
                             Elsevier Editorial System(tm) for 

Transportation Research Part A: Policy and Practice 

                                  Manuscript Draft 

 

 

Manuscript Number:  

 

Title: Multivariate Exposure Modeling of Accident Risk: Insights from 

Pay-as-you-drive Insurance Data  

 

Article Type: Research Paper 

 

Keywords: GPS trajectories; In-vehicle data recorder; risk exposure; 

accident research; Pay-as-you-drive insurance; multivariate logistic 

regression; low-mileage bias. 

 

Corresponding Author: Mr. Johannes Paefgen,  

 

Corresponding Author's Institution: University of St. Gallen 

 

First Author: Johannes Paefgen 

 

Order of Authors: Johannes Paefgen; Thorsten Staake, Dr.; Elgar Fleisch, 

Prof. Dr. 

 

Abstract: The increasing adoption of In-vehicle Data Recorders (IVDR) for 

commercial purposes such as Pay-as-you-drive (PAYD) insurance is 

generating new opportunities for transportation researchers. An important 

yet currently underrepresented theme of IVDR-based studies is the 

relationship between the risk of accident involvement and exposure 

variables that differentiate various driving conditions. Using an 

extensive commercial data set, we develop a methodology for the 

extraction of exposure metrics from location trajectories and estimate a 

range of multivariate logistic regression models in a case-control study 

design. We achieve high model fit (Nagelkerke`s R2 0.646, Hosmer-Lemeshow 

significance 0.848) and gain insights into the non-linear relationship 

between mileage and accident risk. We validate our results with official 

accident statistics and outline further research opportunities. We hope 

this work provides a blueprint supporting a standardized 

conceptualization of exposure to accident risk in the transportation 

research community that improves the comparability of future studies on 

the subject. 
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 Metrics are used in multivariate logistic regression to predict accident involvement 

 After various transformations, a Nagelkerke R
2
 goodness-of-fit of 0.646 is achieved 

 Influence of driving conditions and the mileage-risk relationship are discussed 

 Study shows that Pay-as-you-drive insurance data can yield novel insights 
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1. INTRODUCTION 

The advent of low-cost sensing and data transmission technology in a substantial number of road vehicles 

is providing transportation researchers with new opportunities for empirical research. While in 1976 the 

recording of driving data for research purposes in a sensorized vehicle required extensive hardware 

modifications and bulky equipment such as digital tape recorders (Helander & Hagvall 1976), today‟s 

technology exhibits higher performance on a miniature scale and at a fraction of the cost. Data collection 

units installed in vehicles – commonly referred to as in-vehicle data recorders (IVDR) – are providing 

driving and travel information from hundreds to thousands of vehicles over years of operation (Huang et 

al. 2010; Toledo et al. 2008; Oren Musicant et al. 2010; Jun et al. 2010).  Various researchers have 

furthermore demonstrated that IVDR data is more reliable and of higher resolution than conventional, 

self-reported driving data, thus increasing the validity and quality of insights inferred  (Wolf et al. 2003; 

Wolf et al. 2001; Blanchard et al. 2010; Forrest & Pearson 2005; Stopher et al. 2007). 

One important research application of IVDR data is the analysis of antecedents and consequences of 

accident involvement. This is a major objective of prominent naturalistic driving studies, which 

unobtrusively collect data from large vehicle samples over long periods with sophisticated sensing 

solutions that include positioning, acceleration, and video data (Jovanis et al. 2011; Shankar et al. 2008; 

Gordon et al. 2011; Tarko 2012; K.-F. Wu & Jovanis 2012). While these studies yield an unprecedented 

level of detail with regard to driving behavior, they also require extensive financial resources and 

personnel for the equipment of vehicles, provision of information processing systems, and the 

administration of study participants. Bringing these costs in relationship to the size of acquired samples, 

one arrives at per-vehicle investments in naturalistic driving studies that can exceed USD 20,000. 

Vehicle fleets equipped with IVDR for commercial purposes constitute an alternative source of data, 

featuring large sample sizes without saddling researchers with high equipment costs. For this paper, we 

utilize IVDR data made available by PAYD insurance providers. Under PAYD insurance, premiums are 

calculated based on the actual vehicle usage instead of conventional lump-sum payments, thereby 
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improving actuarial risk differentiation and incentivizing risk mitigation by policyholders (Desyllas & 

Sako 2012). For premium calculation, data is collected (i) with auditable quality, (ii) in sample sizes up to 

hundreds of thousands of vehicles, and (iii) over prolonged observation periods. A general objective of 

the paper at hand is to demonstrate the potential use that IVDR data obtained from PAYD insurance 

providers has in accident research. 

We present a case-control study based on an IVDR dataset obtained from a PAYD insurance service 

provider. We conduct a comparative analysis of different types of vehicle exposure with respect to their 

effect on accident involvement. A plethora of previous work has discussed the relationship between 

mileage exposure and accident involvement (Foldvary 1975; Janke 1991; Progressive Insurance 2005; 

White 1976; Lourens et al. 1999; Jovanis & Chang 1986; Langford et al. 2008; Staplin et al. 2008). Yet, 

studies that pursue a differentiated modeling approach to exposure and discriminate environmental 

conditions under which mileage was accumulated are sparse. In particular, the available sample size and 

resolution in such studies typically constrains the number of independent variables and prohibits the use 

of multivariate models. Our study utilizes location trajectories collected from two samples of 1,000 

(control group) and 600 (case group) vehicles, collected over 24 and 6 months, respectively. We devise a 

methodology for the extraction of exposure metrics from location data and discuss a range of multivariate 

logistic regression models estimated with exposure variables. 

After careful modification in several steps, the final model exhibits high predictive performance. The 

model is validated through comparison with official accident statistics. Furthermore, we obtain insights 

regarding the characteristic of the non-linear relationship between mileage and accident risk. In the 

concluding section of the paper, we discuss limitations to our work and outline continuing research 

opportunities. We propose that an exposure aggregation procedure developed in the paper may serve as a 

blueprint for the standardization of exposure variables that can facilitate comparative and meta-level 

analyses in subsequent work. Finally, we comment on critical issues in the collaboration between 

researchers and fleet operators, encouraging the use of commercially obtained IVDR data in future 
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studies. 

2. RELATED WORK 

2.1. IVDR Data in Accident Research 

Early studies in transportation research utilizing IVDR data reach back several decades, when the 

technological complexity of data acquisition and processing as well as the associated costs prohibited the 

simultaneous collection of driving data from large numbers of vehicles. When we prepared a review of 

such studies for this paper, we found that the sample sizes of IVDR-based studies reached representative 

scales only recently (Table 1). The Texas Mileage study published by Progressive Insurance, a PAYD 

provider in the US, may be considered outstanding with respect to both the number of observed vehicles 

and the observation period. The corresponding report (Progressive Insurance 2005) presents a regression 

analysis of  the relationship between annual mileage and incurred insurance losses for different coverage 

types, comprising more than 200,000 vehicles. For a basic linear regression model, the study obtains 

goodness-of-fit indicators of R
2
 > 0.82. The study does not address any other variables besides annual 

mileage, nor does it give a detailed description of sample selection. While the study arguably does not 

offer any genuinely novel insights, it does give an indication of the potential that comes with PAYD 

insurance data from a research perspective. The sample size remains unmatched in other scientific 

undertakings in this domain, and in theory it allows for the development of sophisticated models that 

combine a plethora of driving variables in the estimation of accident risk. 

A more rigorous approach to IVDR-based accident research pursues a range of studies collectively 

referred to as naturalistic driving. The label naturalistic driving signifies non-intrusive data collection that 

informs researchers of detailed driving style and travel behavior during everyday vehicle use. A major 

part of recent publications in this domain builds upon data collected in the course of a naturalistic driving 

trial conducted between 2001 and 2006 by the US National Highway Traffic and Safety Administration 

(Gordon et al. 2011; Jovanis et al. 2011; Tarko 2012; K.-F. Wu & Jovanis 2012; Shankar et al. 2008). In 

the trial, kinematic measurements were used to identify critical driving events, which were then screened 
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by means of video and survey data, delivering an unprecedented level of detail in measurement. The trial 

comprised 100 vehicles. A second, significantly larger naturalistic driving study is currently underway as 

part of the US Strategic Highway Research Program (2nd Strategic Highway Research Program 2012). 

The study will equip 3,000 vehicles in several US states with IVDRs and will thus cover a more diverse 

and representative sample, with a planned budget of approximately USD 67 million. In Europe, proposals 

for similar studies are currently under discussion, such as the PROLOGUE, DaCoTa and 2BESAFE 

initiatives under the 7
th
 European Union research framework program, yet to our knowledge there are no 

published results available at present. 

Various other studies with sample sizes in the lower three-digit range have used IVDR data in accident 

research. A lack of standardization with regard to which data is collected and how it is reported makes it 

difficult to compare the results across these studies and with the previously mentioned studies. An 

additional limitation is that a majority of these studies come from US driver populations, while Asian and 

European samples appear underrepresented. While several IVDR studies in China used extensive samples 

of taxi fleets that exceeded more than 7,600 vehicles (Huang et al. 2010; Zhang et al. 2011), these were 

not evaluated from an accident analysis perspective.  

In our opinion, current IVDR-based research activities exhibit a shortcoming when it comes to the 

modeling of accident risk based on the accumulated exposure of vehicles. This also does not appear to be  

a research objective among current and future naturalistic driving studies. The Texas Mileage Study – as 

the only study with this focus of substantial sample size – does not take a differentiated perspective on 

exposure modeling and as this paper went to press had not been published in peer-reviewed outlets. To 

make this point clearer, we discuss the conceptualization of exposure to accident risk for IVDR-based 

studies in the next section. 
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Project Name Sample Description 
Observation 

Period 
Region Reference(s) Relevant Research 

SAMOVAR 270 commercial vehicles 24 months Netherlands (Wouters & Bos 2000) Effect of driver feedback 

n.a. 
61 private drivers, 1 

IVDR-equipped vehicle 
60 minutes Virginia, US (Boyce & Geller 2002) 

Analysis of critical driving 

events 

ISA Trial 4,840 18 months Sweden 

(Hjälmdahl & Varhelyi 

2004) 

(Biding & Lind 2002) 

Evaluation of different 

intelligent speed 
adaptation devices 

n.a. 
125 bus drivers in 1 

IVDR-equipped vehicle 

approx. 30 

minutes 
Sweden (Wahlberg 2004) 

Estimation of past crash 

involvement 

Texas Mileage 

Study 

203,941 vehicles insured 
by Progressive Casualty 

Insurance Company 

36 months Texas, US 
(Progressive Insurance 

2005) 

Relationship between 
mileage and insurance 

claims 

Commute Atlanta 

Program 
167 private vehicles 6 months 

Atlanta GA, 

US 

(Jun et al. 2007) 

(Jun et al. 2010) 

(Ogle et al. 2005) 

Relationship between 

mileage, velocity, 

acceleration and accident 
involvement 

DriveDiagnostics 
System 

191 commercial vehicles 
Between 6 and 

35 months 
Israel (Toledo et al. 2008) 

Relationship between 

critical driving events and 
accident involvement; 

Effect of driver feedback 

Green-Box 109 commercial vehicles 6 months Israel 
(Oren Musicant et al. 

2010) 
Analysis of critical driving 

events 

NHTSA / VDOT 

Naturalistic 
Driving Study 

100 private and 

commercial vehicles 
12 months 

Washington 

DC and 
Virginia, US 

(Shankar et al. 2008) 

(Gordon et al. 2011) 

(Jovanis et al. 2011) 

(Tarko 2012) 

(K.-F. Wu & Jovanis 2012) 

Analysis of critical driving 

events 

SHRP 2 
Naturalistic 

Driving Study 

(Planned) 

3,000 private and 

commercial vehicles 
24 months 

6 states in the 

US 
n.a. n.a. 

Presented Study 
1,600 private and 

commercial vehicles 

6 months (case 

group) 

24 months 
(control group) 

Northern Italy n.a. 
Comparison of exposure 

across various driving 

conditions 

 

Table 1. IVDR-based studies with relevant research, in loose chronological order. 
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2.2. Conceptualization of Accident Risk Exposure 

The term exposure appears frequently in transportation research publications yet appears to lack an 

unambiguous, overarching definition. A common interpretation of exposure is the accumulated mileage 

of a vehicle, implying that with mileage, the ceteris paribus probability of accident involvement increases 

(Wolfe 1982). Previous work has investigated the role of mileage as a single predictor of accident risk 

(M. Chipman 1982; Foldvary 1975; Jovanis & Chang 1986; Lourens et al. 1999). Analogously, exposure 

can also refer to the driving duration of a vehicle (Wolfe 1982; M. L. Chipman et al. 1992; M. L. 

Chipman et al. 1993). While the Texas Mileage Study for example referenced in the previous section 

found a linear relationship between mileage and insurance claims, non-linear relationships particularly for 

low-mileage drivers have also been discussed in the literature (Janke 1991; Staplin et al. 2008; Langford 

et al. 2008). A more differentiated view of exposure was introduced by (Risk & Shaoul 1982), who 

pointed out that the measure of vehicle mileage “seems to reflect mainly the extent rather than the degree 

of accident risk exposure.” While extent signifies a quantitative representation of exposure, e.g., 

accumulated mileage, degree refers to qualitative characteristics of exposure. For instance, the authors 

discuss road properties as a criterion for the discrimination of exposure degrees. 

While mileage is comparatively simple to obtain even for large vehicle samples, differentiated data on 

driving exposure was difficult to collect prior to the advent of IVDR-based field studies. (Jun et al. 2010) 

have recently demonstrated the various exposure types accessible through IVDR data in the context of the 

Commute Atlanta Program. Their case-control study design, comprising 167 IVDR-equipped vehicles, 

examines the differences between vehicles that were either accident-involved or accident-free over the 

duration of a limited observation period. They compare several velocity-derived exposure metrics across 

the two groups controlling for road type (freeways, arterials, or local roads) and day times. 

A shortcoming of previous IVDR-based studies that investigate the relationship between exposure 

variables and accident involvement is the restriction to univariate modeling, i.e., testing is typically 

restricted to individual factor effects. Multivariate exposure models would allow for a comparative 
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assessment of independent variables and reveal correlations between them; However, they also require 

sample sizes that exceed most published IVDR studies by an order of magnitude. Furthermore, there 

appears to be no common understanding as to how different “degrees” of exposure, or driving situations, 

can be integrated with the “extent” of exposure, e.g., mileage, in a single, holistic model. The objective of 

the paper at hand is to devise a remedy for these issues, both from a methodological and an empirical 

perspective. 

3. DATA SAMPLING AND PROCESSING 

3.1. IVDR Data from PAYD Insurance 

We obtained the IVDR data used in our study from a major European PAYD insurance service provider. 

In the handling of the data, we adhered to strict privacy-protecting measures. In particular, we did not 

access information regarding the driver profiles or their insurance company. Each vehicle was equipped 

with an on-board unit that included a GPS sensor and wireless transmission capabilities. During vehicle 

operation, position updates were carried out every couple of seconds and aggregated on the device level 

to reduce costs of data transmission and storage. For aggregation, the system calculated travelled distance 

from incremental position updates and generated new data entries every segment of 2,000 m. Next to a 

vehicle‟s latitude and longitude, data points consisted of a time stamp, ignition status of the vehicle, and 

driven distance since the previously generated data point. Segment distance lay below 2,000 m when 

vehicle ignition was turned off and the current trip ended. Segment distance could in some cases exceed 

the 2,000 m interval if no position update was available for some time owing to signal obstruction, for 

example, causing the segment to end only with the next valid position measurement. Figure 1 gives an 

example of segment end locations plotted for a single vehicle in the sample accumulated over 24 months. 

Through straightforward computations, we extended raw data points to include the elapsed time since the 

last update, which in turn allowed us to compute the average velocity for the previously driven distance. 

In addition, the system inferred a road type indicator from data point locations, which distinguished urban 

roads, extra-urban roads, and highways. Start and end locations of vehicle trips were available from data 
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points generated upon changes of the vehicle ignition status (i.e., engine start and switch off). 

< Figure 1 about here > 

3.2. Sample Selection 

In its entirety, the IVDR database is computationally intractable by means available to us; thus, we 

resorted to a randomized sampling procedure. Sampling followed a case-control research design (Schulz 

& Grimes 2002)  and was carried out as follows: We randomly drew a sample of 600 vehicles that had an 

accident in  2008.  This sample contained six months of location data prior to the accident event. Accident 

comprises the categories “incident,” “incident with injuries,” and “incident with death,” according to the 

Italian traffic authorities. We used stratified sampling to achieve an even distribution of accident events 

over the year, so that one-twelfth, i.e., 50 vehicles, shared the same month in which the accident occurred. 

By sampling an equal number of accident events for each month, we hoped to eliminate the effect of 

seasonal variations on accident frequencies in our analysis. No location data beyond an accident event 

were included in the sample, as previous work has reported strong variations in driving patterns in the 

aftermath of an accident (Mayou et al. 1993). As a control group, we furthermore randomly drew a 

second sample of 1,000 vehicles from the data pool with twenty-four months of location data without 

accident involvement throughout this period,  spanning from July 2007 to June 2009.  

A number of vehicles were eliminated from both samples  for the following reasons: 

 Further accident events in the six-month observation periods of accident-involved vehicles that 

would affect vehicle usage,  

 errors in data recording or storage that made it impossible to process the resulting log files, 

 failure of GPS sensors over prolonged periods, so that no location data was available for certain 

vehicles even though ignition status indicated vehicle use, and 

 non-continuous GPS readings that resulted in excessively long travelled distances. 

These instances were unambiguously identifiable and resulted in a reduction of the accident-involved 

sample by 17 vehicles (2.8%) to 583 and of the accident-free sample by 16 vehicles (1.6%) to 984. No 

further elimination of outliers was undertaken, since we argue that their effect on the results of logistic 
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regression analysis is negligible due to the large sample size. Both samples combined cover 

approximately 45.7x10
6
 kilometers driven distance in 1.0x10

6
 hours of vehicle operation. 

3.3. Aggregation to Exposure Matrix 

The combined datasets comprise 2,679,425 data points, i.e., trip segments, with an average of 958.5 data 

points per vehicle. In order to prepare the statistical analysis of vehicle exposure, we further process these 

segments to aggregated exposure metrics on an individual vehicle level. We define an N-by-M accounting 

matrix E, where each row index n corresponds to one of the 1,567 vehicles in the combined datasets, and 

each column index m represents a distinct condition under which a given vehicle accumulated a fraction 

of its mileage. When data points are processed, the aggregation algorithm identifies the driving condition 

for a given segment and increments the corresponding entry in E by the mileage associated with that 

segment. An overview of the aggregation process is depicted in Figure 2. 

< Figure 2 about here > 

Choosing reasonable criteria for the exposure conditions that determine the columns of matrix E is non-

trivial. For the dataset at hand, we intend to take into account the following information that we can 

directly infer for a given segment: 

 at which time of the day and 

 on which day of the week a vehicle was operated, 

 which road type was predominantly used (as indicated by segment start location), 

 and what the average velocity was. 

Aggregating driven mileage separately for different driving situations requires a discretization of the 

continuous situational variables daytime and velocity. We initially choose a high resolution for 

discretization and discuss a fusion of adjacent categories according to a similarity criterion in Section 4. 

We discretize the time of day variable in hourly intervals. With respect to velocity, we consider five 

intervals of 30 km/h width, where the last interval is open-ended and thus captures all vehicle operation 

above 120 km/h. For the weekday variable, we consider each of the seven weekdays as a separate 
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category. Lastly, we maintain the already established differentiation between highways, urban, and extra-

urban roads for the road type variable. 

If the above conditions were taken into account simultaneously, each column in E would correspond to a 

specific combination of a daytime interval, a day of the week, a road type, and a velocity interval. This 

would result in 2,520 different mileage exposure counts and yield an excessive number of variables 

unsuitable for modeling purposes. We therefore aggregate situational exposure in parallel, i.e., for each of 

the named criteria separately. Thus, the number of columns in E is reduced to 39 as displayed in Table 2. 

We acknowledge that the described approach precludes accounting for exposure as specified by an 

overlay of intervals (e.g., a certain time interval on a certain day) and thus precludes the analysis of 

interaction effects. Note that exposure generated by a given segment is registered in four columns 

simultaneously, each one corresponding to the active interval of one of the four factors.  

Time of day Day of week Road type Velocity interval Σ 

24 columns 7 columns 3 columns 5 columns 39 columns 

 

Table 2. Column structure of exposure aggregation matrix E 

We compute the overall mileage exposure (i.e., total number of driven km) for each driver in the sample 

by summing up a subset of column entries in E for a specific category. The resulting sum is the same 

across categories (time of day, day of week, etc.) due to the separate accounting of these conditions. Next, 

we divide all entries in a row of E by the resulting value, i.e., the mileage exposure for each vehicle. In 

consequence, the modified entries in E represent the fraction of exposure accumulated under specific 

conditions. For example, a value of 0.2 in the column corresponding to road type „highway‟ signifies that 

the vehicle has accumulated 20 percent of its mileage exposure under these conditions. As the overall 

accumulated mileage is also of relevance, it is stored in an additional column, normalized by the 

observation period of the respective group (i.e., 6 and 24 months, respectively), so that we obtain a per-

month mileage exposure value. At this stage, the raw data processing yields 40 variables per vehicle, 

represented as columns of matrix E. Histograms of average monthly mileage and the exemplary velocity 
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exposure interval between 60 and 90 km/h across the rows of E are shown in Figure 3. 

< Figure 3 about here > 

4. EXPOSURE-BASED LOGISTIC REGRESSION MODELS 

In order to systematically analyze differences between case and control group, we employ logistic 

regression modeling (Christensen 1997). In logistic regression, a linear combination 
0 i i

i

g x  
 

of 

exposure variables xi is the argument of a logistic function, the output of which is interpreted as the 

probability of event occurrence, 

ˆ ˆ(case | ) 1 (control | ) .
1

g

i i g

e
P x P x

e
  

  

Using maximum likelihood methods, the intercept β0 and the coefficients βi are estimated such that the 

errors between predicted probabilities and actual event observation – one in the case group, zero in the 

control group – are minimized. 

We provide three goodness-of-fit measures for logistic regression models. These are pseudo-R
2
 indicators 

according to (Cox & Snell 1968) and (Nagelkerke 1991), as well as the Hosmer-Lemeshow test statistic 

(Lemeshow & Hosmer 1982). We evaluate different logistic regression model variants based on modified 

sets of exposure variables. In order to avoid under-fitting or over-fitting of our model, we employ a 

backwards stepwise estimation approach, where variables are iteratively removed from the model if their 

significance exceeds a threshold of p = 0.1 according to the Wald test. 

The computation of minimally required sample size or statistical power for multivariate logistic 

regression models is a complex problem, see, e.g., (Schoenfeld & Borenstein 2005). No exact formulas 

are available for a larger number of non-normal distributed predictors, and in particular for the mixed 

variable-type model in Section 4.4. We therefore resort to approximate simulation studies that give a 

lower bound on sample cases per predictor (Peduzzi et al. 1996). A conservative minimum for this ratio 

given by the authors is 36. Considering our sample size of 1,567 vehicles, this renders feasible the 
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estimation of models with up to 43 predictors. 

4.1. Full Variable Set 

For an initial model, we consider the entire variable set contained in the exposure matrix E as introduced 

in Section 3. The stepwise estimation yields 35 variables out of the available 40 included in the model. 

These are all daytime intervals, six of the seven weekday intervals, urban and highway road-type 

exposure, and the velocity intervals 0-30 km/h and 60-90 km/h. Average monthly mileage is also 

included. Pseudo-R
2
 values show a good fit with 0.387 (Cox & Snell) and 0.528 (Nagelkerke), while the 

Hosmer-Lemeshow test is not significant (χ
2
 = 8.539, p = 0.383) and thus confirms good model fit. 

However, the model exhibits high error terms, in particular for the daytime variables ( > 2,800), which we 

attribute to high collinearity, i.e., non-independent error terms. As a remedy for this, we proceed with a 

selective merging of adjacent exposure intervals to reduce collinearity in the subsequent section. We omit 

a detailed account of coefficients and p-values for this model for the sake of brevity. 

4.2. Merged-intervals Variable Set 

As a preliminary indicator for the merger of exposure intervals, we conduct an exploratory factor analysis 

across intervals of the daytime and weekday variable groups. We employ the well-established method of 

Principal Components Analysis (Jolliffe 2005) in order to obtain a target estimate of the number of 

merged intervals. The corresponding Scree plots are given in Figure 4. For the 24 intervals in the daytime 

variable group, factor analysis yielded seven factors with Eigenvalues larger than one, however with a 

distinct bend in the Scree plot after the fourth factor. For the weekday variable group, only one factor with 

an Eigenvalue larger than one is obtained, while the corresponding Scree plot exhibits a bend after the 

second factor. As an alternative indicator for the similarity between intervals, we furthermore compare the 

mean differences between case and control samples across different intervals. Combining both analyses, 

we conclude (i) to merge the daytime variables into four new intervals (00-05h, 05-18h, 18-21h, and 21-

24h) and (ii) to merge the day of week variables into two new intervals (Monday through Thursday, and 

Friday through Sunday). 
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< Figure 4 about here > 

After three iterations, the logistic regression model contains 9 variables, which are given in Table 3 

together with β-coefficients, error terms and p-values. Based on standard errors, average monthly mileage 

is observed to be the strongest indicator. Its small coefficient is due to the comparatively large values (in 

km) of the corresponding variable. With pseudo-R
2
 values of 0.353 (Cox & Snell) and 0.482 

(Nagelkerke), goodness-of-fit is slightly lower than in the previously discussed model, and the Hosmer-

Lemeshow χ
2
 of 12.169 is not significant (p = 0.144). Error terms now take acceptable values (below 

0.595) except for the constant term (1.903), confirming the successful reduction of collinearity in 

comparison to the non-merged-interval variables. 

4.3. LN-transformed Variable Set 

For further improvement of model fit, we examine the distributional characteristics of exposure variables. 

We observe most predictor distributions, and particularly average monthly mileage, to be left-skewed; see 

Error! Reference source not found.. Under the assumption that they approximately follow a log-normal 

distribution, we transform variables by taking their natural logarithm in order to improve their 

resemblance to a normal distribution. For the two exemplary variables of Figure 3, we plot the observed 

cumulative probability of untransformed and LN-transformed variables against the cumulative probability 

of a normal distribution in Figure 5. The benefit of LN-transformation was not equal for all exposure 

variables, although it was evident for a majority. 

< Figure 5 about here > 

While normality of predictor variables is not a requirement of logistic regression, it typically improves the 

model fit (Christensen 1997). We estimate a logistic regression model based on a LN-transformed, 

merged-interval variable set. After seven removal iterations, the model again contains nine variables, 

which are given in Table 4 together with β-coefficients, error terms and p-values. The model achieves 

improved pseudo-R
2
 values of 0.454 (Cox & Snell) and 0.614 (Nagelkerke). However, the Hosmer-
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Lemeshow test becomes significant (χ
2
 = 14.372, p = 0.073), indicating insufficient predictive 

performance. Subsequently, we remedy this observed degradation of the Hosmer-Lemeshow statistic by 

extending our model to include non-linearities. 

4.4. Categorical Mileage Exposure 

With a value of the Wald statistic of 255.733, average monthly mileage exceeds all other predictors by a 

multiple in terms of the significance of its effect on the log-odds in the model discussed above. Based on 

a detailed analysis of descriptive statistics, we hypothesize a non-linear relationship between mileage 

exposure and the log-odds. (Christensen 1997) has suggested remedying the issue of non-linearity in 

logistic regression by transforming metric variables to ordinal levels and including them as a categorical 

predictor. We therefore generate binary dummy variables that associate each case in the sample with a 

certain average monthly mileage interval, using the lowest interval as the reference level. We discretize in 

5 and 10 intervals, with an equal percentage of cases in each respective interval, i.e., 20% and 10%. The 

resulting model parameters are given in Table 5 and Table 6. For the 5-bin mileage variable, pseudo-R
2
 

values are approximately the same as for the model described in Section 4.3, albeit with a considerably 

improved Hosmer-Lemeshow test result (χ
2
 = 10.026, p = 0.263). For the 10-bin mileage variable, 

pseudo-R
2
 values rise to 0.478 (Cox & Snell) and 0.646 (Nagelkerke) and the Hosmer-Lemeshow χ

2
 of 

4.097 tested highly insignificant (p = 0.848). 
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Variable Coefficient 
Standard 

Error 
Significance 

Time of day    

05-18h 4.346 1.047 <.001 

18-21h 7.277 1.543 <.001 

21-24h 13.121 2.241 <.001 

Day of week    

Monday through Thursday 4.748 .839 <.001 

Road type    

Urban 2.616 .706 <.001 

Highway -2.804 .490 < .001 

Velocity interval    

0-30 km/h -6.625 1.543 <.001 

60-90 km/h -8.613 .695 <.001 

Avg. monthly mileage .001 .000 <.001 

Constant -7.261 1.249 <.001 

 

Table 3. Coefficients, error terms and significance for model based on merged-interval variable set. 
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Variable Coefficient 
Standard 

Error 
Significance 

Time of day 

(LN-transformed) 
   

05-18h -1.671 .595 .005 

18-21h .567 .131 <.001 

Day of week 

(LN-transformed) 
   

Friday through Sunday -1.216 .403 .003 

Road type 

(LN-transformed) 
   

Urban 1.065 .241 <.001 

Highway -.305 .118 .010 

Velocity interval 

(LN-transformed) 
   

0-30 km/h 1.021 .345 .003 

60-90 km/h -1.573 .248 <.001 

90-120 km/h .454 .150 .002 

Avg. monthly mileage 

(LN-transformed) 
3.829 .239 <.001 

Constant -28.973 1.903 <.001 

 

Table 4. Coefficients, error terms and significance for model based on merged-interval and LN-

transformed variable set. 
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Variable Coefficient 
Standard 

Error 
Significance 

Time of day 

(LN-transformed) 
   

05-18h -.424 .118 <.001 

18-21h .720 .164 <.001 

Day of week 

(LN-transformed) 
   

Friday through Sunday -.352 .125 .005 

Road type 

(LN-transformed) 
   

Urban .679 .152 <.001 

Velocity interval 

(LN-transformed) 
   

0-30 km/h .455 .141 .001 

60-90 km/h -.655 .128 <.001 

90-120 km/h .292 .165 .077 

Avg. monthly mileage 

(categorical) 
   

< 1,021 km 
0 

(reference) 
- - 

1,021 - 1,585 km .933 .357 .009 

1,585 - 2,522 km 2.989 .339 <.001 

2,522  - 3,966 km 4.979 .371 <.001 

> 3,966 km 6.478 .483 <.001 

Constant -3.997 .322 <.001 

 

Table 5. Coefficients, error terms and significance for model based on merged-interval and LN-

transformed variable set, categorical mileage exposure (5 bins). 
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Variable Coefficient 
Standard 

Error 
Significance 

Time of day 

(LN-transformed) 
   

05-18h -.397 .123 .001 

18-21h .698 .168 <.001 

Day of week 

(LN-transformed) 
   

Friday through Sunday -.266 .133 .046 

Road type 

(LN-transformed) 
   

Urban .737 .163 <.001 

Highway -.289 .142 .042 

Velocity interval 

(LN-transformed) 
   

0-30 km/h .380 .152 .012 

60-90 km/h -.733 .137 <.001 

90-120 km/h .306 .177 .084 

Avg. monthly mileage 

(categorical) 
   

< 767 km 
0 

(reference) 
- - 

676 - 1,021 km .361 .576 .531 

1,021 – 1,274km 1.023 .544 .060 

1,274 - 1,585 km 1.394 .529 .008 

1,585 – 2,000 km 2.623 .508 <.001 

2,000 – 2,522 km 4.075 .514 <.001 

2,522 – 3,188 km 4.672 .523 <.001 

3,188  - 3,966 km 6.539 .579 <.001 

3,966 – 5,705 km 7.193 .637 <.001 

> 5,705 km 7.032 .721 <.001 

Constant -4.418 .475 <.001 

 

Table 6. Coefficients, error terms and significance values for model based on merged-interval and LN-

transformed variable set, categorical mileage exposure (10 bins). 
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4.5. Discussion 

We subsume goodness-of-fit measures for all discussed models in Table 7. Clearly, the last model 

outperforms the previous ones in terms of both pseudo-R-squares and Hosmer-Lemeshow test results. An 

interesting observation is the apparent independence of these two measures, as evident from the 

introduction of the categorical monthly mileage variable. Furthermore, we report the AIC (Akaike 1974) 

and BIC (Schwarz 1978) information criteria computed from 

AIC 2 2ln( ),   and  BIC ln( ) 2ln( ),k L k n L   
 

where k is the number of variables in the model, n = 1,567 the sample size, and L the likelihood. While 

the AIC is consistent in that the 10-bin categorical model receives the lowest, i.e., best score, the non-

categorical model is slightly favorable according to the BIC, though very close to the 10-bin model. 

From the β-coefficients in Table 6, we are able to infer a ranking of different driving exposure types 

according to their influence on the accident involvement log-odds. We find that 

 The risk of accident involvement is lower for the daytime interval between 5:00 and 18:00 hours, 

while higher for the interval between 18:00 and 21:00 hours. 

 Driving exposure accumulated on weekends, including Fridays, is associated with lower risk. 

 Urban driving is associated with high risk, while driving on highways has the lowest risk per 

fraction of mileage. 

 The mid-range of velocities (60 to 90 km/h) has the lowest risk of accident involvement, while 

both the lowest velocity interval (0 to 30 km/h) and the second-highest interval (90 to 120 km/h) 

are associated with higher risk. 

The coefficients for velocity intervals seem counterintuitive, as the literature generally associates higher 

velocities with higher risk of accident involvement. However, one has to consider that the duration of 

vehicle operation for a given amount of mileage is inversely proportional to velocity. This effect may also 

contribute to the elevated coefficient of urban driving. 
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We compare the inferred rankings of exposure situations with averaged accident statistics for the year in 

which the accidents observed in our sample occurred (Figure 6 and 7). For the weekday and the road type 

statistics, both show the same trend. For daytime intervals, the result of normalization becomes evident. 

While the hourly average of accidents is higher between 5:00 and 18:00 hours, vehicles in our sample 

drove an hourly average of 158.3 km per month for this interval, compared to 81.5 km between 18:00 and 

20:00 hours. This confirms the validity of our model and demonstrates the additional insights accessible 

through an exposure-based analysis of road accident involvement. 

< Figure 6 and 7 about here > 

With respect to average monthly mileage, a conversion from a metric to a categorical variable revealed a 

non-linear relationship to the log-odds. To demonstrate this finding, we plot the lower mileage-interval 

bounds against the β-coefficients of the corresponding dummy variables in Figure 8. Coefficient values 

monotonously increase up to 4,000 km but slightly decrease for the top interval. Up to this point, two 

segments are distinguishable. Below approximately 1,600 km, a linear function overestimates the per-

mile risk contribution, while above this limit it is underestimated. 

Our results appear to contradict the linear mileage-risk relationship as suggested by, e.g., the Texas 

Mileage Study. Furthermore, we do not observe the „low-mileage bias‟ in terms of an elevated risk at 

lower mileage exposure as discussed in Section 2.2. However, both discrepancies may be explained by 

the simultaneous consideration of mileage and situational exposure variables in our analysis. Controlling 

for the influence of road type, daytime, etc. – factors that have been suggested as causal for the „low-

mileage bias‟ (Janke 1991) – it is not surprising that our assessment of the mileage-risk relationship 

diverges from univariate models. 

< Figure 8 about here > 
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Model 
-2 Log 

likelihood 
k 

Information Criteria Pseudo-R
2
 Hosmer-Lemeshow Test 

AIC BIC Cox & Snell Nagelkerke χ
2 

Sig. 

Full variable 

set (35 out of 

40) 

1,301.044 35 1,441.044 1,558.536 .387 .528 8.539 .383 

Merged-

interval  
1,385.644 10 1,425.644 1,459.213 .353 .482 12.169 .144 

Merged-

interval, LN 

transformed 

925.959 10 945.959 999.528 .454 .614 14.372 .073 

Merged-

interval, LN 

transformed, 

5-cat. 

mileage 

925.928 12 949.928 1,014.211 .453 .612 10.026 .263 

Merged-

interval, LN 

transformed, 

10-cat. 

mileage 

870.506 18 906.506 1,002.93 .478 .646 4.097 .848 

 

Table 7. Goodness-of-fit measures for logistic regression models. 

 

5. CONCLUSION 

In this study, we have proposed a methodology for multivariate modeling of the exposure-accident 

relationship with IVDR data. Based on location trajectories from 1,600 vehicles obtained from a PAYD 

insurance provider, we have developed and validated several models that explain differences between 

accident-involved and accident-free vehicles in a case-control study. The discussed models combine 

mileage as a measure of the “extent” of exposure with several groups of situational variables that 

represent the “degree” of exposure, such as daytime, weekday, road type, and velocity. 

From model coefficients, we were able to infer a ranking of situational variables with respect to their 

contribution to the risk of accident involvement. A comparison with official accident statistics 

demonstrated the value of a differentiated concept of exposure, which supports the interpretation of 

observed accident frequencies. Furthermore, we presented evidence that when the driving situation is 
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controlled for, the relationship between mileage and accident involvement deviates from a linear function. 

5.1. Limitations and Research Opportunities 

We acknowledge principal limitations of case-control studies. In particular, we point out that odds ratio 

estimates are different from relative risk and do not allow for any inference of probability of accident 

involvement for an individual vehicle, or accident frequencies. Such information could be inferred in 

cohort studies that observe a given vehicle population over time, which would arguably require 

significantly larger sample sizes than in the presented study. The presented case-control study provides 

insights into the relative contribution of a multitude of influence factors for accident risk and outlines a 

holistic modeling approach to driving exposure. Given the availability of even larger sample sizes, and 

over longer observation periods, a cohort study with count-regression models (Lord & Mannering 2010) 

is likely to yield valuable additional information. 

Another possible extension of the presented study is a separation of accident types. Information regarding 

driver profile and vehicle,   which was not available to us for privacy reasons, would enable additional 

differentiation. Furthermore, the influence of additional variables extracted from raw data would be 

worthwhile to consider. These could for instance include trip lengths, the „familiarity‟ of routes and 

locations, or speed limit violations. In addition, the presented framework for exposure modeling is based 

solely on mileage. An alternate approach is to use driving duration as a primary measure of exposure. 

A further limitation of our research is the limited representativeness of the dataset. The sample is 

regionally restricted to Italy, and only contains vehicles operated under a PAYD insurance contract. As a 

majority of previous IVDR-based studies uses data from vehicles in the US, a European sample is, in our 

opinion, desirable. However, we call for researchers in other regions to reiterate the proposed modeling 

methodology and verify if our results can be reproduced with similar datasets. 

5.2. Additional Remarks 

In our opinion, the increasing number of IVDR-equipped vehicles that come with commercial services 
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such as PAYD insurance represents a momentous opportunity for transportation researchers. Besides the 

focus of our study, the used sample may deliver additional insights in fields such as the analysis of route 

choices, commuting patterns, or travel times. In order to unlock the potential of such data, we deem two 

objectives as particularly important from a research policy perspective. 

First, within the domain of accident analysis, it is worthwhile to consider a standardized conceptualization 

of exposure in terms of variables that can be derived from IVDR data. Compared to other means of 

empirical data acquisitions, IVDR are more objective and reliable, as measurement parameters can be 

precisely defined. This makes standardization feasible, which would facilitate the exchange of such data 

among researchers and support the use of meta-analyses to aggregate evidence across individual studies. 

We propose the aggregation of situational exposure developed in Section 3.3 as a blueprint for future 

work in this regard. 

Secondly, consideration should be given to technical, legal, and economical frameworks that enable the 

collaboration between researchers and commercial entities for the exchange of IVDR data. A primary 

issue in this regard is certainly the privacy of vehicle owners. A further challenge is the willingness of 

data providers to collaborate, although compared to the budget requirement of large-scale, dedicated 

research studies, financial compensation is a viable option. Ultimately, given the enormous efforts 

undertaken by agencies such as the NHTSA and its European and international counterparts to improve 

road safety, legislative action regarding the access to IVDR data from large vehicle fleets may also be 

worth considering. 
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FIGURE CAPTIONS 

Figure 1. Exemplary vehicle location trajectory, segment end-points (coordinate axes omitted for 

privacy reasons). 

Figure 2. Exposure aggregation process. 

Figure 3. Histograms of average monthly mileage (top) and the fraction of mileage accumulated 

within the 60-90 km/h velocity interval (bottom). 

Figure 4. P-P Plots for (a) avg. monthly mileage, (b) the same after LN-transformation, (c) 

relative exposure at 60-90 km/h, and (d) the same after LN-transformation. 

Figure 5. Scree plots for daytime (top) and weekday (bottom) exposure factors from PCA. 

Figure 6. Distribution of the 526,900 road traffic accidents that occurred in Italy in 2008 

according to day of week, daytime, and road type (ISTAT 2009). 

Figure 7. Non-linear progression of coefficients of categorical dummy-variables with average 

monthly mileage. 
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