that

changes is the scope of the information because each tier in the hierarchy is redundant.
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The following is a table of the information fields contained in each server state:

Field Description

Server Identification
Number

The unique number of the server which identifies it to the rest of the
network for communication.

Requests The number of requests that have been made in the tiers below.

Grants The number of granted resource requests in the tiers below.

Rejections The number of rejected requests in the tiers below.

Tag Collisions The the number of tag collisions experienced in the tiers below.

Frequency Collisions The number of frequency collisions experienced in the tier below.

Tag Interferers The number of tag collision instances experienced in the tiers below.

Frequency Interferers The number of frequency collision instances experienced in the tiers
below.

TTL (time to live) The amount of time a reader has to read when it is granted a frequency
and a time slot.  This enables global uniformity of time slots.

Time Slots The list of the time slots that have been allocated to server.

Frequencies The list of frequencies that have been allocated to a server.

Table 5-1.  Server state information.

After each round, the servers update all the categories of the state.  After a certain

number of rounds, specified by the server directly above it, the server sends a state update

to the server directly above it with all the data that it has accumulated over the rounds.

The server then waits a predetermined amount of time for a response from the higher

server, indicating whether or not the server will be allocated new resources.  During this

time, the server adds the state information to its history, and resets its current state.
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5.5.4 Minimizing the Cost Function

The cost function is essential to the success of the Q-learning agent.  The cost function

used is the one described in Chapter 3 and is the same at each tier in the Q-learning

hierarchy.  However, because of the varying control scopes of each Q-server, the input

data will be different.

As outlined previously in the Q-learning algorithm, Q-servers attempt to allocate

resources to the tiers below in such a way as to minimize the cost function.  After the

values of the Q-table have been updated using the discounted cost from the latest state

information, the Q-server tries to determine what the optimum actions are.  The Q-server

follows a control policy which seeks to assign actions with the minimal Q-values.

However, to avoid converging to local optima through greedy resource assignment, the

Q-servers employ some randomness to determine whether to execute the optimum action.

The likelihood of staying in the prior state or transitioning to the next state is

determined by an exploration rate which is dependent on the difference between the value

of the previous action and the value of the minimum action.  First we define ε

min

min )(

Q

QQprev +
=ε (2

6)

where ε is the relative value of the previous Q-value and the minimum Q-value.
Additionally, we define a change rate ∆r

nodesoftotal

madechangesof
r

#

#=∆ (2
7)

This change rate determines the likelihood that a change in state will be made, based on

ho many changes have already been made in a round.  The probability that the Q-server
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will assign the previous action or move to a new state is given by an exploration rate β,

given by the weighted sums of ε and ∆r

])1[(])[( rnn ∆∗−+∗= εβ (2
8)

where n is between zero and one and a collision rate λ.  λ is defined as

collisionstotal

iforcollisionsof#=λ (2
9)

where i  is the node number and the total collisions represent those in the tiers below the

Q-server.  The collision rate is discounted by a change factor f, which further determines

the likelihood of a state change.  The Q-server generates two random numbers between

zero and one.  If the first is less than the exploration rate and the second is less than the

collision rate, the Q-server chooses the action with the minimum Q-value.  Otherwise, it

repeats the previous action.  By following a policy that does not always choose the

minimum Q-value, the algorithm is less likely to converge to local optima.

Additionally, if the minimum action is selected, it is not necessarily performed.

With some probability p based on the weighted collision rate f * λ , the Q-server will

perform a random action to further explore the state space.  It is important to note that

this weighted collision rate is decayed over time in a similar manner as the learning rate

α.
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Chapter 6

Simulation Results

To evaluate the performance of the HiQ algorithm, a series of experimental simulations

were run in a simulated reader network.  By varying various parameters including the

size of the network, the hierarchical granularity, the availability of resources and the

traffic density, the simulations demonstrated the versatility and adaptability of the HiQ

algorithm.  We present the results of six simulation sets and discuss HiQ algorithm s

performance in each of them.

6.1 Overview

The HiQ simulations were developed in Java using the SimJava [11] simulation package.

We present six sets of experimental simulations that illustrate HiQ s performance with

for a range of parameter values. The first five sets of experiments were performed on

variations of a simple square grid topology.  The final set of experiments was simulated

on a FAP example with real-world interference constraints.

6.1.1 Square Grid Topology

As previously mentioned, we can model a reader network as a connected graph.  For the

experiments, we simulate the performance of HiQ on a network topology based on a

fully-connected square graph, shown in figure 6-1.
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Figure 6-1.  Simple 4-coloring of a square grid topology.

This graph is the basic building block for larger square grids, which can

effectively model a system of readers.  Each vertex in the graph represents a reader while

each edge connecting these vertices represents interference patterns.  In a network of

readers, neighboring readers who may collide with each other need to use different

frequencies and/or time slots.  The allocation of frequencies and time slots to readers is

analogous to coloring each vertex in a graph.  If two adjacent vertices do not share the

same color, the color scheme satisfies the edge constraints.  Similarly, if two readers are

communicating using different frequencies or time slots, they will not collide.

In the square grid topology, the minimum number of colors required to satisfy the

edge constraints is four.  The topology is useful because it is easy replicated and even the

largest square grids can still be 4-colored.  The simplicity and scalability of this topology

make it well-suited for modeling reader networks.  We now present the results of the HiQ

simulations.

6.2 Experimental Results and Discussion

The goal of the first set of experiments was to test the scalability of the HiQ algorithm.

The next two sets of experiments tested HiQ s performance with different R-server and
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Q-server granularities and hierarchies respectively.  The last two sets of simulations

performed on the square grid simulated HiQ s performance given various resource

availabilities and the algorithm s ability to adapt to different traffic patterns from the

readers.  The final experiment was performed on a topology taken from a real-world

instance of the Frequency Assignment Problem.

For each experiment, we present relevant results and regarding tag collision rates,

frequency collision rates, blocking rates (rate of rejected requests) and the number of

distinct resources HiQ used and discuss their significance.  The tag and frequency

collision rates are found by simply dividing the total number of tag and frequency

collisions, respectively, by the total number of resource grants.  The blocking rate is

found by taking the total number of rejections and dividing it by the total number of

requests.  The number of resources used is the number of frequency and time slot pairs

that HiQ used by the end of the simulation.  Each pair is the combination of one

frequency and one time slot.  For example, in a system with two frequencies and three

time slots, there are a total of six pairs translating to six distinct resources.

The simulations of 10000 iterations were run.  With the exception of the

experiments testing traffic distributions, readers make communication requests 100% of

the time.  That is, when a reader is pinged by its R-server, it will always request a

frequency and a time slot.

6.2.1 Scalability

The first aspect of HiQ that was tested was its ability to perform in both small and large

networks.  Using the square grid topology, the performance of HiQ in networks
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consisting of 9, 16, 25, 36 and 49 readers was simulated.  Each reader is controlled by

one R-server, and there is a single Q -server controlling the R-servers.  In each

experiment, there are a total of four frequencies and four time slots available for

allocation.  The tag collision rate, frequency collision rate and blocking rate over time are

presented in Figures 6-2 through 6-4.
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Figure 6-2.  Tag collision rates for varying number of readers.
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R RS RS/R QS QS T RS/QS RRR TS Freq Reso
urces

9 9 1 1 1 9 100 4 4 7
16 16 1 1 1 16 100 4 4 10
25 25 1 1 1 25 100 4 4 12
36 36 1 1 1 36 100 4 4 14
49 49 1 1 1 49 100 4 4 15

Table 6-1.  Number of resources used by HiQ for varying number of readers.

Key:
Experiment: 1 = scalability, 2 = R-server granularity, 3 = Q-server hierarchy, 4 =
resource availability, 5 = traffic distributions; R = # of readers, RS = # of R-servers, R/RS
= # of readers per R-server, QS = # of Q-servers, QS-T = # of Q-server tiers, RS/Q = # of
R-servers per Q-server, RRR = reader request rate, TS = # of available time slots, Freq =
# of available frequencies, Resources = # of distinct time slots & frequencies used

The simulation results indicate that given abundant resources, HiQ s performance

scales well with the size of the network.  The frequency collision rates and the blocking

rates in the largest network, with 49 readers, were similar to those of in the smallest

network, with just nine readers.  In fact, the larger networks had lower frequency and

blocking rates than their smaller counterparts.  Looking at Table ?Table??, it is clear why,

since HiQ only allocates a larger number of resources when it is needed.  HiQ allocates

only seven resources in the nine reader network while in the 49 reader network, it

allocates fifteen.  This is likely due to the increased exploration of resource availabilities

in the larger network of readers.  Whereas the smaller networks converge relatively

smoothly and quickly, the larger networks undergo a slightly erratic and slower

convergence because the Q-server must allocate many more resources.

From this first set of experiments, the tradeoff between request blocks, frequency

collisions and tag collisions can already be seen.  As performance measures, we have

placed the greatest cost on the frequency and rejection collisions because successful
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reader communication is highly unlikely and not possible, respectively.  When a reader

experiences a tag collision, it cannot determine whether or not the collision has actually

affected its communication with tags in its interrogation zone.  Therefore, we constructed

an ordered cost structure where the relative weights of frequency collisions and request

blocks are the most costly occurrences, with rejections slightly worse than frequency

collisions.  Consequently, HiQ allows for significantly greater rates of tag collisions,

since they are not weighted as heavily in the cost structure.

6.2.2 R-server Granularity

The second set of simulations experiments with different R-server configurations.  The

simulations were run on a square grid consisting of 25 readers, with each R-server

controlling as few as one reader and as many as nine readers.  This experiment tests the

effectiveness of the simplistic greedy algorithm run at the R-server tier, and how Q-

learning handles different granularities of R-servers below.  As in the first set of

simulations, there are four frequencies and four time slots available for allocation.  The

results of these experiments are presented in Figures 6-5 to 6-7.

It is important to note that when there is one R-server per reader, then an R-server

should not be allocated more than one resource.  If a certain assignment results in a high

cost, the resource should be swapped or removed by the Q-servers.  This is because R-

servers assign frequencies and time slots in a simple, deterministic manner in, leaving

them poorly equipped for choosing an optimum frequency and time slot out of a set of

available frequencies and time slots.  When an R-server is responsible for more than one

reader, then the Q-server gives the R-server more resources by doing periodic adds, based
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on the performance of the readers that R-server controls.  A Q-server limits the number of

resources it allocates such that the learning process and optimization continues.  This is to

prevent R-servers from holding on to more resources than it uses.
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Figure 6-6.  Frequency collision rates for varying number of R-servers.
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R RS RS/R QS QS T RS/
QS RRR TS Freq

Reso
urce

s
25 25 1 1 1 25 100 4 4 12
25 12 2 1 1 12 100 4 4 8
25 8 3 1 1 8 100 4 4 6
25 5 5 1 1 5 100 4 4 4
25 3 8 1 1 3 100 4 4 3

Table 6-2.  Number of resource used by HiQ for varying number of R-servers

Although the number of time and frequency resources available for HiQ allocate is still

abundant, a system with a great deal of R-server control — where a single R-server

controls many readers — may underutilize these resources.  While greater R-server control

limits the number of frequency collisions, less information is passed back to the Q-server

about how well the tiers below it are performing.  The allocation policies the learning

agent tries to follow are based on the performance feedback it receives from the R-

servers.  Since these policies are determined based on what allocation scheme the Q-

server s learning agent has previously allocated, the performance information must

correlate these assignments.  With greater R-server control, many of these correlations

are lost because the decisions the learning agent makes are not synchronized with the

actual state of the network.  Fundamentally, the learning agent is exploring the state space

based on severely incomplete information, leaving the R-server to act as the main

decision maker in terms of resource allocation.  Because the R-server is very simple — its

only goal is to prevent frequency collisions — the complexity and learning of the HiQ

algorithm is reduced to the capabilities of the R-servers.

The underutilization of resources with fewer R-servers results in poor

performance in terms of blocking rates.  In the 3 R-server network only three resources

are allocated while in the 25 R-server network, twelve are allocated.  With fewer R-
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servers and resources, the tag and frequency collision rates are lower.  However, the

higher blocking rates for these configurations outweigh the gains in collision avoidance.

For a network with one Q-server and 3 R-servers, with each R-server controlling eight or

nine readers, the blocking rate is close to 90%, with less than 2% frequency collisions

while the 25 R-server network has a less than 2% blocking rate with roughly 10%

frequency collisions.  This shows that tradeoff between blocking rate and collision rate

with fewer R-servers is significantly greater than that same tradeoff with more R-servers.

6.2.3 Q-server Hierarchy

The simulations run to test the Q-server are similar to those run for the R-servers.  Here,

we experiment with multiple Q-servers, as well as multiple Q-server tiers.  The

previously mentioned guidelines for adds, swaps, and removes become more important

when multiple Q-servers and Q-server tiers are present.  Which action the algorithm

chooses to perform is based on some predefined probability, which is decayed over time

so that the system can converge.

Experiments were performed with two Q-server tiers.  At the highest tier Q-server

tier, there is a single Q-server, the root Q-server.  The number of Q-servers in the tier

between the root and the R-server tier was varied between three and twelve Q-servers in a

network of 25 readers and 25 corresponding R-servers.  Again, there are four frequencies

and four time slots.  The results are shown in Figures 6-8 to 6-10.
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Figure 6-10.  Blocking rates for two Q-server tiers and varying number of Q-servers.

R RS RS/R QS QS T RS/
QS RRR TS Freq

Reso
urce

s
25 25 1 3 2 8 100 4 4 3
25 25 1 4 2 6 100 4 4 4
25 25 1 5 2 5 100 4 4 5
25 25 1 8 2 3 100 4 4 6
25 25 1 12 2 2 100 4 4 8

Table 6-3.  Number of resources used by HiQ for varying number of Q-servers.

While the blocking rate of the hierarchically structured Q-servers converges to near zero-

probability, both the frequency and tag collision rates converge closer to one.  This is

most likely caused by the brief length of the initial exploration period.

In each of the experiments, there is an unstable period of two to four thousand

iterations where HiQ extensively searches the state space.  Over time, the scope of this
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search is narrowed, and ultimately converges to a near-static assignment.  With multiple

Q-server tiers, the relative length of this exploration period could decrease by an order of

magnitude for each additional tier of Q-servers.  In other words, the period of non-

deterministic exploration of the state space to populate the Q-tables is cut short.  The root

Q-server experiences the worst performance hit as a result of this shorter exploration

period, causing the system to converge to assignments with high frequency and tag

collision rates.

The number of resources used increases with the total number of Q-servers.  This

is similar to the behavior of the R-servers in the second experiment.  However, the

benefits of having more Q-servers is a lower blocking rate while the benefit of having

more R-servers is lower frequency and tag collision rates.

6.2.4 Resource Availability

The fourth parameter that was changed was the number of available resources in the

network.  With a nine reader square grid, various combinations of available frequencies

and time slots were tested.  The results of these simulations are shown in Figures 6-11 to

6-20.
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Figure 6-11.  Tag collision rates for one frequency and varying number of time slots.

The above graph indicates how well the HiQ allocates time slots when there are a small,

fixed number of frequencies.  In the case of one frequency, the algorithm performs

significantly better with an abundance of time slots, rather than a minimal number of time

slots.  Comparing the tag collision rate with one fixed frequency with the frequency

collision rate of a system with one fixed time slot (Figure 6-14), we see that the HiQ

algorithm more effectively allocates frequencies than time slots.  This again goes back to

the preference of tag collisions over frequency collisions and request blocks.
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Figure 6-12.  Blocking rates for one frequency and varying number of time slots.
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Figure 6-13.  Frequency collision rates: one time slot, varying number of frequencies.
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Figure 6-14.  Blocking rates for one time slot and varying number of frequencies.
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Figure 6-15.  Tag collision rates for two frequencies and varying number of time slots.
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Figure 6-16.  Frequency collision rates for two frequencies and varying number of time
slots.
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Figure 6-17.  Blocking rates for two frequencies and varying number of time slots.
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Figure 6-18.  Tag collision rates for two time slots and varying number of frequencies.
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Figure 6-19.  Frequency collision rates for two time slots and varying number of
frequencies.
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Figure 6-20.  Blocking rates for two time slots and varying number of frequencies.

R RS RS/R QS QS T RS/
QS RRR TS Freq

Reso
urce

s
9 9 1 1 1 9 100 4 1 4
9 9 1 1 1 9 100 5 1 4
9 9 1 1 1 9 100 6 1 4
9 9 1 1 1 9 100 8 1 6
9 9 1 1 1 9 100 12 1 7
9 9 1 1 1 9 100 1 4 4
9 9 1 1 1 9 100 1 5 4
9 9 1 1 1 9 100 1 6 5
9 9 1 1 1 9 100 1 8 5
9 9 1 1 1 9 100 1 12 7
9 9 1 1 1 9 100 2 2 4
9 9 1 1 1 9 100 4 2 5
9 9 1 1 1 9 100 6 2 6
9 9 1 1 1 9 100 8 2 8
9 9 1 1 1 9 100 12 2 8
9 9 1 1 1 9 100 2 4 7
9 9 1 1 1 9 100 2 6 7
9 9 1 1 1 9 100 2 8 7
9 9 1 1 1 9 100 2 12 8
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Table 6-4.  Number of resources used by HiQ for varying number or resources.

By fixing either the number of frequencies or the number of time slots, the performance

of HiQ when there are abundant time and frequency resources, respectively, can be

measured.  When the total number of resources was greater than minimum resource

number of four, the system performed significantly better in almost all cases because

there was greater resource usage.

In all the experiments, HiQ s ability to allocate frequencies more effectively than

time slots can be seen.  When the number of total resources is the same, configurations

with fixed frequencies always performed better than the same configurations with fixed

time slots in terms of frequency collision and blocking rates.  However, the tradeoff for

this increased performance can be seen in the tag collisions.  HiQ prefers frequencies

over time slots, and only allocates more time slots when it is forced to because of high

frequency collision rates.

6.2.5 Traffic Distributions

The final experiment using the square grid was a sixteen reader network.  This simulates

the HiQ algorithms ability to learn when it may not receive feedback from the system

100% of the time.  RFID readers typically do not transmit 100% of the time, so it is

important that an algorithm for the Reader Collision Problem can handle different and

varying reader request rates which result in sparse to heavy traffic loads on the system.

For this experiment, there is again one Q-server controller sixteen R-server, which in turn
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control each reader.  Four frequencies and four time slots are available for allocation.

The results of this set of experiments are presented in Figures 6-21 to 6-23.
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Figure 6-21.  Tag collision rates for varying reader request rates.
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Figure 6-22.  Frequency collision rates for varying reader request rates.
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Figure 6-23.  Blocking rates for varying reader request rates.
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R RS RS/R QS QS T RS/
QS RRR TS Freq

Reso
urce

s
16 16 1 1 1 16 100 4 4 10
16 16 1 1 1 16 80 4 4 10
16 16 1 1 1 16 60 4 4 10
16 16 1 1 1 16 40 4 4 10
16 16 1 1 1 16 20 4 4 11

Table 6-5.  Number of resources used by HiQ for varying reader request rates.

From the experiments conducted with varying reader request traffic, HiQ performs better

in terms of frequency collisions with lower traffic levels.  However, in terms of blocking

and tag collision rates, the higher traffic levels yielded better performance.  This is likely

due to the sparse feedback that the Q-servers receive during the initial learning period

from networks of readers with more infrequent transmissions.  Regardless of the read

request rate, HiQ is able to allocate resources at levels consistently at or below 12%

collision rates.

6.2.6 FAP Example

A final set of simulation was run on a large, real-world example of the Frequency

Assignment Problem created by a research group at the Delft Institute of Technology and

obtained from the CELAR (Centre d’Electronique de l’Armement) [18].  The specific

instance used here is the eighth instance out of a set of eleven.  In this example, there

were 916 radio links, which we replaced with readers.  There were over 5500 constraints

in the system and a total of 48 frequencies available.  However, each of the frequencies

was broken up into smaller sets of frequency domains, so not every link could use every

channel.
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The HiQ configuration for solving the FAP problem was one Q-server with ten R-servers.

There is only one time slot, as is standard for FAP.  The results are shown in Figures 6-24

to 6-26.
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Figure 6-24.  Tag collision rates, FAP example.
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Figure 6-25.  Frequency collision rates, FAP example.
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Figure 6-26.  Blocking rates, FAP example.
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R RS RS/R QS QS T RS/
QS RRR TS Freq

Reso
urce
s

916 10 91 1 1 10 100 1 48 48

Table 6-6.  Number of resources used by HiQ for FAP example.

HiQ s did not perform well on the large FAP example, largely due to the lack of

R-servers.  Unfortunately, memory constraints due to the lookup table structure for

storing Q-values did not allow for simulations of one Q-server and 916 R-servers.  This

would have fully tested HiQ s learning algorithm on a large data set.  However, from our

earlier success in the scaling experiments, we believe that if an alternate method of

storing Q-values was used and memory requirements met, HiQ would perform well on

large examples.

6.3 Results and Discussion Summary

After many rounds of simulations, the HiQ algorithm performed very well in several key

areas.  In almost all sets of experiments, the blocking rate of requests was extremely low.

For the most part, HiQ was also able to prevent a high number of frequency collisions

from occurring.  There is a tradeoff between having low blocking rates and low

frequency collisions rates resulting in high tag collision rates.  Since the effects of a

frequency collision are very similar to a request rejection (both prevent readers from

communicating properly) — the two quantities are weighted closely in the cost function.

The rough cost weightings of 40% for frequency collisions, 50% for rejections and only

10% for tag collisions, HiQ tends to ignore tag collisions if it means reduced frequency

collisions and/or rejections.
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The HiQ algorithm can effectively minimize the effects of the Reader Collision

Problem when there are a moderate to large number of available frequencies.  Depending

on the constraints and performance criterion of a network, HiQ can be configured in

many ways to address these constraints, and maximize performance.
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Chapter 7

Conclusion and Future Research

In this thesis, I have presented HiQ, an online algorithm based on Q-learning to solve the

Reader Collision Problem.  HiQ combines a hierarchical structure with local control of

readers to dynamically handle the potentially large and highly constrained environment

of RFID systems.  The algorithm is capable of effectively assigning time and frequency

resources to readers without global knowledge of their constraints by measuring the

performance of past assignments.

HiQ is also highly adaptable.  By changing the implementation structure and

configuration, the information passed up the hierarchy can be processed for optimum

resource allocation.  The algorithm allows for multiply-tiered Q-server hierarchies,

providing scalability for larger networks.

HiQ allows for maximum reader request success while effectively avoiding

frequency collisions and to a lesser extent, tag collisions.  The algorithm is able to

achieve high performance rates through a combination of effective learning and

randomization techniques to avoid locally optimal solutions.

While the HiQ algorithm can perform well in systems which allow for high

amounts of R-server redundancy and with an abundance of resources to allocate, there is

a great deal of improvement that can still be achieved.
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One of the glaring shortcomings of HiQ is its inability to minimize tag collisions.

Because of the greater sub-cost weighting in the Q-learning formulation, HiQ prefers

resource allocations that avoid rejections and frequency collisions to those that avoid tag

collisions.  HiQ s greater tolerance of tag collisions allows for high tag collision rates

could prevent the satisfactory operation of a reader network.  Raising the thresholds for

allowable tag collision rates and placing more weight on the tag collision sub-cost would

reduce the number of tag collisions.

Additionally, HiQ could benefit from a prolonged exploration period.  In this way

HiQ, could make decisions based on a longer history, avoiding convergence to a sub-

optimum solution.  By exploring more of the state space, the Q-servers have a greater

likelihood of the optimum solution.  Alternatively, more information could be passed

along to the Q-servers, providing for a more detailed history rather than a longer history.

Finally, a truly distributed implementation of HiQ would be advantageous for use

in RFID systems.  If the computational complexity of the Q-learning could be reduced

such that readers themselves could perform the same functions as the R-servers and Q-

servers, the benefits could be enormous.

This thesis has provided the HiQ algorithm for solving the Reader Collision

Problem, a successful implementation of the HiQ and experimental analysis of the

performance of HiQ.  The results of the simulations have shown that the techniques used

by HiQ are effective for collision avoidance in RFID networks.
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