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ABSTRACT 

We evaluate a mobile application that assesses driving behavior 

based on in-vehicle acceleration measurements and gives 

corresponding feedback to drivers. In the insurance business, such 

applications have recently gained traction as a viable alternative to 

the monitoring of drivers via “black boxes” installed in vehicles, 

which lacks interaction opportunities and is perceived as privacy 

intrusive by policyholders. However, pose uncertainty and other 

noise-inducing factors make smartphones potentially less reliable 

as sensor platforms. We therefore compare critical driving events 

generated by a smartphone with reference measurements from a 

vehicle-fixed IMU in a controlled field study. The study was 

designed to capture driver variability under real-world conditions, 

while minimizing the influence of external factors. We find that 

the mobile measurements tend to overestimate critical driving 

events, possibly due to deviation from the calibrated initial device 

pose. While weather and daytime do not appear to influence event 

counts, road type is a significant factor that is not considered in 

most current state-of-the-art implementations. 

Categories and Subject Descriptors 

I.5.2 [Computing Methodologies]: Pattern Recognition—

Feature Evaluation and Selection; J.4 [Computer Applications]: 

Social and Behavioral Sciences 

General Terms 

Measurement, Design, Reliability, Experimentation, Human 

Factors. 

Keywords 

Mobile Sensing; Smartphone; IMU Data; Driving Behavior; 

Insurance. 

1. INTRODUCTION 
The advent of mobile sensing platforms facilitates the cost-

effective capture and processing of fine-grained data from the 

physical world, thus increasing the information base of business 

processes and decision making [1]. In the insurance sector, such 

data can be used to improve the assessment, communication, and 

mitigation of insured risk, thereby creating value for insurers and 

policyholders alike. A particular instance of this proposition is 

motor insurance. Vehicular sensor data is indicative of accident 

risk and may be utilized to incentivize risk-minimizing behaviors 

among drivers, thus also contributing to overall traffic safety [2], 

[3]. The premise of this approach is that by providing feedback of 

recorded driving actions to drivers, they are encouraged to change 

their behavior and reduce their individual accident risk. Large-

scale field studies have reported an average estimated accident 

reduction of some 20% as the result of such interventions [4]. 

However, as with all sensing technology, the required installation 

of sensor and data transmission technology in vehicles raises 

severe privacy concerns among potential users who perceive the 

continuous monitoring by an insurer as intrusive [5]. In most 

insurance markets, consumers have thus rejected so-called Pay-

As-You-Drive or Pay-Per-Risk policies. Furthermore, installation 

and operation of the typical on-board units devised for this 

purpose incurs additional costs to insurers and consumers. 

An alternative approach is the assessment of driving behavior 

through smartphone applications that are operated at the users’ 

discretion. With increasing market penetration of state-of-the-art 

smartphones, consumers carry with them a connected sensing 

platform which allows for interaction with their data via intuitive 

visual interfaces. If insurers can leverage these platforms, no 

investments in additional hardware are required, and connectivity 

is often available at no additional cost. Furthermore, smartphone-

based driving assessment emphasizes the importance of user 

consent and is more of a driving support tool than a “black box” 

monitoring device. It is thus potentially more effective in 

persuasion towards improved driving behavior, and therefore in 

insured risk. Moreover, such mobile applications offer new touch 

points for the low-involvement product insurance, where 

conventionally interaction with consumers takes place only at the 

point of sale and in the case of an insurance claim. 

Considering their objective of inducing behavioral change among 

drivers – e.g., in an insurance context – it is an imperative 

requirement for such applications to deliver reliable and well-

understood measurements. While vehicle-fixed systems have been 

thoroughly tested in practice, the data quality provided by 

smartphones as a sensing platform is presumably inferior in 

comparison. New degrees of freedom are added to the system due 

to the generally unrestricted movement of a smartphone relative to 

the vehicle. While this fact is unchallenged in the literature, there 

is hardly any evidence on the degree of deterioration of data 

quality when smartphones are used, and there is little published 

evidence on the performance of such systems in the field. The 

paper at hand aims to address this issue by evaluating a specific 

application for the assessment of driving behavior in a controlled 

field study. We developed and implemented a reasonably complex 

driver rating application which is described in more detail in the 
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following Section. In the study, 78 participants drove a vehicle on 

a test course of approx. 45 minutes duration while the application 

was running. In order to evaluate the functional performance of 

the application, a dedicated, off-the-shelf sensing system was 

installed in the vehicle which recorded reference data. From a 

comparison of these two systems, we are able to assess the 

performance of the mobile sensing platform. 

2. RELATED WORK 

Our research builds on a broad body of literature on dedicated on-

board units that are mounted in a vehicle and compute risk indices 

from recorded sensor data [6], [7]. Sensor data in these solutions 

comprise position, acceleration, odometer readings or visual 

information; risk indices derived from these range from basic 

variables like vehicle velocity to sophisticated maneuver 

recognition algorithms that capture lane changes, U-turns, or 

distance to lateral road marks and preceding vehicles. 

Acceleration is particularly rich source of risk-related information 

as it allows for the detection of extreme braking and vehicle 

acceleration, sharp cornering, and sudden lateral movements [8]. 

Coupled with wireless data transmission technologies, specific on-

board unit solutions for insurance applications have been 

developed [2], and are currently available from several insurers 

such as Progressive in the US and SARA in Europe. 

Several related mobile applications have been released by 

academics, insurers, and other interest groups in the past. Such 

applications have focused on braking events and road bumps [9], 

the sensing of travel mode and trip purpose [10], and the 

identification of critical driving event from sensor fusion 

including a smartphone’s CMOS sensor [11]. It has also been 

proposed to extend a smartphone’s sensor capabilities by 

connecting it to a vehicle’s OBD-II diagnostics interface [12], 

[13] and retrieving external web-based data sources, e.g., weather 

conditions. Two exemplary applications are depicted in Figure 1. 

Insurance-themed driver-rating applications: Driver Feedback 

(iOS, left) and MotorMate (Android, right). 

    

Figure 1. Insurance-themed driver-rating applications: Driver 

Feedback (iOS, left) and MotorMate (Android, right). 

Arguably the most established method of assessing driving 

behavior among these approaches is to analyze the frequency of 

critical driving events [10]. Driving events are generated by 

different means of sensor fusion. They can be aggregated by 

summation and normalized over driven distance, and are thus 

suitable metrics of driving behavior. For the scope of this paper, 

we consider critical driving events as violations of certain 

thresholds imposed on vehicle acceleration. Acceleration is 

typically measured by inertial measurement units (IMU). 

 

Figure 2. 2D-IMU measurements on a moving vehicle. 

An abstract model of a vehicle following a driving path is 

depicted in Figure 2. In the plane of vehicle movement, let the 

vehicle-fixed x-axis be tangential to the path of the vehicle at any 

point in time, and the y-axis perpendicular. Then, four distinct 

maneuvers can be detected by thresholds on these measurements. 

Along the x-axis, forward acceleration corresponds to the throttle 

use of the driver, where abrupt peaks indicate aggressive increases 

of velocity. Deceleration is indicative of harsh braking, and 

therefore indirectly of not retaining a minimum distance to the 

vehicle ahead. Along the y-axis, high lateral acceleration points 

towards excessive velocity in left or right turns, and may result in 

the vehicle loosing traction. These four event types are concluded 

in Table 1 below, with exemplary thresholds. 

Table 1. Event thresholds. 

Event Type Threshold Sensitivity* 

Acceleration 
ax > 0.1 g 

Braking ax < -0.1 g 

Turn (Left) ay > 0.2 g 

Turn (Right) ay < -0.2 g 

* g = 9.81 m/s2 

This set of events therefore captures some essential characteristics 

of individual driving behavior. Through the definition of events in 

the form of geometrical properties and physical units, it is 

furthermore comparable and reproducible across different sensor 

platforms. A major part of smartphone-based applications for the 

assessment of driving behavior follow this approach, which is 

why we adapted it for our application as further elaborated below. 

3. MOBILE SENSING APPLICATON 
An overview of the application used in our study is depicted in 

Figure 3. On the hardware level, the application collects data from 

accelerometer, gyroscope, and GPS sensors in a smartphone, 

which for the prototype implementation is an iOS device. The 

sensor data forms the input to two functional components, 

calibration and trip recording. The calibration procedure is 

designed to determine the three-dimensional orientation of the 

device in the vehicle, and its performance contributes 

substantially to the reliability and accuracy of measurements. 

After it is completed, calibrated parameters are stored in the 

application data and trip recording may commence at the users 

discretion. During recording, sensor data is processed in a fast 

sampling loop which outputs aggregated trip profiles. Via the trip 

management component, users can access their data and receive 



 

driving feedback. A social network link enables users to share 

their performance data via a registered profile. 

 

Figure 3. Application overview. 

3.1 Calibration 
There are three accelerometers and three gyroscopes available on 

the iPhone-integrated IMU for the measurement of lateral and 

angular accelerations along three fixed axes. These axes form the 

coordinate frame of the device. The x-y plane of the accelerometer 

sensor, for instance, is parallel to the touch screen of a device, 

with positive directions of x and y axes pointing to the right and 

top of the device, respectively. Ideally, the device is mounted in a 

vehicle in an orientation where all three axes are aligned with the 

relevant axes of vehicle manipulation, i.e., forwards and sideward. 

However, users are expected to place the device at an arbitrary 

rotated position. Next to the alignment problem which inhibits a 

direct interpretation of acceleration and rotation measurements, 

this also results in disturbed acceleration measurements due to the 

earth’s gravitational field. In order to simplify data processing, we 

establish a virtual vehicle coordinate frame as a vector space that 

uses the principal directions of movement as a basis. In this 

coordinate frame, all gravitational accelerations should be 

measured along the z-vertical to the plane of vehicle movement. 

This premise can serve as a starting point to determine the device 

orientation and the necessary corrective transformations. 

Our proposed calibration procedure consists of two steps and uses 

fundamental linear algebra to derive rotation matrices that change 

the iPhones coordinate system to the desired one. A rotation 

matrix R transforms the coordinates of an object, in this case an 

(lateral or angular) acceleration measurement vector x, to a new 

coordinate systems that is obtained by rotation relative to fixed 

axes [14]. An instance for a rotation matrix in three dimensions 

that corresponds to a turn of the coordinate frame around the x 

axis (1st vector component) by α degree is given below: 

   [
   
          
         

]  

In order to align the virtual vehicle coordinate frame with the 

gravity vector, two rotational degrees of freedom have to be fixed, 

i.e., two sequential rotations are required. The third parameter is 

determined from turning the resulting coordinate frame around the 

vertical axis to align one of the horizontal axes with the principal 

direction of vehicle movement. 

3.1.1 Horizontal Plane 
In order to detect the horizontal plane, we assume that the 

application has been started and the device is placed and secured 

in the vehicle at an arbitrary orientation, while the vehicle is 

parked on a horizontal ground. Therefore, all accelerometer 

measurements originate solely from gravity.  Let Vdev be the 

coordinate frame of the device and let Vzv be the z-vertical frame 

as illustrated in Figure 4 on the left. Given that the gravity vector 

in Vzv ought to take the values gzv = (0, 0, -1), we can establish a 

constraint on the rotation matrix R1 as 

            

In order to obtain R1 that satisfies Equation (2) on an iPhone, we 

employ the ready-to-use-methods provided by the Core Motion 

Framework of iOS, which add the additional constraint of aligning 

one horizontal axis with compass north to achieve a fully 

determined system of equations. However, the corresponding 

function yields the inverse of R1, i.e., the mapping from Vzv to 

Vdev. As rotation matrices have the useful quality of equivalence 

of inversion and transposition, we can take the transposed output 

to arrive at R1. We acknowledge that magnetometer readings, and 

hence the direction of compass north, are possibly affected by the 

metal frame of a vehicle. However, in our approach it suffices to 

determine the rotation matrix for an arbitrary horizontal axes 

orientation, as the north alignment will be replaced by the second 

calibration step. We found that the iPhone’s accelerometer is quite 

sensitive to vibrations induced by the vehicle engine even if the 

car is parked. Therefore, we average rotation matrices over a 

series of measurements comprising 50 individual acceleration 

samples. Testing proved the resulting rotation matrices to be 

stable. 

 

Figure 4. Two-step rotation to vehicle-aligned coordinate 

frame 

3.1.2 Principal Direction of Vehicle Movement 
The detection of the principal direction of vehicle movement, that 

is the “forwards” axis, is only possible after some indication of 

vehicle movement is available. If the vehicle accelerates straight 

ahead, the accelerometer should exhibit measurements azv that 

point in a somewhat constant direction when projected onto the 

horizontal x-y plane of Vzv. Based on the angle between this 

projection and the x axis of Vzv, we can than determine a rotation 

matrix R2 into the vehicle-aligned reference coordinate system 

Vref . This second rotation is visualized in Figure 4 on the right. 

Our calibration algorithm for the inference of R2 is based on [13] 

and aimed at detecting the first instance of straight ahead 

acceleration from which a valid direction can be inferred. We 

therefore use a triple threshold that comprises a minimum 



 

absolute acceleration value, a minimum time period during which 

this value is exceeded, and angular sector bound. These three 

thresholds are applied after subtraction of the gravity vector. 

Users may also choose to set vehicle orientation in the horizontal 

plane manually (Figure 5). We implemented this alternative for 

the second calibration step as an arrow visualization that can be 

adjusted by the user via the device’s touch interface. 

 

Figure 5. Automated and manual calibration of principal 

direction of vehicle movement 

3.2 Trip Recording and Data Management 
After calibration, the user can start a new trip to be recorded by 

the application. During operation, it collects three different types 

of raw data from which higher order constructs are computed: 

• Trip start time, end time and duration, 

• GPS latitude and longitude in regular intervals, from which 

velocity and driven distance are inferred, and 

• Calibrated acceleration and gyroscope measurements sampled 

at 20 and 3⅓ Hz, respectively. 

In order to record critical driving events, acceleration thresholds 

are introduced as elaborated in Section 2, subject to hysteresis: 

After a value has been exceeded for a defined amount of time, the 

application generates an event object together with GPS position 

and timestamp. Preliminary testing revealed that automatic 

detection of the principal driving direction did not work reliably 

and thus the manual angle setting was used for the field study. 

While a more sophisticated algorithm may solve this problem in 

the future, the manual configuration poses no relevant usability 

barrier in our opinion and gives an instant feedback of the 

applications internal parameters. Other than suggested by [15], we 

do not incorporate a dynamic re-adjustment of calibration 

parameters in R1 and R2 that arise due to (1) deviations in the 

horizontal plane if the vehicle is climbing or (2) movement of the 

device relative to the vehicle. Vehicles on regular road networks 

very seldom face inclinations of more than 10 degree, so that the 

resulting errors in acceleration measurement are negligible. With 

respect to user interaction with the smartphone that introduce pose 

alterations, we argue that European safety guidelines forbid phone 

usage while driving. 

To limit memory usage, sensor data is discarded immediately after 

it is processed by the event detection algorithm. The application 

only stores trip objects that include time and distance, together 

with all events generated on the corresponding trip. The data 

structure of our application including user management objects is 

depicted in Figure 3. Users can access recorded trips in a list and 

access the registered events for each trip, which can also be 

displayed in a Google Maps mash-up based on the location where 

they were generated. This allows drivers to retrospectively 

understand where threshold violations occurred, and possibly 

identify locations of frequent inappropriate driving. Furthermore, 

users can post completed trips on their social network profile. 

Next to the driving score, the posting can contain trip location, 

time, and driven distance. Through frequent postings of on social 

networks, we anticipate that the application well receive greater 

awareness among potential users. 

 

Figure 6. Data structure of application 

4. EVALUATION 

4.1 Objectives 
As stipulated in the introduction, our objective is to assess the 

performance of a mobile sensing system by comparing its critical 

driving event counts with ground truth data obtained from 

vehicle-fixed reference sensor unit. Specifically, we expected the 

positioning and movement of a mobile sensing system in a vehicle 

to affect these event counts. Furthermore, next to these 

disturbances, event counts determined from a mobile sensing unit 

are also affected by external driving conditions. As scores 

determined by our application should only reflect individual 

driving behavior, it is important to identify and control for both 

these effects across different – i.e., “low” and “high” score – 

driving behaviors, and across the different types of driving events 

discussed in Section 2. 

To subsume, our evaluation should take into account 

 The specific type of critical driving events, 

 Disturbances due to different configurations of the mobile 

sensing unit in a vehicle, and 

 Disturbances due to driving conditions across a 

representative range of driving behaviors. 

Previous studies known to the authors evaluated the performance 

of similar mobile applications in a laboratory setup and with 

questionable external validity. Therefore, our approach was to use 

a controlled field study setup, where test runs were obtained from 

a representative sample of drivers for constant external conditions 

in terms of vehicle type, driven distance, and road features.  

4.2 Experimental Setup 

4.2.1 Vehicle with Reference Sensor Unit 
For the entire field study, one test vehicle was used. This decision 

was made based on the consideration that each additional test 

vehicle would require an increase in sample size to capture 

additional variance. As the large variety of vehicle models, 

motorizations and vehicle interfaces would ultimately render such 

an approach infeasible, we did not include vehicle type in our 

analysis. The test vehicle was a Renault Megane with manual 



 

shift, as a reasonable representation of mid-sized cars that are a 

major part of the overall vehicle population in Europe. 

The car was equipped with a commercial sensor unit (MHub 837) 

that, next to a pre-calibrated IMU included GPS localization. The 

device was mounted directly on the vehicles OBD-II diagnostic 

port, from which it received its power supply and additional 

vehicle data such as speedometer readings. As such, the device 

was fixed in its orientation to the car, and in preliminary testing 

able to discriminate between lateral and longitudinal acceleration 

vectors. Its IMU measurements were therefore considered suitable 

as reference data for the mobile sensing application. The fixed 

sensor unit transmitted data wirelessly over GPRS to a backend 

system, from which aggregated information could be pulled using 

a standard fleet management solution. Threshold sensitivities on 

the unit could be preconfigured over a serial interface, so that no 

continuous transmission of acceleration data, which potentially 

strains data volume limitations, was required. 

4.2.2 Test Route 
In order to keep driving conditions constant between participants, 

we used a pre-defined route with a total length of 28.55 km, 

consisting of sections in city environment (11.85 km), on country 

roads (6.80 km) and highways (9.90 km). The route included 

inclined terrain with a maximum height difference of 

approximately 200m. Through the identical test route in every 

evaluation run, it was ensured that each participant driver would 

face the identical number of turns, traffic lights, ramps, 

intersections, and other infrastructure features. 

 

Figure 7. Test route through different terrains and 

infrastructure features, approx. 45 minutes driving duration 

4.2.3 Study Procedure 
Recruitment of potential participants was primarily conducted 

among students at our university. Every participant was 

compensated by a gift voucher and participated in an additional 

prize raffle. Interested candidates were asked to fill out a short 

online questionnaire containing questions on their suitability. For 

ethical and insurance reasons, only persons with at least one year 

of driving experience, at most one self-induced accident and no 

past revocation of their driver’s license were accepted. Interested 

and suitable subjects fixed an appointment with the test supervisor 

and were invited to join a testing session. 

Introducing participants to the goal and contents of the study, the 

testing session started with a short questionnaire containing a 

declaration of liability and some items on car access and general 

driving behavior (e.g. “In average, how many trips do you take 

per month?”). Then, participants got an introduction to the use of 

the test car. Before starting, the test supervisor used the app to 

calibrate direction of vehicle movement and start trip recording. 

Preventing any potential influence by a co-driver, participants 

undertook the test drive on their own. Therefore, the pre-defined 

route was stored in the car-internal navigation system and 

participants were asked to follow navigation system’s commands 

while driving. Participants who failed to follow the exact route 

were excluded from data evaluation. 

Participants were randomly assigned to one of three subgroups, 

for each of which a different position of the mobile sensing device 

in the vehicle was used. After an initial pre-study with colleagues, 

it was determined that the common positions for a smartphone 

where (a) face-up on the co-driver’s seat, (b) the middle console 

between driver’s and co-driver’s seat, usually made from hard 

plastic material, and (c) a designated smartphone holder attached 

to the front windshield, typically associated with mobile 

navigation systems. 

5. RESULTS 
Event count data was aggregated from the smartphone after each 

trip by accessing the application memory via the interface 

described in Section 3. Similarly, event counts from the reference 

IMU were exported from the commercial fleet management 

software in which transmitted data was stored. Left and right turns 

were summarized to general turn events, and events were 

aggregated for each participant. For the evaluation of collected 

data, IBM SPSS 19 was used. 

5.1 Sample description 
In total, 78 people participated in the study. Due to traffic jams or 

deviation from the test route, six subjects had a substantial rise in 

travel time or length and were thus excluded from further 

analysis. 

The remaining 72 participants’ mean age was 23.65 years 

(SD = 4.77; Range from 19 to 51). 83.3% were male, and 75.0% 

of them mainly used the car of their parents or other family 

members (only 22.2% owned a car by themselves). Average time 

since getting the driver’s license was 5.46 years (SD = 4.74; 

Mode = 2) and participants reported to take 9.05 trips per month 

(SD = 8.79) with an average distance of 28.10 km per trip 

(SD = 24.06). The average time needed for the test drive was 

46.37 minutes (SD = 5.06).  

5.2 Control variables 
A standardized procedure including an identical test route for all 

candidates was chosen to minimize possible side effects of 

varying traffic environments. However, external factors such as 

daytime or weather conditions might jeopardize standardization 

by resulting in different traffic densities or unexpected incidents 

such as road closure. Thus, resulting event data was controlled for 

the impact of daytime and weather. 

To assess daytime, start time was noted at the beginning of every 

test drive. The earliest test drive was undertaken starting at 

8:47 AM, the latest at 4:58 PM. As only low correlations were 

found between daytime and IMU data (Reference IMU: r = -.02, 

p = .85; mobile IMU: r = -.13, p = .27), significant influence of 

daytime on measured events could be excluded. 

Weather conditions were assessed using a basic rating procedure. 

At the beginning of every test drive, the test supervisor rated 

actual weather conditions on a 5-point scale ranging from 

1 (= rainstorm) to 5 (= sunshine). A calculated mean of 3.92 

(SD = 0.80) over all test drives suggested mainly bright or sunny 

conditions. Actually, no test drive was undertaken under heavy 

rain. In connection to IMU data, no significant correlations were 

found (Reference IMU: r = .23, p = .06; mobile IMU: r = -.05, 



 

p = .65). Thus, a systematic influence of weather conditions on 

measured data could be excluded as well. 

5.3 Event Count Statistics 

5.3.1 Reference IMU 
In average, the on-board unit registered 43.40 events 

(SD = 10.71). With regard to the standardized route of 28.55km, 

this implies participants created about 1.5 events per km. Results 

of a Kolmogorov-Smirnov-Test indicated data to be normally 

distributed (Z = 0.56, p = .92) with two cases highly deviating 

from mean (see Figure 8). However, those outliers were not 

excluded from further analysis as there was no evidence for IMU 

malfunction or anomalies concerning standardization (e.g. traffic 

jams). 

 

Figure 8. Distribution of event counts for fixed IMU 

With regard to particular event types, turns and braking were 

registered more than twice as often as accelerating events (see 

Table 2). These findings suggest the need for braking and heavy 

turning to occur more frequently in real traffic situations. 

Additionally, road type manifested as important impact factor: As 

illustrated in Table 2, more than twice as many events were 

registered in city environment compared to country roads. In 

contrast, event counts on highways were surprisingly low, 

indicating the most defensive and constant driving style on 

freeways, despite high average speed. 

Table 2. Means and standard deviations for event counts 

registered by fixed IMU 

Events 

(road/type) 

 
Acc. Braking Turns Total 

City 

M 

SD 

7.11 

3.23 

13.54 

4.15 

8.32 

3.36 

28.97 

7.97 

Country 
M 
SD 

1.24 
1.24 

3.22 
1.53 

8.93 
3.54 

13.38 
4.78 

Highway 
M 

SD 

0.24 

0.43 

0.36 

0.68 

0.44 

0.95 

1.04 

1.48 

Total 
M 

SD 

8.58 

3.73 

17.13 

4.92 

17.69 

5.37 

43.40 

10.71 

 

Quantified for each participant separately, events referring to a 

specific event or road type can be seen as repeated assessments of 

driving style. Thus, repeated-measure ANOVAs were conducted 

to test for differences in event counts based on event and road 

type.  For both analyses, the assumption of sphericity was 

violated. Thus, the Greenhouse-Geiser approach was used to 

correct for degrees of freedom. Significant differences were found 

both for event (F (1.84, 130.77) = 130.58, p < .001) and road type 

(F (1.54, 109.16) = 560.28, p < .001). Post-Hoc Tests using the 

Bonferroni correction revealed differences in braking compared to 

acceleration (t (71) = 14.11, p < .001) and turn events 

(t (71) = 16.16, p < .001), and differences in city environments 

compared to country roads (t (70) = 16.58, p < .01) and highways 

(t (70) = 28.81, p < .01), respectively. Not surprisingly, city traffic 

requires more acceleration, braking and sharper turns. However, 

while braking and acceleration occur less frequently on country 

roads, turns seem equally important, probably due to increased 

rotary traffic outside the city. 

5.3.2 Mobile IMU 
In average, the iPhone prototype registered 48.57 events 

(SD = 58.32), signifying 1.7 events per driven km. However, 

histograms indicated a skewed distribution (see Figure 9). A 

Kolmogorov-Smirnov-Test confirmed this hypothesis, revealing 

data to be non-normally distributed (Z = 2.26, p < .01). 

 

Figure 9. Distribution of event counts for mobile IMU 

Based on a pre-study, the position of the smartphone in the 

vehicle had been systematically varied between test drives. Data 

revealed substantial differences both for different positions and 

event types (see Table 3). While braking events were the most 

prevalent event type occurring under co-driver`s seat condition, 

acceleration was the most noticeable event type when the 

smartphone resided in the car holder. Additionally, high standard 

deviations of acceleration and braking events pointed towards 

large variability in event counts between test drives, especially 

when the smartphone was positioned on the co-driver`s seat. In 

contrast, number of turning events did merely vary between 

conditions, and low standard deviations indicated homogenous 

measurement between test drives. 

With respect to the violation of the assumption of normality, most 

common methods like ANOVA could not be used for further data 

analysis. Instead, non-parametric procedures were considered. 

Differences between mobile positions were assessed using 

Kruskal-Wallis tests, a non-parametrical equivalent to ANOVA 

[16]. Results revealed significant differences for all event types. 

(Acceleration: χ2 (2, N = 72) = 19.80, p < .01; Braking: 

χ2 (2, N = 72) = 9.04, p < .01; Turns: χ2 (2, N = 72) = 18.93, 

p < .01; Total: χ2 (2, N = 72) = 11.72, p < .01.). Post-Hoc tests 



 

using the Bonferroni approach indicated that these differences 

were mainly due to higher event counts on co-driver’s seat 

compared to the two other positions. Thus, smartphone attachment 

and shifting was a main source of variability in event counts. 

Table 3. Means and standard deviations for event counts 

registered by mobile IMU 

Events 

(pos./type) 

 
Acc. Braking Turns Total 

Co-driver`s 

seat 

M 
SD 

9.97 
24.73 

60.11 
72.75 

4.49 
2.22 

74.57 
71.82 

Middle 

console 

M 

SD 

3.90 

6.01 

5.75 

4.90 

6.95 

3.07 

16.60 

7.18 

Windshield 

holder 

M 

SD 

15.67 

10.51 

3.60 

2.92 

7.80 

2.76 

27.07 

13.17 

Total 
M 

SD 

9.47 

18.94 

33.24 

58.88 

5.86 

2.94 

48.57 

58.32 

 

5.4 Comparison of Mobile Measurements 

with Reference IMU 
Directly connected to the car, the reference IMU is considered to 

reliably measure acceleration, braking and turn events. In order to 

assess measurement quality of the mobile IMU, event registered 

by the smartphone app were systematically correlated with those 

measured by the fixed IMU. Using correlations to estimate 

measurement validity is a well-known procedure, especially in 

behavioral sciences [17]. As Pearson`s correlation expects data to 

be normally distributed, Spearman´s ρ as non-parametrical 

equivalent was used instead. 

As explained above, a more differentiated view was needed due to 

differences in event types and smartphone position. Thus, 

correlations were systematically calculated for each combination 

of event type and position (see Table 4). Significant correlations 

for acceleration and braking events indicated that the smartphone 

app was able to capture driving events with similar accuracy as 

the reference IMU in general. Turn events captured by mobile 

phone, however, deviated from those measured by the reference 

IMU particularly for the smartphone positioned on the co-driver´s 

seat. With regard to the smartphone position, highest correlations 

were attained using a car holder. Still, a substantial correlation 

could be registered with the smartphone positioned on the co-

driver´s seat. 

In order to further investigate the cause diverging measurements, 

we analyzed scatter plots that compare mobile vs. reference IMU 

events of each study participant. Figure 10 displays such a plot for 

the total number of event counts. From these, it became evident 

that event counts generated by a smartphone are in specific 

instances much higher, while in the remaining majority of cases 

(clustered on the left side of the plot) measurements appear 

exhibit higher correlation. 

Table 4. Correlations of iPhone data and OBD-II data for 

different event types and iPhone positions 

ρ (iPhone, 

fixed IMU) 

Event Counts 

Acc. Braking Turns Total 

Co-driver’s 

seat 

.19 .42** .13 .42** 

Middle 

console 
.61** -.11 .40^ .56** 

Windshield 

holder 
.68** .32 .49^ .74** 

Total .45** .27* .06 .56** 

^ p < .10; * p < .05; ** p < .01 

 

Figure 10.  Scatter Plot of mobile vs. fixed IMU with linear 

approximation function 

6. DISCUSSION 
Data Analysis revealed significant correlations between mobile 

and reference IMU event counts, indicating sufficiently reliable 

event detection by the smartphone application. However, 

correlations differed depending on event type and smartphone 

position. In addition, for the smartphone lying on the co-driver’s 

seat, means and variances in registered event counts were higher 

for the smartphone compared to the on-board unit. These findings 

suggest a high error rate for smartphone-based event counts for 

specific smartphone positions and event types, respectively. 

From Figure 10, it is evident that smartphone measurements 

appear to be exaggerated in certain instances, a fact that may be 

attributed to faulty calibration in these cases: If the mobile device 

reference frame deviates too strongly from the vehicle frame, 

thresholds are effectively altered. This effect was more noticeable 

for lesser-constrained positions of the smartphone in the vehicle. 

With regard to the influence of driving conditions, significant 

differences of registered event counts due to different road types 

were found. This observation is in accordance with expectation, as 

city traffic requires more acceleration, braking and sharper turns. 

However, it also suggests that event counts for a particular driver 

reflect to a significant extent the road profile on which a vehicle 

was moved. Therefore, event counts should not only be 

normalized by driven distance, but also with respect to the 

average event count for the associated road type. Surprisingly, 

none of the currently available applications for the assessment of 

driving behavior takes this issue into account. 

6.1 Limitations 
Several limitations restrict the generalizability of our results. 

Firstly, though the controlled field study approach for evaluation 

was concerned with a broad range of variables, not all potentially 

relevant factors could be considered. Prominently, only one 

specific vehicle model was used. Others may differ in attainable 

accelerations or the locations in the vehicle where a smartphone 

running the application can be placed. Other conceivable factors 

are the traffic situation which was specific to Zurich, or unique 

characteristics of the chosen test route. However, we feel that the 

results of our study should not change substantially in a setting 

were these are altered. 



 

Secondly, threshold values were deliberately chosen very low to 

achieve high resolution measurements. An alternative approach 

would use higher thresholds on acceleration, thus emphasizing 

“extreme” driving events. These would occur much less 

frequently and may not have delivered sufficient variability over 

the limited duration of the test run. 

Thirdly, our setup did not consider smartphone usage by the 

driver during trip recording. This would have without doubt 

affected event counts. The handling of a smartphone during a call 

or the execution of other applications would have introduced 

additional acceleration noise; furthermore, after usage the device 

may not have been returned to its original place and orientation. 

Such disturbances make a strong case for adaptive, live calibration 

algorithms to be incorporated into our design. 

6.2 Further Research 
Our findings point towards research challenges arising in the 

domain of driving behavior applications to be met by the mobile 

sensing community in the future. A more sophisticated, online 

calibration algorithm is potentially capable of detecting changes in 

orientation of the smartphone with respect to the vehicle. Such an 

algorithm can alter its configuration accordingly and thus reduce 

measurement biases arising from a misalignment. Furthermore, it 

may be extended by plausibility checks that compare acceleration-

derived events with gyroscope or GPS data and eliminate invalid 

or inconsistent events. However, we consider such algorithms to 

be inherently complex and difficult to verify, and thus point at 

another design option: If event thresholds in varying directions 

can be chosen identical, the calibration of driving direction is no 

longer necessary. In this scenario, only the horizontal plane 

alignment would have to be taken into account. 

Another issue to be addressed by future research is the effect 

which the feedback of event count scores has on actual driving 

behavior. Opposed to conventional on-board units that monitor 

driving behavior, mobile applications allow for instant feedback, 

visual or acoustical, during driving or after completion of a trip. 

Instead of the rather technical and data-centric design of current 

driver rating applications, more advanced designs that build upon 

concepts such as Social Norms or Gamification may prove more 

successful in achieving lasting improvements of driving behavior. 

7. CONCLUSION 
This paper has evaluated a mobile application for the assessment 

of driving behavior based on critical driving events in a controlled 

field study. We found that significant correlations with reference 

measurements from a vehicle-fixed unit exist, albeit conditional 

on event type, position of the smartphone in a car, and external 

influence factors. We pointed out specific points as to how the 

performance of such systems may be further increased in the 

future. While there remains room for improvement, insurers are 

thus well-advised to consider smartphones as an interesting 

alternative to conventional “black boxes” for the monitoring of 

driving behavior. Thereby, they may leverage the broadly 

available base of smartphones with advanced sensing capabilities, 

reduce device and data transfer costs, and reduce the perceived 

intrusion into policyholders’ privacy. 

The functional performance of such systems as considered in this 

paper is only a foundation – both researchers and practitioners 

should aim for innovative interfaces that enable drivers to make 

use of the collected information and improve their actual 

behavior. Therein lays an opportunity not only to reduce claims 

costs and reward insurance customers, but also to increase overall 

traffic safety and potentially safe human lives. 
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