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Abstract 
 
RFID tags have severe constraints in computing power and hence offer particular challenges 
in the provision of e-Security. Whatever is chosen to provide security in an RFID tag should 
have low computational overhead. New approaches, differing from the traditional 
cryptosystems based on RSA, Diffie-Hellman, et al. are required. The use of one time codes 
is particularly appropriate as they guarantee perfect security and offer simple 
implementation. Research, experimentation, and field deployment in RFID has been done 
using different types of algorithms including bit shift, xor operations, pseudorandom bit 
generators including linear feedback shift registers (LFSR). 

There are many different types of pseudorandom bit generators. Some use RSA, or discrete 
logarithm like arithmetic, but use the last bit of the generated sequence as the random bit. 
These are infeasible in RFID and other lightweight devices due to high computational loads 
arising from the complex arithmetic operations. Another approach to the generation of 
random sequences is to use a combination of LFSRs. These are used in portable devices 
such as the GSM mobile phones. They have lightweight computational loads, but are 
susceptible to attacks. Of the many ingenuous combinations of LFSRs, the Shrinking 
Generator, designed in 1993, seems to have withstood the challenges of attacks if the 
polynomial connection structure and the internal seeds are kept secret. 

1. Introduction 
There has been much research in bit stream pseudo random number generators (PRNG) to 
achieve near One-Time Codes [8]. This is to enable secure keystreams to encrypt 
messages. The message is encrypted by bit xor’ing with the keystream. The receiver then 
decrypts via a reverse xor’ing of the same keystream. Shannon had shown that the only 
codes which provided perfect secrecy were One-Time Codes [8,14,22,24]. Such codes are 
often generated in complex apparatus from galactic or quasar noise, or some thermal or 
electronic noise. To eliminate such complexity, research has been directed towards obtaining 
pseudo-random numbers or bit streams which exhibit near one-time codes behaviour. This 
makes breaking-in difficult for an intruder, contrasting with the security provided in GSM 
mobiles that are susceptible to attacks [2].  There are many candidate bit generators. Of 
these the Shrinking Generator, a very simple system based on 2 LFSR’s, has some excellent 
properties for use as a lightweight secure key stream source, and thus far withstood attacks if 
the tap polynomials and the initial seeds are kept secret (or treated as private keys) [3,17]. 

1.1 Why Bit Oriented Generators 

Byte or block oriented cryptographic methods, or pseudo random number generators such as 
those using the RSA, Diffie-Hellman, or Elliptic Curve Cryptography (ECC) methods [13,14] 
have a high computational complexity. They are not suitable in contexts which provide only 
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the limited computational powers in lightweight devices, including RFID tags. Yao, Blum, and 
other researchers [14] have presented research in the area of pseudo-random bit generators 
(PRBG). The most used choice is based on LFSRs. Menezes et al [22] give the definition of 
a random bit generator as a device or an algorithm whose output is a sequence of bits 
(binary digits), which are statistically independent and unbiased. Further, Menezes et al [22] 
define a PRBG as a deterministic algorithm, which taking an input of a pure random binary 
sequence of some length m, outputs a binary sequence of length n, where n >= m. The input 
is the seed. The output, pseudorandom bit sequence “appears” to be random. The 
deterministic component of the algorithm [22] is that if the same seed is input, the output will 
correspondingly be the same, on each occasion. The definition of pseudorandomness is 
given later in this section. 
 
One-Time Codes are the only provably secure random codes (Shannon, 1949) [13,14, 22]. 
Their limitation is, as key stream, they should be at least of the same length as the plaintext 
message (the key stream is XOR’d with the plaintext to produce the ciphertext). LFSRs are 
promising as they output pseudo-random bit sequence, and are much shorter (in bit length). 
The shortcoming is that LFSR sequences can be easily broken. Linearity as a consequence 
of use of LFSRs, is a weakness in cryptography. A single LFSR can be broken into (such as 
finding the secret initial seed) by solving a set of linear equations over GF(2), such as via 
Gaussian elimination [15, 24].  A system of equations in non-linear variables over GF(2) is 
NP, and hence a hard problem to solve [15]. This was the foundation of the Lucifer system, 
the forerunner of the DES system [15], and further trends to the current AES system [10]. 
These systems are based on bit wise operations xor, shift, rotations which can be 
represented via such system of non-linear equations [15]. 
 
As an example, an input X, XOR’d with input Y is represented as “X + Y”, while and input X  
AND’d with input Y is represented as “X.Y” [15, 24]. “X.Y + Z = K” is a non-linear equation, 
and is also referred to as a “quadratic equation” as there is a X.Y term (a X.Y.Z term makes 
an equation “cubic”). “X+Y = M” is a linear equation. In “attacks”, in the right hand side of the 
equations above such as K and M, would represent the observable output ciphertext bit 
values. The intruder observing, has to solve the equations above to obtain values for the 
internal parameters, X, Y, Z etc. The system of equations are easy if the internal LFSR bit  
lengths and connections are known, such as in GSM mobile phones [6]. Otherwise, the 
intruder, may have to observe long pattern of ciphertext bit streams to arrive at possible 
inferred set of equations [24]. Chosen plaintext, or ciphertext attacks [6, 13, 14, 15, 22, 24] 
could prune, or reduce the permutations, of the variables to infer a system of equations to 
solve, as the objective of the attack. There are many other methods [22], such as divide and 
conquer attacks where only one LFSR at a time is “attacked” via such methods, such as for 
the Geffe generator [14, 24]. The mathematical basis of algebraic attacks, based on design 
of the system of equations in linear or non-linear variables is well explained in [6, 15, 24]. The 
solution of such equations are used to obtain the intial seeds (or initial values (IV)) and other 
useful information of the LFSRs as a consequence of such attacks [6, 15, 24]. Such system 
of equations are developed after prudent observations of the output ciphertext bit stream by 
an intruder [6, 15, 24]. 
 
Several combination of LFSRs, are required to introduce non-linearity. Clocking of one LFSR 
output to the other is a method of introducing non-linearity. This is used in the Alternating 
Step Generator (ASG), Shrinking Generator (SG). ASG (whose order of security, for k bit 
registers is (2k) requires 3 LFSRs of about 128 bits, while the SG (whose corresponding 
order of security is (22k) requires 2 LFSRs of about 64 bits each  bits for security against all 

Page 3 of 11 



 

The University of Adelaide 

known attacks [3,22]. The Shrinking Generator is very simple, robust method, based on 2 
LFSRs if initial seeds and connection polynomials are kept secret [3, 22]. 
 
Goldreich [6] has shown that an ensemble {Xn} (n ε N)  is pseudorandom if and only if it is 
unpredictable in Polynomial Time (P). Welsh [15] has shown that a pseudo-random number 
generator passes all Polynomial-Time statistical tests if and only if it passes all Polynomial 
Time (P) next-bit tests. The next-bit test due to Yao, is the inability to predict the next bit as 0 
or 1 with a probability > 0.5, given the preceding bit pattern [6, 15, 22].  
 
Yao also defined “Effective Entropy” [15]. For example. the integer factorization problem as 
used in the RSA algorithm, in theory, is solvable, and hence the entropy = 0. In practice, 
given the current computing resources, the integer factorization problem with prudently 
chosen large random prime numbers, is intractable, and hence leads to some “effective 
entropy”. Bit stream generators must satisfy the two major criteria of: (a) unpredictability, and 
(b) balance [15, 22, 24]. Balance refers to the number of 0’s and 1’s in an output sequence 
being equal. 

2. Types of Bit Stream Generators 
There are many bit oriented stream generators [10,13,14, 22] that have been designed to be 
difficult for adversaries to attack. They are generally based on computationally hard problems 
or non-linear Boolean algebra. This list includes: 
 
(a) the Linear Congruential Generator; (b) the Blum-Blum-Shub (BBS) Generator; (c) the 
Geffe Generator; (d) the Alternating Step Generator; (e) the Shrinking Generator; (f) the Self-
Shrinking Generator; (i) the Rabin Generator; (h) the RSA generator; and (i) the Discrete-
Logarithm Generator. 
 
All the arithmetic based schemes output the lowest significant bit as the keystream. They use 
an iterative method, where the next value depends on the function applied as per the 
generator’s arithmetic rules. The Linear Congruential generator is a very simple scheme 
using a linear function over modulus arithmetic field [14]. The Blum-Blum-Shub generator is 
the most used in practice. It is based on the hardness of quadratic residues and the integer 
factorization over modulus field arithmetic [13,14]. The Rabin Generator is based on the 
hardness of the quadratic residues over modular arithmetic [13,14]. The Geffe generator [14, 
22] is a simple logic based generator, which is a combination of 3 LFSRs, connected via 
AND and OR gates. This logic structure makes it prone to correlation attacks [14, 22, 24]. 
The RSA generator uses the underlying RSA arithmetic, which is based on the hardness of 
integer factorization over modular field [10,13,14]. The Discrete Logarithm Generator uses 
the underlying discrete logarithm arithmetic over modular fields [14]. The Alternating Step 
Generator (ASG) [22] uses a single clock and 3 LFSRs connected via AND and NOT gates. 
The Shrinking Generator (SG) appears to provide the simplest structure and most secure 
output.  
 
Both, the ASG, and the SG, are clock controlled generators. In such clock controlled 
generators, non-linearity is introduced by having the output of one LFSR clock (or step), 
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sampled in accordance with a second LFSR, or having the clocking of some generators 
controlled by the output of others. In the SG, the additional non-linearity of shrunken 
sequence of the output is introduced. The Self-Shrinking Generator (SSG) is a simplified 
version of the Shrinking Generator, and does not require a clock [22]. In that generator a 
predefined combination of bits gives rise to a shorter or a shrunken output, for example a bit 
stream 11 generated may give rise to an output 1. However the fairly simplified structure 
makes this generator vulnerable to attacks. However some crypto analyses of the self-
shrinking generator also consider the shrinking generator and hence provide valuable inputs 
for study of the Shrinking Generator [16].  

3. Attacks on the LFSR based GSM Mobile 
A5/X, GPRS security schemes 

This section has been included to show the weakness of some LFSR schemes, and because 
it outlines some attack strategies that may be directed toward other schemes. 
 
Barkan et al. (referenced in [2]) in 2003 showed how the A5/2 used in GSM mobile phone 
communications may be broken. In their more recent paper 2006 [2], Barkan et al. generalize 
the attacks to all the GSM’s encryption algorithms A5/1, A5/2, A5/3 (or in general A5/X), and 
also GPRS used for data communications in the GSM mobile network.  
 
In the more recent work, [2], those authors have shown how an attack on the GSM system 
based on LFSRs can be mounted. The sizes of the 3 to 4 LFSRs used in the GSM system 
are in the range of 17 to 23 bit registers [19, 22]. They use a method of solving linear 
quadratic equations [15, 24] to obtain the keystream (as outlined in sec 1.1). This method 
can be extended to several other methods, which are based on LFSR’s, and perhaps also to 
the Shrinking Generator if secrecy of the structure is not maintained. The methods and the 
ideas are covered by patent and a written authorization is required from the authors for their 
use. 
 
The authors [2] point out that the GSM’s security scheme designed in the 1980’s, was the 
first developed security method in the public telephony domain, due to then newly emerging 
public key cryptography. They have also indicated that the security design was then 
influenced by 1980’s environment, where civilians were not permitted to use strong 
cryptography. Hence the development of then LFSR based light cryptography methods. 
 
The authors take advantage of the fact that the error correcting part of the transmission is 
done before the encryption. Hence in the encrypted text already some redundant information 
is available. Supposing the parity bit obtained by XOR’ing of a subset of bits is 0. Then 
XOR’ing the same subset of bits, in the encrypted bits, shall help obtain the parity of the 
corresponding keystream bits [2]. 
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4. The Shrinking Generator 
Coppersmith et al [3] first presented a design of the shrinking generator. As shown in Fig. 1, 
this was based on two Linear Feedback Shift Registers (LFSR)’s, S (selector), and the A 
(data) registers. If the output of the S register is 1, then the output of the A register becomes 
part of the keystream. If the output of the S register is 0, then the output of the A register is 
discarded [3,14,17]. 
 

Fig. 1. The Shrinking generator. 
 

his is both a simple hardware implementation, and provides an output, the z stream, that 

he original contribution of Coppersmith et al, is that the Shrinking Generator has the good 

their scheme passes the minimal tests, as indicated above. 

 

Feedback connections

Feedback connections

Generating LFSR A

Selection LFSR s
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T
has lost the linearity that leads to the insecurity of the simple LFSR schemes. Its practical 
strength has become clear only after years of public scrutiny. There is scope for further 
research into the theoretical basis of its security and into test procedures. 
 
T
random like properties that exist in LFSR’s, and important properties not present in LFSR 
sequences, such as the Exponential Linear Complexity. The standard tests for bit streams, 
such as pseudorandomness, and predictability such as Yao’s next bit test, are passed by the 
Shrinking Generator [3,14]. Coppersmith et al. [3] show period of the keystream, z-
sequences is exponential in both the lengths of the A and the S sequences. They show that 
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Coppersmith et al [3] suggest generalization to any pair of pseudorandom sources. It is open 
to analysis if any other similar linear structures of LFSR’s exist maybe also pseudo random, 

 of the necessary statistical properties for pseudo random number 
enerator: low correlation between sequence bits; normalized appearance of 0’s and 1’s; and 

aic techniques [3, 
2].  

 LFSR’s, S and A use primitive polynomials, then the periods of the LFSR’s are [15]: 
 = 2S – 1, and L  = 2A – 1 . where S denotes the size of the LFSR S, and A the size of the 

he conditions that must be satisfied, in a secure design are: 

 1. 

e Shrinking Generator. 

Some o

d (2A – 1).(2S – 1) 

dditional relevant properties are outlined in [22]. The linear complexity L(z), is the length of 
e smallest LFSR that can produce the output bit stream [22]. For example for a bit stream, 

wn 

close to one-time codes.   
 
Those authors define some
g
balanced distribution of sub-patterns. They also perform Fourier and ε-analysis. Coppersmith 
et al. say the above properties are only necessary (but are not enough for sufficiency), for 
conditions on the cryptographic strength of the pseudorandom generators. 
 
The period and linear complexity bounds are proven mainly through algebr
2
 
If both
LS A
LFSR A. 
 
Some of t
 
(a) The periods of the two LFSR’s must be co-prime, or  gcd (LS , LA) =

(b) Use of secret connection polynomials that are not sparse. 

(c) Use of maximum length LFSR’s for the LFSR A and S in th

(Using primitive polynomials for A and S ensures maximum length) 
  

f the properties of the Shrinking Generator are [3, 22]: 
 
(a) If gcd (LS , LS) = 1, then the output sequence, z, has a perio

(b) The linear complexity L(z), of the output sequence z, satisfies: 
S S  LA.(2  – 2)  <  L(z)  <=  LA.(2  – 1) 

 

A
th
“0000…00”, or “111…11”, L(z) = 0. If a bit stream cannot be produced by an LFSR, then L(z) 
is infinity [22]. One-Time codes, perhaps belong to the latter class. In general observing any 
output bit stream over certain interval, a reasonable estimate of L(z) of the size of the LFSRs 
could be deduced. From this information, the connection polynomials and initial seeds can be 
derived via algebraic attacks as briefly introduced in sec 1.1. However, if the length of the 
LFSRs are chosen large as recommended below, for security [3, 22], the length of the 
ciphertext bit stream to be observed, will become so large, that this is infeasible.   

The following are some metrics that reflect the security of the Shrinking Generator [3, 22]: 

(a) If the connection polynomials for LFSRs, S and A, are known, then the best attack kno
for recovering the secret keys takes O (2 LA . LS

3 ). 

(b) If the secret (and variable) connection polynomials are used, the best attack known takes 
O (2 LA . LA. LS ) 
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(c) There is also an attack through the linear complexity of the shrinking generator which 
takes O (2 L

A . L 2
S  ) steps irrespective of whether the connections are known or are secret. 

L

 bits, and S = k bits, then the shrinking generator 

5.  Prediction of the Shrinking Generator 

king 
generator with known connections, given a sufficient number of observations of the output. 

6.  Attacks on the Shrinking Generator 

 

s an exhaustive search through 
e Selector LFSR as presented in 

7. Limitations of the Shrinking Generator 

rrelations, distributions of 1’s and 0’s, and randomness 
depend on the choice of the size of the LFSR’s and the initial seeds. There can be situations 
where the randomness is not close to a near one-time code, as desired for a pseudo random 

This attack however requires 2 A . LS  consecutive bits from the output sequence, z. This is 
infeasible for moderately large LA and LS. 

Menezes et al [22], illustrate the security of the shrinking generator by an example as follows. 
If secret connections are used, and A = k
has security of the order 22k . If A = 64 bits, and S = 64 bits, then the shrinking generator 
appears to be secure against all presently known attacks. 

Ekdahl et al [5] have shown an ingenuous scheme to predict the output of a shrin

They have applied a system of mathematical linear equations on similar lines as Barkan et al 
[2]. The paper [5] exploits newly detected non-randomness in the distribution of output of the 
generated key stream. The method is not applicable to a shrinking generator with unknown 
feed back polynomial for the generating LFSR. They have used the imbalance property in a 
pseudo-random bit stream output. They define the imbalance, as the difference between the 
number of 0’s and the number of 1’s in a period. 

There have been several methods of attack proposed on the Shrinking Generator. 

(a) Use of Cellular Automata to attack the SG [21, 23]. 
 

(b) Basic Divide and Conquer method which require
possible initial states and feedback polynomials of th
[3, 4]. 

  
(c) Correlation Attack targeting LFSR A is proposed in [6]  

in Cryptography 

The statistical properties, viz. low co
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bit generator. There is scope for research in the patterns, cycles, of the S and A registers, in 
particular the properties of the S register.  

Welsh [15] has pointed out that in a LFSR based on a primitive polynomial, with the size of 
register b, the period is 2b – 1. Welsh [15] also points out if there is a stream of n consecutive 
1’s in a period there shall be n consecutive 0’s in the period, given the initial bit patterns.  

far 

8. Conclusions 

romising approach in the areas of public-key or lightweight 
securing RFID systems. Wikipedia [17]  indicates that, 

subject to elementary precautions in designing the structure, the shrinking generator has not 
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The Shrinking Generator offers a p
cryptography, and especially in 

been broken into last 12 years.  

There is scope for considerable research to more firmly establish the security and to remove 
the potential for the generator to have an unavailable output. 
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