
 

 

 0 

Simulation Study on the 
Effect of Sensor Information 
in Supply Chains of 
Perishable Goods 
 
Alexander Ilic (ETH Zurich), 

Thorsten Staake (ETH Zurich),  

Elgar Fleisch (ETH Zurich / University of St. Gallen) 

 

Auto-ID Labs White Paper WP-BIZAPP-046 

March 2009 

 

Keywords: Perishable goods, carbon footprint, value of 

information, supply chain management, sensor technology 

 

In cooperation with the Bits to Energy Lab at ETH Zurich and 

the University of St. Gallen 

 

Email: ailic@ethz.ch, tstaake@ethz.ch, efleisch@ethz.ch 

Internet: www.autoidlabs.org, www.bitstoenergy.com 

  

 

 

B
u

s
in

e
s
s
 P

ro
c
e
s
s
e
s
 &

 A
p

p
li
c
a
ti

o
n

s
 



 

 

 1 

Index 

Index.......................................................................................................................................... 1 

Abstract...................................................................................................................................... 2 

1 Introduction ........................................................................................................................ 2 

2 Background........................................................................................................................ 3 

2.1 Perishable Goods in Supply Chains ............................................................................... 3 

2.2 Quality Predictions Based on Monitoring of Environmental Parameters.......................... 3 

2.3 Carbon Footprint ............................................................................................................ 4 

3 Case Study......................................................................................................................... 5 

3.1 Supply Chain Simulation Model...................................................................................... 6 

3.2 3.2  Objective Functions ................................................................................................. 8 

3.3 Base Case...................................................................................................................... 9 

3.4 Base Case Results....................................................................................................... 11 

3.5 Total Impact.................................................................................................................. 13 

4 Conclusion ....................................................................................................................... 14 

References .............................................................................................................................. 16 

 



 

 

 2 

Abstract 

Sensor technologies can significantly improve the management of perishable goods. Studies 
show that even though sensors introduce additional costs, they help to increase supply chain 
efficiency and thus profits. However, the application of the technology also leads to 
additional greenhouse gas emissions. In this paper, we conduct a case study that 
investigates the value of sensor based replenishment configurations with respect to profit 
and emissions. Our results show that profit-optimal solutions can also lead to significant 
reductions in emission levels. With an abatement cost analysis, we explain how to balance 
the trade-off between profit maximization and emission minimization. 

1 Introduction 

Perishable goods such as fruits, fresh cut produce, meat, and dairy products are vital parts 
of our nutrition and as such of utmost importance for the retail grocery business. They 
account for over 50 percent of the $400 billion annual turnover of the US retail grocery 
industry [1] and their availability, presentation, and perceived quality appear to be more 
relevant to consumers’ store choice than the availability of branded products [2-4]. In fact, 
the importance of perishable goods for the society has been widely accepted. Their 
management, however, still constitutes a severe challenge for retailers and their supply 
chain partners alike. Improper storage, transport, and handling conditions often result in 
unsellable goods that have been produced, shipped – and are then thrown away. 
Approximately ten percent of the total industrial and commercial waste in the UK is caused 
by perishable food products [5] and, according to the University of Arizona, 50 percent of 
perishables in the US never get eaten.  

Direct profit and loss considerations are only one part of the equation. The food supply’s 
environmental footprint is of major concern as well. In Europe, between 20 and 30 percent of 
the greenhouse gas (GHG) emissions result from producing, transporting, preparing, and 
storing perishable food products [6]. The growing demand for refined food in Asia will further 
aggravate the development.  

Pervasive computing and sensor technologies offer a great potential to improve the 
efficiency of the food supply chain – and perishable food products are an almost ideal 
starting point for realizing major improvements. 
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2 Background 

2.1 Perishable Goods in Supply Chains 

Perishable goods are susceptible to fluctuations in environmental parameters such as 
relative humidity, temperature, or shock. As temperature is one of the key parameters for 
product spoilage, the current practice is to track the temperature within a container through a 
temperature logger. Frequently, analog Partlow recorders are used to measure the return air 
flow and thereby provide an indication for the condition state of the cargo. The recorder’s 
display is usually located on the outside of a container. Today, decisions whether to accept 
or reject shipments are often made on the basis of a Partlow chart. 

However, the goods within a container are not exposed to a uniform temperature level. The 
example of Chiquita Brands International [7] shows that the temperature distribution within a 
single container can vary up to 35 percent from pallet to pallet. These variations, which are 
often referred to as micro-climates, sometimes lead to whole loads of incoming shipments to 
be rejected. The spread in temperature depends on the ambient temperature, the total air 
circulation rate and distribution, the temperature level of the air delivered to the container, 
exposure to the sun, and the respiration heat of the goods. In conclusion, information 
provided by ambient temperature measurement is not sufficient to assess the temperature 
conditions of goods during transport and storage, and a more fine grained temperature 
tracking method is required to assess the impact on individual cases. 

2.2 Quality Predictions Based on Monitoring of 
Environmental Parameters  

Due to high variability of temperature levels even inside a single container, recent 
developments show a trend towards more fine grained temperature measurement through 
logging devices that are co-located with the goods. A few examples for these devices are 
depicted on Figure 1. 
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Figure 1: Different temperature tracking technologies: TTI label (source: Vitsab), data logger (source: 

MadgeTech), and a semi-passive RFID tag (source: Caen) 

The first picture shows a so-called Time-Temperature Indicator (TTI), which bases on 
chemical, physical, or microbiological reactions. These TTIs can be used only once and 
indicate quality problems with a color code based on the accumulated time and temperature 
history of a product. The second picture shows a data logger device which calculates the 
product’s quality based on time and temperature and visualizes the result with an LED. In 
contrast to the TTI, it can be used multiple times, has a battery life of 90 days and allows the 
temperature history to be read out through a serial interface. The last picture shows a semi-
passive RFID tag equipped with a temperature sensor. The sensor tag has a battery life of 
five years and allows the temperature history to be read out through a radio frequency (RF) 
interface. In comparison to the other two technologies, the sensor tag allows for real-time 
data integration in supply chains. Recent advances aim for even smaller RFID tags with 
multiple integrated sensors for gas, humidity, temperature, light, and vibration 
measurements. 

2.3 Carbon Footprint 

Depending on the product category and targeted consumer group, companies are used to 
optimize their supply chain processes for cost, speed, quality, safety, and other key 
performance indicators. GHG emissions only recently appeared on the list of important 
target figures. However, alongside the ongoing debate on climate change, a growing number 
of companies start to collect the emission data that results from their production and service 
provision.  

GHG or carbon accounting methods may not only be applied to countries or organizations 
but also to individual products. On a product level, life cycle assessments (LCA) help to 
determine what is often referred to as the carbon footprint of goods. The carbon footprint 
ideally includes emissions related to production, transportation, storage, use, 
recycling/disposal, and loss rates and may also capture other climate gases such as 
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methane that are accounted for after multiplication with an impact factor and expressed as 
CO2-equivalents (CO2e).  

Another measure that is important in the context of emission reductions are the CO2e 
abatement costs. They express how much a stakeholder has to invest in order to lower the 
emission by a certain amount. For some investments, the abatement cost can be negative. 
Energy-saving lamps, for example, may not only reduce GHG emissions but also save 
money due to lower electricity bills that make up for higher one-time costs. We will use the 
concept of abatement costs to evaluate the implications of the sensor-based supply chain 
application. 

3 Case Study 

Our study is based on a research project with a major Swiss retailer. We use the example of 
strawberries in Switzerland to investigate the value of sensor information for profit increase 
and carbon footprint reduction in retail supply chains. The selected analysis methodology is 
computer simulation. Simulation modeling was deemed appropriate as it represents a 
powerful and flexible way to explore, evaluate, and analyze parameters of complex systems 
such as supply chains for which a full-scale roll-out with sensor technologies is currently too 
costly in practice. Following an iterative process, the simulation parameters have been 
elicited in several discussions and were validated with industry experts. 

The Swiss consume approximately 16,500t of strawberries per year. As the domestic crop 
yield is only able to satisfy a demand of 5,500t and due to seasonality of the product, the 
resulting gap of 66 percent needs to be filled by imports from neighbor and other countries. 
Suppliers and distribution routes change frequently and quality drops are likely to occur 
between the supplier to retailer link. While strawberries are famous to consumers for their 
delicious taste, retailers perceive them as a difficult product class with high loss rates. 
Sensors can be used to reduce these high loss rates by tracking the fluctuations in 
environmental parameters on a case level. In this context, the order of which items are 
depleted from stock or shelf, defined by the so-called issuing policy, is important to minimize 
the number of perished items. Studies show that the use of a sensor based First-Expire-
First-Out (FEFO) issuing policy can increase a retailer’s profit tremendously [8, 9]. However, 
the use of sensors in a supply chain introduces not only additional costs, but also additional 
emissions required for manufacturing, transporting, and disposing sensors. While the impact 
on profit is often positive, the impact of sensor-based management approaches on emission 
levels is yet to be explored.  

With this background, we simulate the supply chain of a particular retailer, which wants to 
evaluate sensor technologies with regard to its impact on profits and emission levels. In 
particular, we investigate the carbon footprint of products, expressed as Global Warming 
Potential (GWP) in kg CO2e equivalents as defined in the CML 2001 method [10]. We 
compare a conventional scenario based on the widely established First-In-First-Out (FIFO) 
issuing policy against a sensor based scenario with FEFO issuing. In the sensor based 
scenario, Reusable Plastic Containers (RPC), which are used to transport items throughout 
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the supply chain, are equipped with temperature sensors. The FEFO issuing policy is 
enabled through the knowledge of the temperature history, which allows calculating the 
remaining keeping quality of products in a RPC. 

3.1 Supply Chain Simulation Model 

The basis for our analysis is a typical setting in the retail industry. A retailer sells a 

perishable product at price  to consumers and receives replenishments from a supplier. 
As Figure 2 illustrates, the supplier ships the goods to the retailer’s local distribution center 
where they are transshipped and delivered to their final destination, the retail store. For each 

delivery step, we assume a positive lead time of  and , respectively. The product of 
interest is a short life perishable commodity, which leaves the supplier with an initial quality 

of  days. A product is outdated once its keeping quality equals zero days. At the 
beginning of each simulated day, a routine check is performed at the retail store to remove 
outdated products and to adjust the inventory records accordingly. Consumer demand at the 

retail store is discrete and follows a Poisson distribution with mean . Demand is directly 
satisfied from the retailer’s stock. Unmet demands are lost. The retailer’s stock is 

replenished according to a continuous ( ) replenishment policy [11]. Each replenishment 

order incurs fixed costs  and purchasing costs  per ordered item.  

 

Figure 2: Supply chain set-up 

Replenishments from the supplier to the retailer’s local distribution center are exposed to 
fluctuating environmental parameters that affect the quality levels of the items in the 
consignment. To account for these characteristics, we assume that during each day of 
transport from supplier to distribution center the quality level of each individual item is 

randomly dropped according to an exponential distribution with mean . Table 1 
summarizes all parameters and variables used in our simulation. 
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Table 1: Variables and parameters used in the simulation (units in squared brackets) 

 Reorder level 

 Order-up-to level 

 Number of simulation runs 

 Duration of a simulation run [d] 

 Initial keeping quality of products leaving the supplier’s stock  

 Mean consumer demand per period 

 Lead time from supplier to distribution center 

 Lead time from distribution center to retail store 

 Selling price per item 

 Purchasing costs per item 

 Retail margin 

 One period holding costs per item at the retail level 

 Fixed costs per order 

 Mean of quality drop function 

 Total number of sold items per simulation run 

 Total holding amount per simulation run 

 Total amount of waste at the distribution center per simulation run 

 Total amount of waste at the retail store (in-store waste) per simulation run 

 Total amount of waste per simulation run ( ) 

 The number of procured items per simulation run 

 Total number of replenishment orders per simulation run 

 

For our experiments, we compare two different scenarios. In the first one, temperature data 
is not gathered and therefore employees must base their decisions on discernible visual 
changes of the individual items. We refer to this scenario as the “classical approach”. In the 
second scenario, sensors attached to RPCs record temperature deviations and therefore 
allow decisions based on effective quality levels of products to be made. Employees can use 
this data to make informed decisions beyond their visual capabilities. Due to sensor 
information, employees are able to presort items according to a FEFO issuing policy already 
at the distribution level. In practice, no additional personnel is required because presorting 
could simply be achieved during the picking operation by means of an additional sort 
parameter on the picking list. In addition, items with an overly low quality are directly 
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discarded if their keeping quality is less than or equal to the transport lead time . We refer 
to this scenario as the “sensor-enhanced approach”. The two scenarios are identical in terms 
of parameters and exhibit the same characteristics. The only difference is that in the sensor-
enhanced approach the temperature levels are recorded and used for rearranging the 
depletion order of items based on a shelf-life prediction so that the first expiring products get 
sold first. 

3.2 Objective Functions 

We measure the performance of the simulated scenarios by using the profit function of 
equation 1. Note that we assume no penalty for perished goods other than the lost margin. 

 

(1)  

In the comparison of the conventional and the sensor enhanced approach, we rely on the 
concept of Value of Information (VOI). The VOI in inventory replenishment is defined as the 
marginal improvement that a system achieves through the use of additional information [12], 
in our case the actual keeping quality, relative to the conventional approach. We define 

 as the profit optimal configuration of a scenario . The profit optimal 

configuration  is obtained with a full search over the replenishment parameter pair 

 with a sufficiently large maximum stock level for the selected demand and product life 

time parameters (search range: ). With  being the conventional and 

 being the sensor enhanced scenario, the VOI can be expressed as follows: 

 

(2) 
 

For a given profit optimal configuration , the resulting carbon footprint per product 

is represented by . We define  as the emission optimal configuration of  

with the lowest carbon footprint and a profit equal or greater than . The weight of one 

trade unit is defined as  and important for calculating the transport related emissions. 

The carbon footprint calculation bases on the sum of the emissions generated through food 
production, transport from supplier to distribution center, transport from distribution center to 
retail store, cool storage, and disposal (due to spoilage of products). As equation 3 shows, 
the sum of these emission steps is divided by the number of sold products to obtain the 
carbon footprint of a product in the scenario. 
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(3) 
 

3.3 Base Case  

The base case for our simulation studies covers strawberries with an initial keeping quality 

 of eight days at the supplier’s end and daily demand of six trade units per day at a selling 

price  of $60 per trade unit. The trade units are procured at purchasing price  of $30 

per trade unit, which corresponds to a retail margin  of 50 percent. A trade unit consists of 
ten sellable consumer units of 520g (500g Strawberries plus 20g cardboard box), which are 
transported in a foldable RPC with the dimensions of 600mmx400mmx133mm and a tare 
weight of 1.2kg. In the sensor-enhanced approach, a semi-passive RFID tag (weight 40g) is 
attached to the PRC crate to monitor the temperature during handling, transport, and 
storage. The PRC is rented from a container pooling provider for $1.5 per rotation with the 
sensor attached and for $0.75 per rotation without the sensor attached. The renting costs 
are based on current market prices (including transportation, collection, cleaning) assuming 
ten rotations per year, a RPC life of five years, a sensor life of five years, sensor costs of 
$35, and a loss rate of 0.5 percent per rotation.  

In addition to the RPC rental costs, fixed replenishment costs  of $12 per order occur. 
Products are procured from suppliers in European Union (EU) neighbor countries with a lead 

time  of two days, a transport distance  of 500km from the distribution center, and face 

a mean quality drop of  days. The lead time  from the distribution center to the 

retail store is set to one day with a transport distance  of 100km. Holding costs  per unit 
per day are set to $1 for the retail store.  

To calculate the carbon footprint for each simulation run we use equation (3) with the 
following specific emission factors (based on the ecoinvent [10] and GEMIS [13] database): 

• Production of one trade unit of strawberries (10x500g strawberries, 

10x20g cardboard box, 1x1.2kg PRC with proportionate emissions per 

rotation) 

 

• Production of one trade unit of strawberries with sensor attached 

(same as above plus 1x40g temperature sensor attached to the PRC with 
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proportionate emissions per rotation; emissions for manufacturing and 

transporting the sensor are included) 

 

• Transport from supplier to distribution center (road freight, lorry 7.5-

16t) 

 

• Transport from distribution center to retail store (road freight, lorry 7.5-

16t) 

 

• Cooling during transport and storage 

 

• Waste management/disposal (excluding PRC and sensor disposal 

emissions) 

 

The simulations were executed on a high performance cluster and written in the Python 
programming language. In our simulation program, the classical and the sensor-enhanced 
scenarios were compared with the same parameters for a simulated time of 600 days and 

 replications. The first 100 days were removed as a warm-up period according to 

the method outlined by Law and Kelton [14]. Thus, the simulated time  equaled 500 days. 
For variance reduction, the widely recommended common random number (CRN) approach 
[14] was applied to both the demand arrivals distribution and the quality drop distribution. A 
full-factorial sensitivity analysis of the parameters of a similar structured supply chain model 
can be found in [15]. 
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3.4 Base Case Results 

Table 2 shows the results and averaged performance metrics for the simulation runs with 
respect to profit optimal and emission optimal configurations. The left and middle column 

represent the profit optimal configurations for , the classical approach and for , the 

sensor-enhanced approach. The profit increase of  over , namely the VOI, amounts 
to 8.49 percent. The 99 percent confidence interval for the mean profit increase is 0.2 
percent. As Table 2 shows, the profit increase is based mainly on the decreased number of 
unsellable goods (-35.99 percent) and the decreased number of out-of-stocks (-36.83 
percent). This confirms that the sensor-based approach is more resource efficient than the 
traditional approach. Since fewer products are thrown away, the holding costs rise as the 
retail shelf space is better utilized (+33.50 percent). By sensor enhanced sorting due to the 
FEFO policy, the amount of in-store waste decreases by 49.92 percent. Interestingly, this 
has also positive impact on the emission levels. Due to sensor information, the total 
emissions (which are driven by the number of sold units) are reduced by 0.66 percent. 
However, the real impact on emission levels is even greater. The carbon footprint per sold 
trade unit is reduced by 0.61 percent as resource efficiency increases. In conclusion, while 
having optimized for profit, the sensor enhanced approach was also superior to the classical 
approach with respect to the carbon footprint. In the base case, the costs and emissions 
associated with the introduction of the sensor technology into the supply chain are therefore 
negligible in comparison to the benefits achieved. 

Table 2: Base case results for profit and emission optimal configurations 

 Profit*(U1) Profit*(U2) Change CF*(U2) Change 

( ) (23, 30) (23, 35)  (18, 27)  

Profit [$] 73,964 80,243 +8.49% 74,854 +1.20% 

Carbon footprint [g CO2e] 2,977 2,958 -0.61% 2,887 -3.02% 

Sold units  2,866 2,918 +1.79% 2,623 -8.48% 

Holding amount  4,023 5,371 +33.50% 3,075 -23.56% 

Total waste  192 123 -35.99% 53 -72.56% 

In-store waste  192 96 -49.92% 27 -86.18% 

Replenishments  379 233 -38.53% 267 -29.57% 

Out-of-stock (OOS) rate 4.63% 2.93%  12.73%  

 

While the left and middle column represent the profit optimal solution, there are also 
configurations that reduce the carbon footprint even further while still achieving a profit 
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increase in comparison to . The emission optimal solution  is found by searching 

for a configuration of  with a minimal carbon footprint  and a profit level less or equal 

than . The results are depicted in the third column of Table 2. We can see that 
the carbon footprint can be reduced by 3.02 percent at a profit gain of 1.20 percent. Due to a 
lower reorder point, the replenishment frequency is higher than in both profit optimal 

configurations of  and .  

The result is a reduced safety stock with lower holding costs  
(-23.56 percent) and a tremendous waste reduction of -72.56 percent. However, this makes 
the emission optimal configuration susceptible to out of stock situations. Out-of-stock 
increases from 4.63 percent to 12.73 percent and thus represents a significant amount of 
lost sales. In a next analysis step, we will balance between profit optimal and emission 
optimal solutions with an abatement cost analysis. 

 

 

Figure 3: Abatement cost analysis of the base case 

Figure 3 shows the CO2e abatement cost analysis of the base case. This analysis 
investigates the costs per unit sold in relation to a carbon footprint reduction per product sold 
against the classical approach without sensors. We can see that the profit optimal 
configuration with sensors reduces the carbon footprint by 20g CO2e while achieving 
additional profits of $0.11 per unit sold. By selecting a different replenishment configuration, 
a retailer can realize greater emission reductions while still achieving equal or higher profits 
than in the conventional approach. This emission optimal area is flagged by the red circle on 
the right side of Figure 3. 
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3.5 Total Impact 

While the base case only investigates the sourcing option “EU, short distance”, we aim to 
assess the impact of sensor information also in other typical settings of the Swiss strawberry 
case. Therefore, we vary the simulation parameters and sourcing options according to the 
seasonality characteristics described above.  

In particular, we run our simulation for the following scenarios and the parameter sets: 

• Scenario 1, “Switzerland, national”, lorry 3.5-7.5t 

( ) 

• Scenario 2, “EU, short distance”, lorry 7.5-16t ( ) 

• Scenario 3, “EU, long distance”, lorry 16-32t ( ) 

• Scenario 4, “International, med. distance”, airplane 

( ) 

Based on the above mentioned parameter sets, an additional number of 4,680 experiments 
with 10 replications per experiment were conducted. Similar to the simulation runs in the 

base case, the profit optimal configurations of  and  were determined and compared. 
The simulation results with respect to profit increase (left picture) and emission reduction 
(right picture) relative to the non-sensor approach are displayed on Figure 4. While both, the 
profit increase and the emission reduction was substantial in the base case (scenario 2), we 
can see that in scenario 1 the emissions caused by the carbon footprint of the sensors 
outweighs the achieved reduction. On the contrary, the sensor costs and sensor emissions 
are negligible for scenario 3 and scenario 4.  

 
 

Figure 4: Profit increase and emission reduction in the selected scenarios 
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When transferring these simulation results back to the initial example of strawberries in 
Switzerland, we can estimate the value of sensor information on a larger scale with respect 
to profit increase and emission reductions. Table 3 shows the summarized results. The total 
profit increase due to sensor information is $6.6 million per year (eight percent) and the 
achieved emission reduction amounts to 359t CO2e (two percent). With the trade-off 
between profit optimal and emission optimal supply chain configurations, further emission 
reductions are possible while still retaining a profit-positive relation compared to the 
conventional approach. 

 

Table 3: Total impact of profit-optimal sensor solutions for strawberries in Switzerland 

 Total Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Demand p.a. [t] 16,500 5,500 4,290 4,290 2,420 

Demand p.a. [# trade units] 3,300,000 1,100,000 858,000 858,000 484,000 

Profit  [in $1000] 80,983 30,274 22,140 16,079 12,489 

Profit increase  [in $1000] 6,604 1,047 1457 3277 822 

Emissions  [t CO2e] 21,054 2,282 2,554 3,888 12,330 

Emission reduction  [t 

CO2e] 

-359 36 -16 -185 -194 

Purchasing volume [t] 18,250 5,551 4,577 5,540 2,582 

Purchasing vol. reduction  

[t] 

-518 -39 -106 -313 -60 

4 Conclusion 

Sensor technology can help to significantly increase the profits when dealing with perishable 
goods. Moreover, the technology has the potential to considerably improve the resource 
efficiency of the related processes. As our results show, emission reductions induced from 
avoiding waste and reducing the number of shipments more than compensate for the 
emissions related to sensor production and usage. A particularly valuable learning is that in 
certain but highly relevant scenarios the abatement costs are negative – that is, companies 
that use sensor technology effectively not only save money but also lower their carbon 
footprint. Other beneficial environmental effects (such as less land use) and monetary 
effects (such as better image of the company and price premium for suitably handled 
products) are not even included in this consideration. Based on these results, we can 
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recommend with confidence exploring and putting into practice similar supply chain 
applications.  

However, significant costs arise if the infrastructure for capturing and analyzing sensor data 
does not exist yet. As these costs do not affect our simulation results, practitioners can use 
our results to calculate the amortization horizon of the investment via the identified 
contribution margin. In most cases, the infrastructure will be used for several sensor-based 
applications and thus could be amortized in a reasonable time frame. 

Future research should include the development of novel issuing policies that make use of 
the enhanced insights into the history of products, the consideration of other environmental 
parameters such as vibration and shock, the design of low-cost monitoring devices, and the 
development of solutions where products actively control their environmental conditions. 
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