
Facilitating RFID
Development with the
Accada Prototyping
Platform

Christian Floerkemeier, Matthias Lampe, Christof Roduner

Auto-ID Labs White Paper AUTOIDLABS-WP-SWNET-023

Christian Floerkemeier
Auto-ID Lab

Massachusetts Institute of

Technology

Matthias Lampe
Institute for Pervasive Computing

ETH Zurich

Auto-ID Lab Switzerland

Christof Roduner
Institute for Pervasive Computing

ETH Zurich

Auto-ID Lab Switzerland

Contact:

Institute for Pervasive Computing
ETH Zurich
Clausiusstr. 59
8092 Zurich
Switzerland

E-Mail: roduner@inf.ethz.ch
Internet: www.vs.inf.ethz.ch

Copyright © 2007 IEEE. Reprinted from Proceedings of PerWare Workshop 2007 at the Fifth IEEE International Conference on Pervasive
Computing and Communications (PerCom 2007), White Plains, NY, USA, March 2007. This material is posted here with permission of the
IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Auto-ID Labs’ products or services. Internal or
personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws protecting it. So
ftw

ar
e

&
N

et
w

or
k

Index
Index ... 2
Abstract .. 3
1. Introduction .. 3
2. Application Requirements .. 4
3. Accada – an open source RFID prototyping platform .. 6

3.1. Reader module 8
3.2. Filtering and Collection Middleware module 9
3.3. EPCIS module 9

4. Discussion, Limitations and Future Work .. 10
5. Related Work ... 11
6. Conclusion ... 12
References ... 14

Please note that this paper is based on a workshop paper that appeared at the IEEE

Percom Conference in March 2007. This publication does not reflect the latest

developments at Accada and EPCglobal. Check the respective websites for details.

 2

Abstract
The proliferation of radiofrequency identification systems in application domains such as
supply chain management requires an IT infrastructure that provides RFID device and data
management and supports application development. In this paper, we discuss the
requirements towards such an infrastructure and present the freely available Accada RFID
Prototyping Platform. The Accada platform manages readers, filters and aggregates RFID
data, and helps to interpret the captured RFID data in an application context. Our RFID
infrastructure implements the specifications defined by the EPCglobal RFID community, such
as the reader protocol, the application-level-events specification and the EPCIS capture and
query interfaces. We believe that this freely available RFID infrastructure will allow the
research community to evaluate novel concepts and applications more quickly by
significantly lowering the barrier for large-scale, real-world testing.

1. Introduction
Radio Frequency Identification (RFID) technology has recently seen growing interest not just
from the research community, but also from a wide range of industries such as retail,
pharmaceutical, and logistics [6]. In these domains, RFID technology holds the promise to
eliminate many existing business problems by bridging the economically costly gap between
the virtual world of IT systems and the real world of products and logistical units. Common
benefits include more efficient material handling processes, elimination of manual inventory
counts, and the automatic detection of empty shelves and expired products in retail stores
[1].

In traditional RFID applications, such as access control, there was little need for an RFID
middleware because the RFID readers were not networked and the RFID data were only
consumed by a single application. In novel application domains, such as supply chain
management and logistics, there is no longer a 1-to-1 relationship between reader and
application instance, however. In these domains many readers distributed across factories,
warehouses, and distribution centers capture RFID data that need to be disseminated to a
variety of applications. This introduces the need for an RFID infrastructure that hides
proprietary reader device interfaces, provides configuration and system management of the
reader devices and filters and aggregates the captured RFID data. The result is that
applications no longer need to maintain connections to individual reader devices or even
need to know how to trigger a read cycle at a particular RFID reader device.

From an application development perspective, it is also important to abstract from the low
level RFID data captured and translate them into more meaningful application. The detection
of an RFID tag with tag ID 3455.3454656 by reader 8745653 would thus result in the
corresponding business event that a shipment of razor blades arrived at dock door 14 of the
warehouse. Many benefits commonly associated with RFID require sharing these business
events across the supply chain [1].

 3

In this paper, we analyse these application requirements in detail and present Accada1, an
RFID prototyping platform that aims to address these requirements. Accada is an open
source RFID infrastructure released under an LGPL-license which implements the interfaces
defined in the EPC Network specifications of EPCglobal2. The EPC Network, originally
proposed by the Auto-ID Center [16] and further developed by the members of EPCglobal, is
currently the predominant standardization effort of the RFID community. The objective behind
the Accada project is to provide a common codebase for the exploration of novel applications
and educational projects. We believe that the availability of a free RFID infrastructure that
implements current industry standards is of great importance for universities and research
institutions because it facilitates the testing of novel concepts and advances the development
of what has been coined “an Internet of Things”.

The rest of this paper is structured as follows. In Section 2, we detail the requirements toward
an RFID infrastructure. In Section 3, we describe our Accada RFID prototyping platform and
show how our implementation addresses these application needs. In Section 4, we review
limitations of our implementation and present future work. Before we conclude in Section 6,
we discuss related work in Section 5.

2. Application Requirements
Based on an analysis of different RFID applications and the study of other work on RFID
middleware [3, 5, 9, 14, 15] we identified the following requirements an RFID middleware
should meet:

RFID data dissemination. The information captured by a reader is usually of interest not only
to a single application, but to a diverse set of applications across an organization and its
business partners. The captured RFID data must thus be broadcast to the entities that
indicated an interest in the data. Due to the event-driven nature of many processes observed
with the help of RFID systems, there is a need to support asynchronous messaging as well
as a query-response model. Different applications also require different latencies.
Applications that need to respond immediately to local interaction with the physical objects
require a short notification latency that is comparable to the observation latency. Legacy
applications that are not designed to handle streaming data might need to receive batched
updates on a daily schedule.

RFID data aggregation. RFID systems generate significant amount of data that can be
aggregated in a number of different ways. RFID data can be aggregated in the time domain,
e.g. by generating entry and exit events, and in the space domain, e.g., by combining data
from different readers and reader antennas that observe the same location or by detecting
the movement of a tagged object. Legacy IT systems typically cannot handle the instance-
level data captured by RFID data. There is thus also a need for count aggregates that report

1 www.accada.org
2 www.epcglobalinc.org

 4

the quantity of objects belonging to a specific category (i.e., product class) rather than the
serial number of each object detected.

RFID data filtering. A common feature of all applications that make use of the captured data
is the desire to receive filtered RFID events rather than all RFID data captured. Different
applications are interested in a different subset of the total data captured, based on the
reader, reader antenna, and tag involved.

Writing to a tag. Some tags feature not only memory space for an identifier, but for additional
data. RFID middleware should thus provide means to write to and read from this additional
memory. This additional memory can then be used to store application data such as expiry
dates in order to facilitate data exchange, where no network access is available. In a broader
sense, writing to a tag also includes the initial write to the tag to program its ID, and killing a
tag to permanently disable it.

Trigger RFID readers by external sensors. In many applications it is not mandatory to operate
RFID readers continuously. Due to the limited bandwidth available, it is even undesirable to
have readers transmit, while no tags are present [9]. To initiate the tag inventory process at a
reader when there are tagged objects arriving in the read range, external sensors, such as
motion sensors, should thus be able trigger the RFID readers.

Fault and configuration management. The proliferation of readers mandate fault and
configuration management. This includes monitoring the health of RFID readers and
accessing the RFID reader configurations remotely.

Heterogeneous reader landscape. The diverse computing and networking capabilities of
readers is also an important RFID consideration when developing RFID infrastructure
support. Low cost readers usually support only a single antenna and a serial RS232
interface. These reader types are connected to a computer which hosts the application
directly or forwards the captured data over a network connection. More sophisticated reader
devices support several antennas, a TCP host interface, and ample computing resources for
on-device data processing, such as filtering and aggregation.

RFID data interpretation. From an application perspective, it is also desirable to provide a
mechanism that interprets the captured RFID data in a given business context and that turns
the low level RFID event into the corresponding business events. The detection of a number
of tags at a dock door can thus be translated into a shipment complete event automatically.

Sharing of RFID triggered business events. Many benefits commonly associated with RFID
require data sharing across the supply chain [1]. In order to realize those benefits, an
infrastructure that captures RFID triggered business events and makes them available to
authorized parties is essential.

Lookup and Directory Service. During its lifetime, an RFID-tagged item usually passes the
readers of many different parties. These parties typically store read events and other related
data in their own respective information systems. In order to locate these various databases
containing data on a given item, a lookup service is needed.

 5

Tag identifier management. RFID allows for the unique identification of objects through the
identifier stored in the memory on the RFID tag. Different numbering schemes exist for such
an identifier and have to be supported by an RFID middleware. One prominent example is
the electronic product code (EPC) that comprises three parts, namely the product
manufacturer ID, the product type ID, and the serial number. The EPC is available in different
representations. This includes a representation that is suitable for storage in tag memory as
well as representations as uniform resource locators. To convert between the different
representations, a tag identifier translation mechanism is required [2].

3. Accada – an open source RFID
prototyping platform

The goal of the Accada project is to develop a RFID prototyping platform that meets the
application needs mentioned in the previous section and thus provides the research
community with a testbed for RFID experiments. Our implementation is based on the EPC
Network standard published by the predominant RFID standardization body – EPCglobal.
The EPC Network is named after the standardized tag identifier code, electronic product
code (EPC), which is stored on every tag. The standard defines a number of functional roles
that an RFID middleware must provide as well as the interfaces that must be implemented
around these roles (cf. Figure 1). The Accada middleware implements the functionality
specified by the EPCglobal standards and thus consists of three separate modules: the
reader, the filtering and collecting middleware, and the EPC information service (EPCIS)
module. In the following sections, we briefly discuss the functionality of each role as defined
by EPCglobal and describe the implementation provided by Accada. We also present some
additional components offered by Accada that are not specified by the EPC Network
standards, but can greatly simplify the development of RFID-enabled applications. We begin
our description with the reader module, which performs data dissemination, filtering, and
aggregation at the reader level. We then continue with our filtering and collection middleware,
which decouples readers and applications and provides additional aggregation and filtering
functionality. The third module relates to the EPCIS part of the EPC Network, which deals
with an application framework to interpret the captured RFID data in an application context.

 6

EPCIS Capture Interface

EPCIS
RepositoryEPCIS

Repository

Applicaion Level Event Interface

EPCIS Capturing
ApplicationEPCIS Capturing

Application

Reader Protocol

Filtering &
Collection

Middleware
Filtering &
Collection

Middleware

EPCIS Query Interface

EPCIS Accessing
ApplicationEPCIS Accessing

Application

RFID ReaderRFID Reader

Legend:

= Interface
= Role

Data
Interpretation

Data and Device
Management

EPCIS Capture Interface

EPCIS
RepositoryEPCIS

Repository

Applicaion Level Event Interface

EPCIS Capturing
ApplicationEPCIS Capturing

Application

Reader Protocol

Filtering &
Collection

Middleware
Filtering &
Collection

Middleware

EPCIS Query Interface

EPCIS Accessing
ApplicationEPCIS Accessing

Application

RFID ReaderRFID Reader

Legend:

= Interface
= Role

Data
Interpretation

Data and Device
Management

Figure 1. EPC Network Roles and Interfaces [2]

HTTPTCP

Reader Proxy

Reader
Device

Wrapper

Hardware Abstraction Layer

Reader Core
Data Filtering & Aggregation

Reader Messaging
Data Dissemination

TCP HTTP

XML/
Text

XML/
Text

proprietary
MTB

Simulator
Framework

HTTPTCP

Reader Proxy

Reader
Device

Wrapper

Hardware Abstraction Layer

Reader Core
Data Filtering & Aggregation

Reader Messaging
Data Dissemination

TCP HTTP

XML/
Text

XML/
Text

proprietary
MTB

Simulator
Framework

Figure 2. Accada Reader Implementation

 7

3.1. Reader module

The reader module of the Accada platform implements the EPCglobal Reader Protocol [8].
Our implementation features all mandatory and optional features defined in the Reader
Protocol specification. This includes filters on tag ID and reader antenna, time aggregates,
such as entry and exit events, and space aggregates, where multiple reader antennas can be
logically grouped to a single source. There is also support for writing to tags and external
triggers such as motion sensors. The data captured can be disseminated via a query-
response and a publish-subscribe mechanism using different message transport bindings
(MTB) as shown in Figure 2. Our reader implementation also features a Reader Proxy that
implements the host side of the EPCglobal Reader Protocol. This facilitates application
development because interaction with the resource limited reader device is now as
straightforward as a remote procedure call.

The Accada reader implementation can be used in three different modes. In the first mode,
the reader implementation is deployed on a separate server and wraps a proprietary RFID
reader protocol using the built-in hardware abstraction layer (cf. Figure 2). Our
implementation currently supports a variety of reader devices from different manufacturers.
To facilitate testing of RFID applications, when there is no reader connected, the Accada
reader can also be used in a simulation mode. The built-in simulation framework that
supports this mode includes a graphical user interface that allows the developer to drag and
drop tags over different reader antennas (cf. Figure 3). The simulation framework also
provides a mechanism to schedule the detection of a tag at different times on different reader
instances. This allows a developer to simulate the movement of a tag population through the
supply chain. In the third mode, the Accada reader implementation can also be deployed on
an RFID reader itself to provide data dissemination, filtering, and aggregation capabilities.

Figure 3. Screenshot of Accada reader simulator

 8

3.2. Filtering and Collection Middleware module

The Accada filtering and collection middleware represents a single interface to the potentially
large number of readers that make up an RFID system deployment. This allows applications
to define a subscription, which is then used to configure the corresponding reader devices
using the EPCglobal reader protocol (cf. Figure 4). Once the readers capture relevant tag
data, the readers notify the middleware, which combines the data arriving from different
readers in a report that is sent according to a pre-determined schedule to the subscribed
applications. Since the middleware receives data from multiple readers, it can provide
additional aggregation functionality. Redundant read events from different readers observing
the same location can thus be omitted, reducing the amount of filtering and aggregation
required in any application interpreting the captured RFID data. The interface between the
filtering and collection middleware and a host application is based on the EPCglobal
Application Level Events (ALE) Specification [7]. The ALE specification defines a SOAP MTB
for the subscription communication channel and a XML and TCP/HTTP MTB for the
notification channel.

Figure 4. Filtering and collection middleware

3.3. EPCIS module

The EPC Information Service (EPCIS) [2] of the EPC Network is the component that is
responsible for receiving the application-agnostic RFID data from the filtering and collection
middleware, translating them into the corresponding business events, and making those
business events available. The EPC Information Service itself consists of three parts (cf.
Figure 1): an EPCIS capture application that interprets the captured RFID data, an EPCIS
repository that provides persistence, and EPCIS query application that retrieve the EPCIS
events from the repository.

 9

Query App

SOAPHTTP

Capture Interface

Capture App
HTTP SOAP

XML/
Text SOAP

Query Interface

EPCIS Repository

RDBMS

Filtering & Collection
Middleware

Figure 5. Accada EPCIS module featuring an EPCIS Repository, and Capture and
Query Applications

The Accada EPCIS module provides sample capture and query applications that implement
the corresponding interfaces and EPCIS repository that uses a relational database to store
the EPCIS events (cf. Figure 5).

4. Discussion, Limitations and Future
Work

The Accada reader implementation addresses the majority of the requirements outlined in
Section 2 that are applicable to a reader. This includes data dissemination, filtering, and
aggregation, writing to tags and external triggers. Due to our surrogate concept, where the
Accada reader software is deployed on a separate (embedded) computer and connects to
reader devices via our hardware abstraction layer, our implementation also addresses the
heterogeneity of the reader landscape and in particular the reader devices with proprietary
MTBs and limited resources. While we support a number of different reader devices in this
mode, there is still a large number of reader devices which we do not support. We hope that
other researchers will see the benefit of the existing open source Accada implementation and
contribute drivers for the reader devices they use.

There are currently only limited fault and configuration management capabilities. We are
currently implementing the EPCglobal Reader Management Protocol, which provides this
functionality. Once implemented, an Accada reader can be managed and configured just like

 10

any other IT equipment via the Simple Network Monitoring Protocol. The Accada reader
implementation also uses the standard edition of SUN’s Java Virtual Machine rather than a
microedition. The result is that the Accada reader implementation can only be embedded on
those reader devices that feature significant computing resources. In the future, we might
consider porting the software to be compliant with one of the Java profiles for limited devices.

The EPCglobal Reader Protocol Version 1.1. currently consists of a large number of optional
features. This design choice is a direct result of the heterogeneity of the reader landscape,
where reader devices with significant computing resources were envisioned to provide the
majority of the optional features and low-end reader devices would only support the
mandatory features and possibly a small number of the optional features. However, this
makes application development a significant challenge, since there is no service discovery
implemented, which lists the supported features. Future versions of the EPCglobal Reader
Protocol might want to address this issue by providing different reader profiles with
corresponding feature sets. The EPCglobal Reader Protocol Version 1.1 and Reader
Management 1.0 also lacks support for air interface settings, such a frequency channel
assignment and air interface protocol parameters, such as modulation type and timings. We
believe that these parameters need to be exposed to get optimum performance in particular
in dense reader environments. The current work at EPCglobal on a low level reader protocol
(LLRP) is likely to address this issue.

The XML MTB of the EPCglobal Reader Protocol also leaves room for improvement. The
message binding does not return serialized objects to the host, but forces the host to request
one class variable at a time. There is also no way to configure a reader with a single
command.

The Accada filtering and collection middleware supports data dissemination, filtering and
aggregation. At first sight, this seems redundant to the capabilities provided at the reader
level. However, it is important to support filtering and aggregation at both levels. On the one
hand, there might be readers that do not support the optional filter and aggregation
functionality due to limited computing resources. On the other hand, the middleware is
capable of aggregating information captured by a number of different readers. It would be
desirable that the Reader Protocol and Application Level Events Specification would use the
same nomenclature and implement common functionality in the same way.

5. Related Work
The need for an RFID infrastructure and the application requirements towards such an RFID
infrastructure have been discussed in a number of publications [3, 9, 15]. Initially, the concept
of a distributed networking infrastructure for RFID was proposed by the Auto-ID Center, an
industry sponsored research program to foster RFID adoption [16], which coined the term
EPC Network.

Our work is closely related to a component in a now outdated architecture of the EPC
Network, which was called Savant [11]. While the Savant software addressed some of the

 11

application requirements presented in Section 2, e.g. it featured functionality for coping with
the idiosyncrasies of different kinds of readers and for cleaning the data, there was only
limited built-in functionality that specifically addresses data dissemination, filtering and
aggregation. In the Savant implementation, there was also no predefined subscription
language. Instead, the Savant concept allowed applications to register event filters
programmed in the Java programming language, which could operate on a combination of
notifications. This approach increases the expressiveness of the subscription language at the
expense of performance and scalability [4]. We believe that a predefined subscription
language as provided by [7, 8] is expressive enough to support RFID filtering and
aggregation. There is no need for the additional flexibility provided by user defined operators
programmed in the Java programming language unless application logic is executed on the
readers or in the middleware. This leads to a different system architectures than the one
depicted in Figure 1, since there no longer the distinct separation between application-
agnostic filtering and aggregation on RFID readers and in the RFID middleware and the data
interpretation in so-called capture applications.

There are a number of other commercial and non-commercial RFID middleware products
available, among others [3, 10, 12, 13]. All of them address to some extent the application
requirements for device and data management and data interpretation listed in Section 2. To
our knowledge, none of them incorporate the standardized interfaces of the EPCglobal
community to the extent shown in this paper yet.

The filtering and collection middleware functionality of our Accada platform differs from the
one commonly found in publish-subscribe systems. In traditional publish-subscribe systems
there is no feedback path from the messaging service to the producers. Due to the restricted
bandwidth available to the RFID readers on the air interface and the potential large amount
of data they produce [9], the subscriptions of the applications are fed back to the event
producing reader instances. The result is that reader instances only disseminate data to the
messaging service which are of interest to the applications. The event router Elvin [17] uses
a similar kind of feedback mechanism called quenching. Different to most other
publish/subscribe messaging systems such as [4, 17], the subscription process used in our
middleware based on the ALE specification consists of two steps. In an initial step,
applications define a subscription, where they specify notification latency, aggregates and
filters. In a second step, applications can then simply subscribe to a previously defined
subscription.

6. Conclusion
In novel RFID application domains, such as supply chain management and logistics, there
are many RFID readers distributed across factories, warehouses, and distribution centers
capturing RFID data that need to be disseminated to a variety of applications. This introduces
the need for an RFID infrastructure that hides proprietary reader device interfaces, provides
configuration and system management of the reader devices and filters and aggregates the
captured RFID data.

 12

In this paper, we discussed these application requirements in detail and presented Accada,
an open source RFID prototyping platform that aims to address these application
requirements. The paper showed that the current Accada implementation, which is based on
a set of specification developed by the EPCglobal community, addresses the majority of the
application requirements, but still lacks capabilities such as fault and configuration
management. Our work also showed that there is room for improvement within the
EPCNetwork standards, when it comes to a common nomenclature across Reader Protocol
and ALE and the configuration of air interface parameters.

We believe that the availability of a free RFID infrastructure such as Accada that implements
current industry standards is of great importance for universities and research institutions
because it facilitates the testing of novel concepts and advances the development of what
has been coined “an Internet of Things”.

 13

References
[1] K. Alexander, T. Gilliam, K. Gramling, M. Kindy, D. Moogimane, M. Schultz, and

M. Woods. Focus on the Supply Chain: Applying Auto-ID within the Distribution
Center. Technical Report IBM-AUTOIDBC- 002, Auto-ID Center, 2002.

[2] Architecture Review Committee. The EPCglobal Architecture Framework.
EPCglobal, July 2005.

[3] C. Bornhövd, T. Lin, S. Haller, and J. Schaper. Integrating Automatic Data
Acquisition with Business Processes - Experiences with SAP’s Auto-ID
Infrastructure. In Proceedings of the 30st international conference on very large
data bases (VLDB), pages 1182– 1188, Toronto, Canada, 2004. VLDB
Endowment.

[4] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Achieving
scalability and expressiveness in an internet-scale event notification service. In
Proceedings of the Nineteenth Annual ACM Symposium on Principles of
Distributed Computing, pages 219–227, Portland, Oregon, July 2000.

[5] S. Chawathe, V. Krishnamurthyy, S. Ramachandrany, and S. Sarma. Managing
RFID Data. In Proceedings of the 30st international conference on very large
data bases (VLDB), pages 1189–1195, Toronto, Canada, 2004. VLDB
Endowment.

[6] Economist. The Best Thing since the Bar-Code, Feb 2003.

[7] EPCglobal. The Application Level Events (ALE) Specification, Version 1.0, Sep
2005.

[8] EPCglobal. Reader Protocol Standard, Version 1.1, Jun 2006.

[9] Christian Floerkemeier and Matthias Lampe. RFID middleware design –
addressing application requirements and RFID constraints. In Proceedings of
SOC’2005 (Smart Objects Conference), pages 219–224, Grenoble, France,
October 2005.

[10] Sun Microsystems. Java System RFID Software 3.0 Developer Guide.
www.sun.com, Feb 2006.

[11] Oat Systems and MIT Auto-ID Center. The Savant Version 0.1. Technical Report
MIT-AUTOID-TM- 003, Auto-ID Center, 2002.

[12] OATsystems. OAT C4 Architecture. www.oatsystems.com, 2006

[13] B. S. Prabhu, Xiaoyong Su, Harish Ramamurthy, Chi- Cheng Chu, and Rajit
Gadh. WinRFID – A Middleware for the enablement of Radio Frequency
Identification (RFID) based Applications. In Rajeev Shorey and Chan Mun Choon,
editors, Mobile, Wireless and Sensor Networks: Technology, Applications and
Future Directions. Wiley, 2005.

 14

 15

[14] Kay Römer, Thomas Schoch, Friedemann Mattern, and Thomas Dübendorfer.
Smart Identification Frameworks for Ubiquitous Computing Applications. Wireless
Networks, 10(6):689–700, December 2004.

[15] Sanjay Sarma. Integrating RFID. ACM Queue, 2(7):50–57, 2004.

[16] Sanjay Sarma, David L. Brock, and Kevin Ashton. The Networked Physical World
– Proposals for Engineering The Next Generation of Computing, Commerce &
Automatic Identification. Technical Report MIT-AUTOID-WH-001, MIT Auto-ID
Center, 2000.

[17] Bill Segall, David Arnold, Julian Boot, Michael Henderson, and Ted Phelps.
Content Based Routing with Elvin4. In Proceedings AUUG2K, Canberra,
Australia, June 2000.

